|
As the adsorption of π-conjugated molecules on metals is considered an intermediate situation, both contributions have to be included in the description of these systems. For strongly interacting systems the hybridization of molecular orbitals with the electronic states of the metal often involves a charge-transfer at the interface and distortions of the adsorbate [2]. In some cases, this may yield a metallic adsorbate layer with electronic states of the molecule lying at the Fermi level. In other cases the formation of an interface dipole (ID) pins the Fermi level, and thereby retains the semiconducting character of the organic layer [3,4]. |
Photoelectron spectroscopy is a powerful and well established technique to study the electronic properties of adsorbed molecules [1]. While X-ray photoelectron spectroscopy (XPS) excites core-level electrons and is sensitive to the chemical environment of the different atoms, ultraviolet photoelectron spectroscopy (UPS) probes the valence band region and is suitable to study charge-transfer phenomena as well as the emergence of interface states [2]. The molecule-substrate interaction, that influences the electronic properties of the system, also determines the adsorption geometry of the molecules. A planar molecule, for example, can be distorted on the surface if there are specific functional groups attached. In general, the element-specific adsorption distances of a molecule, which can be measured using the X-ray standing wave technique with unrivalled precision [1,5], do not only reflect the total interaction strength but also the subtleties of the bonding mechanism. Also, it has been shown that intermolecular forces cannot be neglected: Their influence goes beyond the lateral ordering (probed routinely by low energy electron diffraction) as the molecule-molecule interaction affects the bonding distances. Often, there are correlations between electronic and geometric changes, which can contribute to a better understanding of the organic-metal interface. Moreover, those observations provide an excellent test ground for state-of-the-art quantum chemical calculations. |
[1] The Molecule-Metal Interface (edited by N. Koch,
N. Ueno, A.T. S. Wee), John Wiley / VCH Weinheim (2013)
[2] S. Duhm et al., Organic Electronics 9 (2008) 111
[3] G. Heimel et al., Nat. Chem. 5 (2013) 187
[4] N. Koch et al., J. Am. Chem. Soc. 130 (2008) 7300
[5] J. Zegenhagen, Surf. Sci. Rep. 18 (1993) 199
For our recent work on the adsorption of organic molecules on metals, see list of publications.