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Introduction

Under ordinary terrestrial conditions matter appears in three states of aggrega-
tion: solids, liquids, and gases. The existence and the general properties of solids
and gases are relatively easy to understand once it is realized that atoms or mol-
ecules have certain typical properties and interactions that follow from quantum
mechanics. Liquids are harder to understand. Assume that a group of intelligent
theoretical physicists had lived in closed buildings from birth such that they never
had occasion to see any natural structures. Let us forget that it may be impossible
to prevent them to see their own bodies and their inputs and outputs. What would
they be able to predict from a fundamental knowledge of quantum mechanics?
They probably would predict the existence of atoms, of molecules, of solid crystalis,
both metals and insulators, of gases, but most likely not the existence of liquids.

The essay does not show how the existence of liquids necessarily follows from
quantum mechanics. Its aim 1s much less ambitious. It tries to present over-
simplified models of the three states of aggregation that may help to get a better
intuitive understanding of simple liquids, of the processes of melting and evapora-
tion, their temperatures and energies, and, in particular, of the viscosity and of
the self-diffusion coefficients of liquids.

Nothing in this essay is original, a lot is vastly oversimplified, but the author
was happy when he could use these models in order to clarify a few points, which
for him, before, were in the well-known gray area of *I should understand this
better but I don't.”

The Questions

In what follows we will consider simple substances only, that is, substances
consisting of atoms or molecules that are exactly spherical and whose internal
degrees of freedom do not participate in the heat exchange. We will refer to the
constituents as “‘atoms,” even when they may be molecules. The examples on
which we will test our ideas are argon, oxygen, sodium, copper, mercury, methane,
and water. The molecules of the last substance cannot be considered spherical
nor can their internal degrees of freedom be neglected. Water, however, is such
an important liquid that we nevertheless will try to use our simplified methods,
which do indeed yield the right order of magnitude of the different properties.
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We distinguish an energy ¢, which is the binding energy per atom of the solid
at zero-temperature. This energy assumes very different values for different sub-
stances, depending on the type of binding between the “atoms.”” For example, for
noble gases, e, ~ 0.1 eV whereas for some metals it is of the order of several eV.
We distinguish ¢z which is the boiling heat per atom at atmospheric pressure, and
€)r, the melting heat per atom, The following relation,

€, €5 + €y + kT, (2.1)

is a reasonable approximation under the assumption that the heat content of a
solid and a liquid is 3k 7 per atom (Dulong-Petit law), whereas it is (5/2)kT in the
gas under constant pressure. We will never take into account any quantum effects
in this paper. Usually kT and ¢,, is much smaller than ¢, so that we may put
roughly ¢, ~ ¢z. Indeed when we put

5~ 8 (2.2)

€y = —
a a

we find that, roughly speaking, a is of the order 10 to 30 for simple substances as
seen in TABLE 1, We will give reasons for this relation. The melting temperature
T,; depends somewhat but not very much on the pressure. We observe the follow-
ing relation

kTM -~ €ars (2.3)

where & is Boltzmann’s constant. Indeed the ratio €,,/kT),, is always of the order
unity as seen in TABLE 1. We will give reasons for this relation too.

The boiling temperature depends strongly on the pressure; in the vacuum it is
zero; every substance evaporates in empty space. We define 75 as the boiling tem-
perature at atmospheric pressure. There exists a relation referred to as Troutons
rule:

kT, = % 5, (2.4)

where b is very near to 11 as seen in TABLE 1. We will explain this relation and in-
dicate how the value of b can be calculated.

We also will apply our considerations to an estimate of the self-diffusion co-
efficient D of a liquid and its viscosity n. The coefficient D is defined as follows:
consider an atom at ¢t = Q at r = 0Q; after a time ¢ the average distance 7 of the
atom from the pointr = 0Ois:

F= VDt (2.5)
From purely dimensional reasons it follows that we can write
wynd 1
D = - ¢ ~ —atT ~ T 2.6
3 & ¢ T M (2.6)

where wy, is the thermal velocity of an atom, d is the average distance between
atoms (there are d~* atoms per unit volume). For simple liquids near the melting
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point, we find that the pure number { is of the order of 1/15, as seen in TABLE 1.
It will be understandable on the basis of our model.

The viscosity coefficient 5 of a liquid substance is defined as follows: assume
that the substance moves with a velocity u in the x direction, but the magnitude of
u changes in the z direction, so that there is a gradient (du/dz) of the overall
velocity u. Then a certain amount P of momentum is transferred per unit time
through a cm? of a plane perpendicular to z. P is proportional to du/dz:

p o g

=1 (2.7)

and the coefficient n is the viscosity. Again, for purely dimensional reasons we
write

7= ";;";"x, k ~ 12atT ~ T,,, (2.8)

where m is the mass of the atom and « is a dimensionless number which, at or near
melting temperature, is of the order 10 for simple liquids as indicated in TABLE 1.
Also this relation will be made plausible by our model.

The size of the constant in Equation 7 is surprising when one compares it with
the well-known formula for the viscosity of an ideal gas

nmw,[ ] 1

37 ) \/2_mr(2r)2.

Here n is the number of atoms per unit volume, 7 is the radius of the atom, and / is
the mean-free path. It is well known that this expression does not depend on the
density. Surely, expression 8 is only valid for dilute gases but, since ng,, Is density
independent, one would have thought that it should at least give the right order of
magnitude also for a liquid. However, when we putd = 2r for the liquid in which
the atoms touch each other, we get formula 7 but with x = (V27)~! = 0.23;
that is about 50 times too small. We will be able to explain this discrepancy.

(2.9)

NGas =

Gases and Solids

We begin with a discussion of solids and gases and of the equilibrium between
these two states of aggregation. This will serve to fix our models and to describe
the simplifted methods that we will use in order to treat the equilibrium between
two phases. We consider the gaseous state as a dilute ideal gas of N spherical
atoms without any internal degrees of freedom, enclosed in a volume V. We in-
troduce the volume per atom v; = V/N which fulfills the ideal gas equation:

_ AT

v
¢ p

(3.1)
where p is the pressure.

We now describe our model of a solid (the Einstein model): Here we assume
that each atom or molecule is a mass-point (mass m) tied elastically to its rest-
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position; the latter being fixed in place at cubic lattice points, with 4 as the nearest
distance. The elastic bond has a frequency wg which we will determine as follows.
The frequency wg is connected with the Debye temperature 6:

wg = c&q = (wp € = L (3.2)

h V3

where ¢ is a numerical factor. The choice of ¢ = 1/4/3 is based upon the following
reasoning: w, is the highest frequency of the lattice in the Debye model, which
assumes a frequency distribution proportional to w? dw. The value of ¢ depends
upon what average one wants to choose. We are interested mainly in the deter-
mination of the square of the average amplitude § of the oscillators at a given
thermal energy. 62 is proportional to w~? at a fixed energy and the average of & ~*
in the Debye model is 3w, 2. Hence we get w;? = 3wp’andc = 1/V3.

The Debye frequencies are determined experimentally from the behavior of the
specific heat at low temperatures. They are characteristic of the bond strength at
small vibrational amplitudes. We get an idea of the behavior at large amplitudes
by interpreting wy in the following way: In the Einstein model of a solid we would
imagine that the energy ¢, necessary to lift the atom from its rest position within
the solid to a rest position in empty space (we neglect quantum effects such as
zero-point energies) must be given approximately by

e, = § muwg(df2)?, (3.3)

where d is the distance between the atoms in the solid. It is the potential energy
when the atom is displaced by d/2. The binding energy eg is determined from the
melting heat ¢,, and the boiling heat ¢z according to relation 2.1. Thus we get
another way to determine wg:

wg = [8(eg + ey + $kTg)/md?]'/2, (3.4)

We will use the arithmetic mean of the values calculated by 3.2 and 3.4. The
resuiting values are found in TABLE 1. In the case of water it turned out that the
agreement with facts is much better if a fictitious Einstein frequency s used which
1s two times higher than the mean of 3.2 and 3.4.

In all our examples Awg turns out to be reasonably small compared to the
melting temperatures. We therefore are allowed to neglect quantum effects when
we are dealing with temperatures near melting or higher as we wili do throughout
this paper.

We now introduce the concept of “available volume” of an atom at a given
temperature T. It is easy to visualize that concept in the Einstein-model of a solid.
The available volume v, is a measure of the volume in which the motion of the
atom takes place; it will be of the order of the cube of the amplitude of vibration,
that is proportional to (k7T /(mwg*)] >%. A more exact definition of this volume is

3/2
vg = f dx? exp [—m(x)/kT] = (2""’[)’ ,

me

(3.5)

2

where w(x) = 4 mwg*x? is potential energy of the oscillator. This expression
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represents an integral over the volume weighted by the probability of binding the
atom there.

It is useful to introduce a length §; indicating the linear dimension of the avail-
able volume:

meZ

12
5, = v = (2"”) . (3.6)

The length 6, 1s of the order of 0.1 of the lattice distance d below the melting point.
The volumev, is of the order 1073 of the cell volume 4° and reaches about 1/250
of d° at the melting point. Notice that §_ is the cube root of the available volume
and not the average amplitude of the oscillator vibrations. The latter amplitude
R, would be approximately equal to the radius of a sphere of that volume:

3 1/3
R, =[2) 3 (3.6a)
47 !

It probably is intuitively plausible that the corresponding available volume vg
for a gas is the volume per atom, namely, V/N as given by 3.1:

v = V/N. (3.7)

At atmospheric pressure this volume is about 1000 times larger than the cell vol-
ume 4° of a solid and therefore several 10° times larger than the available volume
in a solid.

We will use the available-volume concept in order to express the condition of
equilibrium between two phases I and I1. Such equilibrium exists when

JU_ AT Ae — ¢ — . (3.8)
41!
Here v, are the available volumes in the two phases and ¢, are the energies per
atom of the two phases, but without counting the thermal energies, that is, when
the atoms are at rest. So ¢, is zero in the gas phase and ¢; = —¢, in the solid phase.
The relation 3.8 is intuitively plausible. Two phases can coexist if the difference
between the available volumes is compensated by the Boltzmann factor corres-
ponding to the difference in energy. The relation 3.8 is derived from the general
laws of statistical mechanics in the Appendix.
Applying the relation 3.8 to the gas-solid equilibrium we get

Y6 _ psnT, (3.9)
Vs
In the gas, the atom has a much larger available volume to its disposition than in
the solid, but the energy in the solid is lower by ¢5. We can transform 3.9 into an
expression of the vapor pressure p‘© above a solid by means of 3.1 and get

_ KT skt

Vs

Pc (3.10)
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This equation says that, in our model, the vapor pressure is that of an ideal gas
compressed so that the volume per atom is v,, but then reduced by the Boltzmann
factor exp (—¢,/kT).

We will show a few examples of how our model works. Of course, our simpli-
fied model can only give very approximative results. As mentioned before, all
quantum effects including zero-point energies are neglected.

All data, the ones that enter into our models, the results and the actual values,
are assembled in TABLE 1. We see by comparing lines 6 and 7 that the values for the
vapor pressures near the melting point are not too badly reproduced. Although
the pressures differ by nine orders of magnitude, our results are good within a
factor 2.5, except for water where we are off by a factor of 8.

Liquids

In an idealized solid the “location” x; of each atom is fixed at the lattice points.
We understand by *“location” not its exact position but the position of the center
of that volume 8,> = v, within which it performs harmonic vibrations (in the
Finstein picture) with an amplitude of the other &5. This is long-range order. We
now make the following assumption. When 8¢ reaches a certain critical value 6,
the location x; of the atoms do no longer remain fixed; the structure then is
loosened such that the atoms do no longer oscillate around a fixed position; the
locations change due to combinations of vibrations of neighboring atoms: the
long-range order disappears. Then the individual atom rather performs a random
motion with steps of the order &, instead of an exact oscillation around a fixed
location. This will be our description of the liquid state. We picture it by imagining
spherical atoms of size ~d, almost closely packed but with spaces inbetween,
allowing relative motions of neighbors against each other, of order 4, . They move
oscillator like for distances §; but do not necessarily return to the same point
when the restoring force pushes them back. They perform a *‘hindered” random
walk. The term “‘hindered” expresses the fact that the small ratio 6, /d prevents
them from moving freely in all directions.

It is very difficult to determine from first principles the critical distance &, at
which the long-range order disappears. We will get from an analysis of the condi-
tions that the transition from long-range order to the liquid state occurs when

ng,a~&i (4.1)

that is, the random displacements are of the order of one quarter to a fifth of the
lattice distance 4 or larger.*

This loosening up of the solid state long-range order needs energy. It is the
energy necessary to increase the d¢ given by 3.6 to §, as defined above. The melt-
ing heat ¢,, is just that energy necessary to increase &g to &, at T,,. Assuming
that the binding forces roughly have the character of a restoring force in an oscilla-

*Here and in the rest that follows, we neglect the difference in density of liquids and solids.
We always defined asd? = V/N, where V is the volume of N atoms in the solid or liquid.
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tor, the energy ¢,, necessary to extend the displacements from §5 to 6; in the solid
should be nearly equal to the difference in potential energy of an oscillator with
those displacements. The potential energy is proportional to the square of the
displacement. At the temperature T, the average potential energy is (3/2) kT),.
Thus we get

(3/kTy + ey 8,°
B/ kTy bs®

(4.2)

So €, 1s the energy to stretch 65 to 6, at T),. This equation allows us to calcu-
late &; at the melting point from g, which is given by 3.6:

5 = (1 o )lfz(z"kT)W (4.3)
3kTy mwg”

TABLE 1 shows the values §; according to 4.3 for a few simple liquids. Now we
can determine empirically & = d/d; at the melting point; the values are listed
in the TABLE 1, line 17. They are the basis for our claim that « lies between 4 and 5.
The motion of the atom in the liquid i1s no longer exactly that of an oscillator
since it does not return to the same point. But its motion still is ““back and forth”
with an amplitude corresponding to 4, . If we want to approximate the force that
drives it back by an oscillator-type restoring force, that oscillator would have a
different (smaller) frequency wg. It is easy to determine wy, since that new oscilla-
tor has an amplitude corresponding to §; at T, whereas the oscillator describing
the solid state had an amplitude corresponding to 5. Since the amplitudes at fixed

T are proportional to w™!, we get

wg = (0 /‘SL)(UE, (4.4)

where 65 /8, is given by 4.2. We emphasize again that the motion of the atom in
our model of the liquid state is an oscillator motion only in a very approximative
sense because it does not return to the same point of origin. Our model of the solid,
however, deals with exact oscillatory motions of the atom.

The energy of the atom at rest in that oscillator which approximately describes
the motion in the liquid, is not —eg as it is in the oscillator of the Einstein model
of the solid, but —e; = —eg + €,; it is higher by the melting heat, We therefore
get

€g — €1 = €. (4.4a)

We now determine the increase of the available space vg when a solid becomes
liquid. In order to do this we must try to describe the liquid state a little more
accurately. The liquid consists of atoms moving through distances &, before
turning into another direction because of the presence of neighboring atoms. Since
d; is rather much smaller than the average distance d between the atoms, the dis-
placements of neighboring atoms cannot be completely independent of each other,
they must be coordinated; one must make room for the other. Actually there will
be a continuous transition from nearby atoms whose locations are tightly cor-
related and others further away that are less tightly correlated. We try to simplify
the situation by introducing the concept of a “clump” of f neighboring atoms
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whose relative positions are as tightly correlated as in a solid (they form a lattice),
whereas the positions of the atoms outside the clump are not at all correlated to
those inside the clump. We do not assign definite atoms to definite clumps; when-
ever we look at the neighborhood of an atom we assume that f surrounding atoms
form a clump.

The size of a clump is connected with the ratio & = d4/8, for the following
reason: The position of an atom, « lattice distances away, should be independent
of the position of a reference atom. Since our clump describes the continuously
diminishing dependence by a sharp break from complete lattice to complete in-
dependence, we believe that the linear dimensions of a clump should be £ad where
¢ is less than unity, say about 0.6. This choice will give reasonable results. We then
have

f - (51)3 - ()’ £~ 06 (45
7

which, with the choice of @ = 4.5 would give f ~ 20. It should be noted that the

values of @ and f are connected; in principle, we have introduced only one arbi-

trary constant « to describe the transition from the solid to the liquid state.

This rough picture allows us to calculate the available space volume v; in a
liquid. We determine it on the basis of our clump model: if the position of all the
atoms were completely free like in a gas, we would get v, ~ V/N = d°. Actually
among the f atoms of a clump only one—we call it the reference atom—is com-
pletely free, whereas the other (f — 1) atoms have only a volume §;° at their
disposition since their locations are coordinated to that of the reference atom.
Therefore the position phase space for the f atoms of the clump is

(VL)f = d35 0,

and the available volume of a single atom in the liquid becomes

v = 6L3(i>w - oat (4.6)
73

Note that the available volume is larger than the 4,° by the factor (d/8,)*”.
This is because the motion of the atom is not really oscillatory in the liquid. The
above factor expresses the increase,in available volume due to the fact that the
atom does not return to the same place in its oscillations within a volume §,>.

The expression 4.6 allows us to determine directly the ratio v, /d?, from the
ratioa = d/§, at the melting point. We get

% = ol-330), (4.7)

As a first orientation, we may putee = 4.5and f = 20, and we getv, =~ d3/73.
We now proceed to calculate the equilibrium between the liquid and solid
phase and use again expression 3.8, which tells us that the ratio of available vol-

umes must equal the Boltzmann-factor corresponding to the energy difference Ae
between the two phases. Of course, this difference is equal to the melting heat:
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Ae = €p. T We get

YL _ pem/kTy, (4.8)

Vs

We now can check our result 4.7 for v, in terms of d>. We determine v, empiri-
cally from 4.8 by using 3.5 for vg and the empirical values for d3, €y, and T,,.
The result is found in TABLE 1 line 18. We see that the values are not too far from
1/73, which we would get by using 4.7 with @ = 4.5 and f = 20. If we use the
actual values of « as listed in the table, the agreement with the empirical v, is even
better, (see line 19 of the table), except in the case of water.

The relation 4.8 allows us to get an estimate of the ratio between the melting
heats ¢, and the melting temperature 7,,. A very rough result is obtained by not-
ing from TABLE 1 that vy ~ d3/250 whereas v, ~ (1/73)d® according to 4.7
witha = 4.5and f = 20. Thus the ratio v; /vg ~ 3. Then it follows immediately
from 4.8 thatexp(e) /kTy) = 3orey = kTy.

We can come to the same conclusion without making use of the empirical rela-
tion v ~ d?/250. We use 3.5’and 4.6 in order to express the volumes vg and
v, in terms of the lengths d5 and §;, and we express the ratio of these two lengths
in terms of ey / kT, by means of 4.2. We then find that 4.8 can be written in the
form

26,

32
(1 + '5&:) o = explep/kTy). (4.9)

This relation determines e, /kT,,; it is equivalent to the following equation for
X = GM/kTM:

&+ 30 = . (4.10)

With the previously determined values o ~ 4.5, f ~ 20 valid at the melting point,
we find that the solution of 4.101s x ~ 1.

Our model therefore predicts that ¢, ~ kT, a relation that indeed is ap-
proximately fulfilled as seen in TABLE 1, line 8.

Itis interesting to point out that our relations also contain the so-called Linde-
mann Melting-Point Formula. It connects the Debye temperature 4 with the melt-
ing temperature T, and usually is written in the following form:

1/2
6 = D( ?2’/3) , D=120cmg'/?deg'/? (4.11)
i

Here u is the molar weight in grams and V is the molar volume. In our notation
V = Ad?, where A4 is the Avogadro number and u = Am. Since k8/h = w, we
may write 4.11 in the form

1/2
wp = D kT , D' =204, (4.12)
md?

tExactly speaking, Ae should be the energy difference without counting the heat content.
Since we describe both phases approximately by oscillators, the heat content is the same.
The relation Ae = €, was shown to be correct in Equation 4.4a.
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Now D' 1s a dimensionless constant. We can derive a similar relation from Equa-
tion 4.3 by putting e,, ~ kT),. Then 4.3 becomes

6L2 _ é 27rkTM -
3 meZ
This can be written in the form
T 2
wg' = > Zvrk M fi_
3 md? st

We use 3.2 to connect wy with w, and 4.1 to determine (d/6;). Then we ob-
tain indeed Lindemann’s formula 4.12 with D’ = 25.2, which is near enough to
Lindemann’s value, considering the approximations made.

The same equations also permit an estimate of the melting heat in terms of the
binding energy of the solid. The melting heat ¢,, increases the average oscillator
amplitude from the one corresponding to é5 to the one corresponding to 4,. We
call these amplitudes R; and Rg and they are related to 65 and §; as indicated
in 3.6a. The energy needed for this is

ty =

1 1 3 8t
Emez(RLz ~ R?) = -2-mw,,-2(——)2/3aL2(1 - 6—35)

4r L

Equation 4.2 tells us that the ratio (§5/8,)?is$ with x = 1. Thus we obtain

1 [3\23 b 873\2P/5\ 1
-2 5.2 = o[ (&) L L et
i 5(47r> MOEOL = S\ax) \d) 3TF

in the previous section we already have interpreted 3 mwg2d* as approximately
equal to eg. We therefore get withd = 4.58,:

~ 1.1 2. 1
Cpyy = 33 8 med 33 €g. (4.13)
We find that the melting heat is a small fraction of the binding energy or of the
boiling heat according to 2.1. Actually the values of e, /ey lie between 1/7 and
1/40 as seen by comparing lines | and 2 of TABLE 1. Qur considerations give the
right order of magnitude. As expected, the first equality in 4.13 is somewhat
better fulfilled; the values of e, /(1/8mwg’d?) lic between 1/14 and 1/34.
The deviations from the relation 4.13 come from the fact that the binding po-
tential is not exactly an oscillator potential. It rises less steeply than with in-
creasing distance. Equation 4.13 therefore probably is an underestimate of the
ratio e feg.

We want to determine the available volume of a liquid not only at melting
temperature but also at boiling temperature 7T'5. Let us distinguish the magnitudes
at boiling by a star, such as v;* and é,*. We make the simplest possible assump-
tion, namely, that §,* is the result of an extension of an oscillators amplitude at
the temperature T3 when the melting heat €,, is added, just as §, was the result
of a similar extension of an oscillator at the temperature 7,,. Then we get in
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analogy to 4.3:

2 12 2rk T\ /2
5% = bg* (1 + _‘i) L6t =( T B) (4.14)

3 kT, me g

Together with 6, the value of f will also change with temperature. Expression 4.5
tells us that f is proportional to §,~, so that we find

3 3re
f* = f(a—L) et = (5 (i) (4.15)

5% T

As a first orientation we may put very approximately T, ~ 27, and €;; ~
kT,.Then a* = d/6;* ~ 3.6and f* ~ 10. The available volume amounts to

v* ~ (o)~ g dl, (4.16)

We may compare this with the equally approximative value of v, at the melting
point: v, ~ (1/73)d">.
Now we construct the equation regulating the boiling process, in analogy to
3.9and4.8:
e el s MR 6o — €4 = €5 +
Ve

I
. 5 kT, (4.17)

Here e — €, is the difference in energy between liquid and gas; it is equal to
€z + 3 kT according to 2.1. This relation allows us to get an idea of the ratio
¢g/kTg. We again start with a rough estimate. Remember that gases at atmospheric
pressure have a density of about 103 of solids; hence vg/d? ~ 10°. Further-
more 4.16 tells us that v ~ 4°/32; thus vg/v,* ~ 32000 and ez/kT = In
32000 + 3, which is just about 11. We have derived Trouton’s rule!

A somewhat more detailed determination of b = e,z /kTp uses the ideal gas
equation, v = kTz/p,, where p, is the atmospheric pressure, and 4.14 and
4.15 for the calculation of v, *. One then gets from 4.17

L _ o l*Ts,
b+2 = Inlip0 /VL]. (4.18)
TABLE 1 shows that the values calculated with this expression agree quite well
with the observed ones.

Trouton’s rule can be used to get an upper limit on the melting heat ¢,,. We
previously found that e¢,, ~ kT,,. Obviously the boiling temperature must be
higher than the melting temperature. Thus we get ¢, < k7 » and from Trouton’s
rule

€ar < EB/ll.

Since our previously derived expression was an underestimate, we conclude that
¢ s should be somewhere between 1/11 and 1/33 of the boiling heat, which in-
deed is borne out by TABLE 1.

A more sensitive way to test 4.17 than the calculation of the Trouton co-
efficient » would be a comparison of v, * obtained “‘theoretically”” from 4.14 and
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4.15, with the “‘empirical value’:
vb = KT8 - 147 (empirical), (4.19)
Po
where ey = €5 + $kT,.

TABLE 1 gives the theoretical and the empirical values in terms of d* (lines 20
and 21). Here, as well as in the calculation of v, at the melting point, the semi-
quantitative agreement is gratifying, particularly in view of the fact that the vL
values depend on the heats of transformation and on the corresponding tempera-
tures through the Boltzmann exponential, which, in particular in the case of the
boiling process, is a strongly varying function. Note that v,* for sodium is ab-
normally small, a fact that is reproduced by the theory and is caused by the very
high ratio between boiling and melting temperature. Our assumptions do not
really apply to the case of water where we find factors of three between observed
and calculated values.

Diffusion and Viscosity

Our model allows us to figure out the approximative values of the self-diffusion
constant D and the viscosity 5 of a liquid. D is defined as follows: Consider an
atom at t = 0 at r = 0, after a time ¢ its average distance from the center is r =
\/Dt. In our model of the liquid the atom performs a “hindered”” random walk
with é; as the length of the step. It is ““hindered” because of the fact that &, is
small compared to the distance 4 between the atoms. The direction of the next step
is not completely independent of the previous one; it is more probable that it is in
or near the opposite direction. This would decrease the diffusion coefficient com-
pared to a true random motion. Were it a true random motion, we would get
D, = 6,wy/3 where wy, is the average (thermal) velocity of the atom. Actually
we write

07 Wi

—_— 1
3 (5.1)

D = F(f)

where the function F expresses the deviation from random. We expect F to be a
decreasing function of the clump size f and, naturally F = 1 for f = 1. We may
imagine that F( f) has something to do with the ratio of the number of atoms at
the clump surface to the total number in the clump, since the atoms at the sur-
face have more freedom of moving. We therefore expect an approximate pro-
portionality to £ ~!/3 and we will tentatively put

F(fy — f7'° (5.2)
We then get

D — BLwlh o dwlh E 6.L (5‘3)

3173 3 = dr'e
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With d/6; ~ 4.5 and f ~ 20 near the melting point we find £ ~ 1/12 which is
the right order of magnitude according to TABLE 1, line 21, Qur formula gives a
temperature dependence proportional to T with # lying between | and 3/2, since
w,, is proportional to T'/2 and 8, and f~!/* are both proportional to a power
slightly less than 3 (see 4.14 and 4.15). Actually, however, D rises at least as fast
as T2 The stronger temperature dependence can probably be explained by the
anharmonicity of the atomic vibrations which makes the amplitude 8, rise faster
than 4.14. In water the increase is even stronger and is caused by the breakage of
hydrogen bonds with rising temperature.

We now try to determine the viscosity of a liquid. We have defined the viscosity
coefficient n in Equation 2.7 as the factor between the momentum transfer P in
the z direction per cm? and second when there is a gradient du/dz of the overall
velocity u of the liquid in the x direction. We make use of the concept of *““clump”
and assume that all atoms in a clump have the same average velocity u. Let us look
at an area in the x-y plane. There are d~* atoms per cm? in or near (within 4)
that area, each of them performing vibrations with a frequency w’; which we have de-
termined in 4.4. One third of them vibrate perpendicular to the plane. Each of
them moves (wy /=) times per second up or down. Assume that the area separates
one clump above from one below. Then each time an atom vibrates downwards it
transfers the average momentum that it has in the upper clump to the lower clump
and vice versa. The average momentum of each atom in the upper clump is larger
by M(du/dz)A than the one in the lower clump, where A~ f1/3d is the linear
dimension of a clump. We then get

P = f1Pd —

Moty du
d* dz

Ld | r—

or

Mwi

1/3
Ind S

n
The atoms move back and forth over distances §, with an average velocity w,.
Hence wi/m = wy, /6, . So we get:
Mwy, d

= k, x = f13—. (5.4)
! 3d? / 6

We put again d/6; = a ~ 4.5 and f = 20 near the melting point; this gives us a
value of k = 12, in reasonably good agreement with the observed values found in
TABLE 1, line 22. Again the temperature dependence of our expression is too weak.
The coefficient x goes as f'/*/5, which would be somewhat less than 77", wy
goes with T'/2. Altogether we would get 7™ with m between 0 and —4% whereas,
in fact, the viscosity diminishes strongly with increasing temperature with powers
somewhat larger than unity. Simple liquids show a decrease of viscosity of about a
factor two to four of the viscosity between melting and boiling. This effect can
perhaps be understood qualitatively by the following corrections to our picture:
the momentum delivered when ‘‘entering” in the adjacent clump might be larger
than M(du/dz)A, since the atom is to some extent “rigidly” tied to the clump.
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This can be expressed by replacing M in 5.4 by M’ > M. The ratio M'/M cer-
tainly decreases with temperature since the clumps become “*looser’” with rising 7.

Water, as usual, is a special case again since the viscosity changes by a factor
more than six between melting and boiling. Here the rising of temperature breaks
more hydrogen bonds between the molecules; thus the momentum transfer is re-
duced considerably.

Complicated liquids, especially those with long chain molecules have a much
larger viscosity, in particular near the melting point. Here the chains are mutually
entangled; one chain winds itself around another. This is a phenomenon called
“reptation’ by L. DeGennes and causes a direct momentum transport over
distances much longer than the chain length. The corresponding increase of
viscosity may reach factors of a million at lower temperatures. Our simple ex-
pression represents only a lower bound for the viscosity in the case of complicated
liquids.

Let us compare the expression 5.4 with the well-known formula of the viscosity
of an ideal gas as given by 2.9. This expression does not depend on the density,
but it would be wrong to consider a liquid a highly compressed gas and use 2.9 for
the viscosity. Indeed, the ratio of 5.4 t0 2.9 s

Y, Sk fin.
ngas daL

In the liquid we may put approximately 2r = 4, and we get with « = d/6; ~ 4.5
and f = 20, near the melting point:

T = V2xa fV2 ~ 50.
M gas

The viscosity of the liquid is roughly two orders of magnitude higher than the one
of a gas af the same temperature. The physical reasons for this factor are these: In
the gas, the distance of momentum transfer is of the order of the mean free
path/ and the number of atoms crossing a unit area per second is v ~ § wy, /d>.
In the liquid the distance of momentum transfer is A ~ f'/3d, and the number of
atoms crossing a unit area per second (by vibration) is v, ~ % w,/(8,d%). At
densities for which the atoms touch each other, 2r ~ 4, and the gas-kinetic expres-
sion! = d*/[V/2 n(2r)?] becomes / ~ d//2 = which, very roughly, is equivalent
to ! ~ &,;. Thus the viscosity of a liquid is larger because the distance of mo-
mentum transfer is f!/3d instead of { ~ &, (a factor about 12), and because
there are v, crossings instead of v; (another factor about 4.5).

Thus we have shown that our oversimplified model of a liquid indeed gives rise
to a viscosity and diffusion coefficient of the right order of magnitude. It is true,
however, that the temperature dependences of these magnitudes are only rather
qualitatively interpreted and probably insufficiently explained. Qur model em-
phasizes the atomic rearrangements rather than the penetration of potential
barriers in contrast to most of the models used in the current literature.

{An excellent survey about the present state of our knowledge of liquids by John A. Bar-
ker and Doug Henderson has appeared recently in the Review of Modern Physics, 1976.
48:587.
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Appendix

In an equilibrium between two phases I and I1, the Gibbs function G must not
change when an atom is transferred from one phase to another and temperature,
pressure and total number N of atoms is kept constant; N = N; + N, where
N;and N, are the number of atoms in the two phases:

aG
i = 0: (A.1)
(aNI)T,p,N

the Gibbs function of the two phase system can be expressed by the partition func-
tions in the following way:

G = —kT log (QW. QU

Here Q) is the partition function of the phase i containing N, particles. In
our simple models the partition function Q¥ can be written as the N;th power
of a magnitude Z{":

O = (ZMNy, (A.2)

where Z () is independent of N,. We may call Z¢) the one-particle partition func-
tion. We then get

G = —kT(N,log Z" + (N — N;) log Z!"").
Equation A.1 then becomes for T = 0,

40
log Z__0 or zW =z (A.3)

Z
We now calculate the partition functions. The general formula for a system of
N equal particles is

_ 1 —Elx, p) kT
0 = N fdxdpe .

Here x stands for all 3n position coordinates and p stands for all 3» momentum
coordinates. E(x, p) is the energy of the system which can be split into three parts:

E(n,p) = Ne + P(x) + «(p), (A.4)

where ¢ is the energy per atom when the atoms are at rest, P(x) is the potential
energy, and «(p) the kinetic energy. The potential energy P is measured such that
it is zero if all atoms are at their rest position. P(x) also includes the potential
energy pV of the gas container which keeps the pressure constant. Then the par-
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tition function can be factorized:
0 - % e—Nc/ka dxe—P(x)/ka dp e~ <O/KT, (A.5)

In our model the kinetic energy will always be

Z p,.2/2m,

so that the integral over the momenta will be the same in all phases:
[ dpe=@T — QamkT)72, (A.6)

We now introduce the definition of the “‘available volume” v, of the phase i:
v, = (% f dx e—P’.(x)/kT) 1N (A.7)

We then get from A.2
ZO = =il Ty QamkT)*?,
and the equilibrium condition A.3 becomes

YU _ gtk (A.8)
41}
This is the expression that we have used.
It is easy to show that the definition A.7 indeed yields the expression 3.7 for
vi; and 3.5 for vg. In the Einstein model for the solid the potential energy is

P(x) = % D> mwgx?
k

where the sum is taken over all particles coordinates. The factor 1/N! in A.7 is
cancelled by the fact that NV atoms can be distributed over the N oscillator sites in
N!ways. Hence we get

32
vs = [ dx3 exp (— % mesz/kT) = (Zﬂd;) .

mwg

When we apply A.7 to an ideal gas at a constant pressure p, the only potential
energy entering is P(x) = pV/, that is, the work exerted against the containers wall.
Now pV = NkT so that we get

v = % fdxe—P(x)/kT - o~ NYN

We make use of the Stirling formula e¥N! = N" and obtain
VG = V/N.

The determination of v, from vy is described in the section entitled ““Liquids.”



