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Abstract. The series of lectures focuses on experimental techniques using X-rays and neutrons. We
will discuss differences and similarities between these two probes and consider various scattering
and spectroscopic techniques based on X-rays and neutrons. The material is selected in such a way
that it complements the traditional condensed matter courses and gives a deeper understanding of
scattering techniques. The main focus lies in scattering from interfaces and disordered systems.
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1 Introduction: X-rays, neutrons, and electrons
In order to study the atomic structure of matter by scattering, one has to
use the probe with a wavelength comparable with interatomic distances, i.e.
λ ∼1 Å. The most common probes are photons, neutrons, and electrons with
the following dispersion relations (Fig. 1.1)

Fig. 1.1: Energy-wavelength relationship for
photons, neutrons and electrons

• X-rays:
E = ℏω = 2πℏc

λ
= 12398

λ[Å]
[eV]; (1.1)

• Neutrons:
E = 2π2ℏ2

mnλ2 = 81.8204
λ2[Å2]

[meV]; (1.2)

• Electrons (non-relativistic):

E = 2π2ℏ2

meλ2 = 150.442
λ2[Å2]

[eV]. (1.3)

Further on, we will often describe the wave properties of these particles using
the wave vector k = p/ℏ, where p is the momentum of the particle, and the
absolute value of the wave vector is

|k| = k = 2π
λ
. (1.4)

ℏ𝜔
ℏ𝜔

2𝜃

Fig. 1.2: Classical scattering

X-rays and neutrons interact relatively weakly with atoms. Therefore
they can be used to study bulk samples. In contrast, electrons interact
strongly, so it is practically impossible to study the sample with a thickness
larger than a few hundreds of nanometers.

1.1 Interaction of X-ray photons with matter

The interaction of photons with matter is based on movement of charges
caused by the electrical component of the electro-magnetic wave. Due to a
very high frequency of X-rays, only the lightest particles, i.e. electrons are
able to react to the electrical field. Protons, which are 1836 times heavier
than the electrons, essentially do not move.

ℏ𝜔
ℏ𝜔′

2𝜃

Fig. 1.3: Compton scattering

The following processes may happen when an X-ray photon hits an atom:

• Classical scattering: an X-ray photon transfers its energy to the
atom, and the electrons start to oscillate in the electric field. Oscil-
lating electrons generate a secondary electromagnetic wave with the
same frequency (i.e. the same energy). As a result, the outcoming
photon has the same energy as the incoming photon but a different
direction (Fig. 1.2). An elastic scattering of an X-ray photon by a sin-
gle electron is described by the Thomson formula (Section 1.1.3). The
classical scattering from an atom will be considered later in section
1.1.6.

ℏ𝜔

Fig. 1.4: Photoelectric effect

• Compton scattering: an X-ray photon partially transfers its energy
to electrons of an atom. (Fig. 1.3). The easiest case is the Compton
scattering on a free electron. Since an electron is not as heavy as a
whole atom, one has to take into account recoil velocity of the elec-
tron, which it obtains during the scattering process. This leads to the
increase of the photon wavelength by

∆λ = 2πℏc
me

(1 − cos 2θ) = λe(1 − cos 2θ), (1.5)
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where 2θ is the scattering angle between the directions of the incident
and outcomming photons and λe = 2.43 ·10−2 Å is the Compton wave-
length of the electron. Relativistic consideration of an X-ray photon
scattered by a single electron is given by the Klein-Nishina formula.
In the limit of low recoil velocity of the electron, v/c → 0, the Klein-
Nishina formula transforms to the Thomson non-relativistic formula.
The Compton scattering from an atom with one and many electrons
will be considered in section 1.1.7.

ℏ𝜔

ℏ𝜔′

Fig. 1.5: X-ray fluorescence

ℏ𝜔

Fig. 1.6: Auger process

• Photoelectric absorption: an X-ray photon completely transfers its
energy to an electron which leaves the atom (Fig. 1.4). In the X-ray
regime, the energy of the photon is high enough to remove electrons
from the inner shells of the atom. In this case, a metastable core-
hole is created. An electron in the outer shell can recombine with
this core-hole, and the excess energy can be emitted in a form of a
fluorescent photon with the energy equal to the difference between the
energy levels of the core-hole and the recombinating electron (Fig. 1.5).
It is also possible, that the excess energy is transferred to a third
electron which leaves the atom, so-called Auger process (Fig. 1.6).
Auger process dominates in light atoms with Z ≲ 15, whereas X-ray
fluorescence is more probable in heavy atoms with Z ≳ 35 [1].

X-ray photons scattered classically have the same frequency as the inci-
dent photons. Moreover, their phases are fixed with the respect to the phases
of the incident photons. This means, that the classically scattered photons
are able to interfere with each other, as long as the incident radiation is
coherent. Therefore classical scattering is often referred as coherent scat-
tering. In contrast to that, Compton scattering and fluorescence are called
incoherent scattering and often are treated as a backgroung in scattering
experiments.

Unless otherwise indicated, for the purpose of this course, we will focus
on classical scattering. This is justified, since we will typically detect only
the scattered X-ray photons (and not electrons), and these are dominated
by classical scattering (at least after background subtraction in our energy
range of around 10 keV). In certain cases, of course, we will make use of char-
acteristic transitions, such as in X-ray standing waves (XSW) or anomalous
scattering.

𝐼!" #$
!%"

Φ&
#$

!%"'(!

𝑑Ω

Fig. 1.7: Differential scattering cross-section

1.1.1 Differential scattering cross-section

The probability of various scattering processes are usually quantified using
scattering cross-sections (Fig. 1.7). By definition, the differential scattering
cross-section is ( ∂σ

∂Ω

)
= Isc

Φ0 · dΩ , (1.6)

where Isc is a flux of the photons scattered into a solid angle dΩ (photons
per second) and Φ0 is the density of the incoming flux (photons per second
per square meter). To calculate the total scattering cross-section one has to
integrate the differential cross-section over all possible angles

σ =
∫

4π

( ∂σ
∂Ω

)
dΩ. (1.7)

𝐼 − 𝑑𝐼𝐼

𝑑𝑥

Fig. 1.8: Attenuation of X-rays
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1.1.2 Attenuation of X-rays

The atomic scattering cross-section can be represented as a sum of total
scattering cross-sections of the processes described above

σatom = σclassical + σcompton + σabsorption. (1.8)

An X-ray beam passing through the material slab of thickness dx is attenu-
ated due to the scattering and absorption (Fig. 1.8), so the intensity of the
beam is decreased by

dI = I · µ · dx, (1.9)

where µ is the linear absorption coefficient

µ = ρat · σatom =
(ρmass ·NA

M

)
σatom. (1.10)

Here ρat is numeric density of the atoms (atoms per cubic meter), ρmass is
mass density (g/cm3), NA = 6.022 ·1023 mol−1 is the Avogadro number, and
M (g/mol) is the atomic mass.

E = 8.04 keV E = 16 keV
(Cu-Kα)

N2 (air) 0.9 · 106 5.5 · 106

Be 5352 22961
C 1053 7765
SiO2 132 1016
Si 71 536
Ca 38 262
Cu 22 18
Pb 4 6

Table 1: Characteristic absorption length 1/µ
for some materials. The values are given in
micrometers. Data are taken from [2].

The solution of Eq. (1.9) leads to the exponential decay of the beam
intensity known as the Beer-Lambert law:

I = I0 · e−µx. (1.11)

The characteristic length 1/µ over which the intensity decays to 1/e ≈
1/2.72 ≈ 0.37 is called the attenuation length. Some typical values of the
attenuation length are given in Table 1.

1.1.3 Classical scattering by a single free electron (polarization
factor)

In the following sections we will consider classical elastic scattering starting
from a single free electron (so-called Thomson scattering) and then gradually
increasing the complexity of the system to the scattering from an atom.

Let us first consider a movement of an electron caused by the electric
field Ex = E0e

−iωt of a plane monochromatic wave (see the schematic in
Fig. 1.9). The electron at the origin of the coordinate system oscillates
along the x-axis with the phase shift π with respect to the wave:

x = − eE0

meω2 e
−iωt, (1.12)

where e is the negative charge of the electron. Therefore it produces an

2𝜃

𝑥

𝑦

𝑧

𝜑

𝑑

𝑅
𝐸!

𝑧

𝑥

𝑦

Fig. 1.9: Coordinate system for derivation of
the polarization factor (up) and the resulting
distribution of intensity (bottom). The incom-
ing photon propagates along z-axis and has lin-
ear horizontal polarization (electric field E0 is
always parallel to x-axis).

electromagnetic field at the observation point R at the time t, which in
dipole approximation can be written as [3]

H(R, t) = 1
c2R

[
d̈|t−τ × n

]
,

E(R, t) = 1
c2R

[[
d̈|t−τ × n

]
× n

]
,

(1.13)

where n = R/R is a unit vector pointing to the point of the observation
R and the time derivative of the dipole moment dx = e · x is taken at the
moment of time t − τ , where the delay τ = R/c = Rk/ω is needed for the
electomagnetic field to travel from the electron located at the origin to the
point of the observation R (see retarded potential in any book on classical
electrodynamics).
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The resulting magnitude of the electric field and the corresponding in-
tensity of the scattered electromagnetic wave at R can be written as

E(R, t) = − re · E0
eikR−iωt

R︸ ︷︷ ︸
spherical

wave

· P (2θ, φ)︸ ︷︷ ︸
polarization

factor

, (1.14)

I(R) = r2
e

R2E
2
0P

2(2θ, φ), (1.15)

where
re = e2

mc2 ≈ 2.82 · 10−5 Å, (1.16)

is the so-called classical radius of electron and

P 2(2θ, φ) = cos2 2θ + sin2 2θ sin2 φ (1.17)

is the polarization factor (see the schematic in Fig. 1.9).
In the case of vertical scattering (φ = π/2), the polarization factor is

constant and equal to unity, P 2 = 1, and in the case of horizontal scattering
(φ = 0), it has the anisotropic distribution of a dipole antenna, P 2 = cos2 2θ.
In the case of non-polarized incidence photons, the polarization factor should
be averaged over φ, which leads to P 2 = 1

2 (1 + cos2 2θ).
The results can be easily rewritten in terms of the differential scattering

cross-section using the following relation:( ∂σ
∂Ω

)
= E2R2

E2
0

= r2
e · P 2(2θ, φ) , (1.18)

which can be obtained from the definition given in Eq. (1.6).

1.1.4 Classical scattering by a single bound electron

When the electron is bound, its equation of motion can be written as

ẍ+ γẋ+ ω2
0x = E0e

me
e−iωt, (1.19)

where ω0 is the natural frequency of the bound electron (eigenfrequency),
γ is an effective damping coefficient, and the right-hand side represents the
external force created by an incident electromagnetic wave. In this case,
similar to Eq. (1.12), the electron oscillates around its equilibrium position:

x = A · e−iωt, (1.20)

but the amplitude A is now a complex number

0

|A
|

0

-

0

Fig. 1.10: Magnitude and the phase of the
bound electron oscillations as a function of
the frequency of the incoming field. The reso-
nance happens when the natural frequency of
the electron matches the frequency of the driv-
ing force, ω = ω0.

A =
E0e
me

ω2
0 − ω2 − iγω

= |A|e−i∆φ, (1.21)

with a magnitude

|A| =
E0e
me√

(ω2
0 − ω2)2 + γ2ω2

(1.22)

and the phase
tan ∆φ = γω

ω2 − ω2
0
. (1.23)

The dependence of the magnitude |A| and the phase ψ on the frequency of
the incident electromagnetic field is shown in Fig. 1.10.
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1.1.5 Interference effects for the scattering by multiple electrons

Let us first consider scattering by an electron located at the point r ̸= 0,
which is different from the situation described in section 1.1.3. The scheme
for this experiment is shown in Fig. (1.11). To evaluate the scattered wave
in this case, we just need to modify Eq. (1.14) and take into account two
following factors:

• The electrical field of the incoming wave at the point r equals to
E0 exp(ikinr − iωt). This results in a phase shift kinr of the driv-
ing force which causes the oscillations of the electron (note the phase
difference kinr of the incoming wave between the origin O and the
point r in Fig. (1.11).

𝑟

𝑅

2𝜃

𝑘!"

𝑘#$%

𝑂

𝑟
𝑘!"
𝑘!"

−𝑟
𝑘#$%
𝑘#$%

Fig. 1.11: Scattering of the electromagnetic
wave by an electron displaced by vector r from
the origin of the coordinates O. Bold red and
blue lines shows additional path kinr/kin −
koutr/kout that the incident and the scattered
wave need to travel when the electron is lo-
cated not in the origin O. The corresponding
phase shift equals to kinr − koutr = −qr.

• Another phase shift occurs in the spherical wave generated by the
oscillating electron, because the origin of this wave is located at the
point r.

Therefore, the electric field at the point of observation R can be written
as

E(R, t) = −re · E0e
ikinr−iωt e

ikout|R−r|

|R − r|
· P (2θ, φ). (1.24)

For the far field diffraction (Fraunhofer diffraction), when r is much smaller
than both R and the wavelength λ, the change in the distance in the de-
nominator can be neglected, |R − r| ≈ R, and the phase ikout|R − r| in the
nominator can be approximated by ikoutR − ikoutr. Thus, Eq. (1.24) can
be written as

E(R, t) = −re
R
E0e

ikoutR−iωt · e−iqr · P (2θ, φ), (1.25)

where
q =kout − kin

q =4π
λ

sin θ
(1.26)

is the scattering vector. The result obtained in Eq. (1.25) differs from
Eq. (1.14) by just a pure phase factor eiqr.

𝑟! 2𝜃𝑘"#

𝑘$%&𝑂

𝑟'

𝑟(

𝑟)

Fig. 1.12: Scattering of the electromagnetic
wave by several electrons. The incoming pho-
tons of the incidence plane monochromatic
wave are in phase, while the scattered photons
have the phase shift of −qrn.

According to the principle of superposition, the electromagnetic wave
scattered by N electrons located at the positions rn will be just a sum of
the spherical waves similar to the one in Eq. (1.25)

E(R, t) = −re
R
E0e

ikoutR−iωt · P (2θ, φ) ·
N∑
n=1

e−iqrn . (1.27)

The sum in this equation describes the interference effects occurring between
the spherical waves scattered by different electrons. Similarly, we can also
write a differential scattering cross-section as

( ∂σ
∂Ω

)
= r2

e · P 2(2θ, φ) ·

∣∣∣∣∣
N∑
n=1

e−iqrn

∣∣∣∣∣
2

. (1.28)

1.1.6 Classical (elastic) X-ray scattering by an atom

In an atom, the electrons are distributed around the nucleus with the proba-
bility density ρe(r) = |ψ(r)|2. Therefore instead of calculating the sum as in

5



Eq. (1.27), one has to evaluate the integral called an X-ray scattering form
factor of an atom:

N∑
n=1

eiqrn → f(q) =
∫
ρe(r)e−iqrdr, (1.29)

which is a Fourier transform of the electron density ρe(r). Typical angularly
averaged X-ray atomic form factors for several atoms are shown in Fig. 1.13.
From comparing Eqs. (1.14) and (1.27), it follows that the atomic X-ray
form factor is a ratio of electrical field scattered by an atom to the electrical
field scattered by a single free electron. In other words, it shows how much
the scattering by an atom differs compared to a single free electron.

Fig. 1.13: X-ray scattering atomic form factors
for several chemical elements [4].

In practice, f(q) for all atoms are already calculated and parameterized
(see, for example, parameterization by Cromer-Mann [4] and Waasmaier-
Kirfel [5]). In case of the forward scattering, the X-ray atomic form factor
equals to the total amount of electrons in the atom:

f(q → 0) =
∫
ρe(r)dr = Z. (1.30)

In real atoms, electrons are not free: they interact with the nucleus
and each other. Strong resonance effects will happen when the energy of
the incoming photon matches the electron biding energy. To take these
effects into account, one has to calculate the X-ray atomic scattering form
factors using a quantum approach, i.e. by evaluating the matrix elements
f(q) ∼ ⟨k + q|V̂int|k⟩, which happen to be complex numbers (see section
1.1.4 for the illustration). In result, to the calculated above elastic X-ray
scattering atomic form factor f0(q) one should add corrections that depend
on energy of the photon ℏω:

f(q, ℏω) = f0(q) + f1(ℏω) + if2(ℏω). (1.31)

The dispersion corrections are tabulated1 for most of the chemical elements
[1, 2], and some examples are shown in Fig. 1.14.

1.1.7 Coherent and incoherent X-ray scattering

Fig. 1.14: Dispersion corrections f1(ℏω) and
f2(ℏω) for several chemical elements [2].

As it was briefly discussed in the beginning of section 1.1, when one considers
scattering of an X-ray photon by a free electron, one has to take into account
the recoil energy of the electron, which leads to the change of the wavelength
of the scattered X-ray photon (Eq. 1.5). Therefore, the classical scattering
can be considered as a limiting case of Compton scattering when the recoil
velocity of the electron is negligible. But strictly speaking, elastic scattering
of an X-ray photon on a free electron is not possible.

The situation is different, when one considers X-ray scattering from an
atom. Because the atom is heavy, its recoil energy, Erecoil = ℏ2q2/(2M) ≪
ℏω is much smaller than the energy of the X-ray photon ℏω. Therefore this
energy change can be neglected,2 and the elastic scattering is a much better
approximation for the scattering by an atom, as compared to the scattering
by a electron.

From a quantum mechanical point of view, the elastic scattering of X-rays
by an atom means, that the electrons of the atom remain in the same state

1In the tables for the dispersion correction, the atomic form factors are given for q = 0
and usually the real and imaginary parts are tabulated for different ℏω: f(q = 0, ℏω) =
f ′(ℏω) + if ′′(ℏω). In this case, the correction f1(ℏω) in Eq. (1.31) can be calculated as
f1(ℏω) = f ′(ℏω) − Z (see Eq. (1.30)).

2For the deeper understanding of recoil energy we refer to the Mössbauer effect, the
quantum theory of which is given, for example, in [6]
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before and after the scattering process. In contrast, the Compton scattering
includes partial transfer of the X-ray energy to the electrons, so the electrons
are in an excited state after the scattering process.

Elastic X-ray scattering is usually referred as coherent scattering, because
the elastically photons have the same energy and therefore they can form
a diffraction pattern. Compton scattering is usually referred as incoherent
scattering, because the final energy of the photon is not fixed (it depends
on which exactly electron state was excited), so the incoherently scattered
photons cannot form a diffraction pattern. This terminology is different from
what is called neutron coherent and incoherent scattering (see section 1.2.2).

The total X-ray scattering cross section by an atom can be written as a
sum of coherent and incoherent counterparts [7, 8]:( ∂σ

∂Ω

)
=
( ∂σ
∂Ω

)
coh

+
( ∂σ
∂Ω

)
inc

=
( ∂σ
∂Ω

)
e

· |f(q)|2 +
( ∂σ
∂Ω

)
KN

· s(q)

≈
( ∂σ
∂Ω

)
e

· |f(q)|2 +
( ∂σ
∂Ω

)
e

· s(q).
(1.32)

Here f(q) is the atomic form factor (Eqs. (1.29),(1.31)), and s(q) is so-called
incoherent scattering function. The classical differential cross-section

(
∂σ
∂Ω
)
e

is given by Eq. (1.18) (Thomson scattering from a single electron). For
the X-ray energies relevant for a diffraction experiment (ℏω ≤ 100 keV),
the Klein-Nishina differential cross-section

(
∂σ
∂Ω
)
KN

is very close to the non-
relativistic classical cross-section, so in the following we will use

(
∂σ
∂Ω
)
KN

≈
kin

kout
·
(
∂σ
∂Ω
)
e

≈
(
∂σ
∂Ω
)
e
. The sketch of coherent, incoherent and total X-ray

scattering cross-sections for helium atom is shown in Fig. 1.15
Fig. 1.15: Coherent, incoherent and total X-
ray scattering cross-section for He atom with
Z = 2 electrons. The cross-sections are nor-
malized to the Thomson scattering

(
∂σ
∂Ω

)
e

(see Eq. (1.32)). The X-ray scattering form
factor f(q) and the incoherent scattering func-
tion sq were calculated with Eqs. (B.20) and
(B.30) under the assumption that two elec-
trons in He atom are independent and each of
them can be described by the single-electron
wave function ϕ(r) = e−r/a/(πa3)1/2 with
a = 0.32 Å.

The incoherent scattering function s(q) can be calculated using different
approximations and it is tabulated for many chemical elements [7]. Gener-
ally, it is significantly non-zero (i.e. cannot be neglected) for light elements
and for the large values of the scattering vector q (Fig. 1.15).

To better illustrate the difference between the coherent and incoherent
scattering, let us consider N atoms positioned at rn scattering the incident
beam of monochromatic X-ray photons. Each atom can scatter X-ray photon
elastically (coherently) or inelastically (incoherently) with certain probabil-
ities, defined by the atomic form factor f(q) and the incoherent scattering
function (Eq. (1.32)). The photons scattered elastically will have the same
wavelength (equal to the initial wavelength of the incoming photons). There-
fore, the elastically scattered photons will interfere with each other and form
an interference pattern, as it was shown in Eq. (1.28). In contrast, each in-
coherently scattered photon will have its individual wavelength, different
from all other incoherently scattered photons. Therefore, incoherently scat-
tered photons will not interfere with each other; in other words, the total
incoherently scattered intensity will be a sum over all intensities of the inco-
herent photons. This can be written as the following equation for the total
scattering cross-section from N atoms:( ∂σ

∂Ω

)
=
( ∂σ
∂Ω

)
coh

∣∣∣ N∑
n=1

e−iqrn

∣∣∣2 +
( ∂σ
∂Ω

)
inc

·N

=
( ∂σ
∂Ω

)
e

· |f(q)|2 ·
N∑

n,m=1
e−iq(rn−rm) +

( ∂σ
∂Ω

)
e

· s(q) ·N.

(1.33)

A similar equation can be written for neutron scattering (compare with
Eq. (1.50)), although the coherent and incoherent scattering has a different
nature for neutrons.

In the special case of X-ray scattering by an atom with a single electron,
the incoherent scattering function s(q) can be evaluated exactly. To illustrate
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this, let us first consider elastic X-ray scattering by an atom with a single
electron, and then consider the inelastic X-ray scattering.

For the elastic scattering, the electron remains in its initial (ground)
state |0⟩, and according to the perturbation theory (Fermi’s golded rule), the
probability of such process is defined by the matrix element M00 = ⟨0| V̂ |0⟩,
where V̂ ∝ e−iqr is the operator of interaction between the X-ray photon and
the electron. This matrix element has been already calculated in Eq. (1.29),
although we have never explicitly considered quantum perturbation theory.
More specifically, the X-ray coherent scattering cross-section is( ∂σ

∂Ω

)
coh

=
( ∂σ
∂Ω

)
e

· |M00|2 =
( ∂σ
∂Ω

)
e

· |f(q)|2 (1.34)

where f(q) = M00, and
(
∂σ
∂Ω
)
e

is the differential cross-section for X-ray
scattering by a single free electron (Thomson scattering given by Eq. (1.14)).

In a non-elastic Compton scattering process, the X-ray photon loses part
of its energy (see Eq. (1.5)), and this energy is absorbed by the electron
of the atom. This leads to the transition of the electron from the ground
state |0⟩ to some excited state |ν⟩. The probability of such a process is
proportional to the matrix element |M0ν |2.

To obtain the total incoherent scattering cross-section (Compton scat-
tering), one has to sum over all possible final states |ν⟩:( ∂σ

∂Ω

)
inc

=
( ∂σ
∂Ω

)
e

·
∑
ν>0

|M0ν |2, (1.35)

where the sum runs over all possible states of the electron |ν⟩, except of the
ground state |0⟩. The total scattering cross-section is then( ∂σ

∂Ω

)
=
( ∂σ
∂Ω

)
coh

+
( ∂σ
∂Ω

)
inc

=
( ∂σ
∂Ω

)
e

[
|M00|2 +

∑
ν>0

|M0ν |2
]

=
( ∂σ
∂Ω

)
e

∑
ν≥0

|M0ν |2,
(1.36)

where the sum runs now over all possible states of the electron |ν⟩. Since
the set of wave functions |ν⟩ is complete, one can use closure relation3 and
show that∑

ν≥0
|M0ν |2 =

∑
ν≥0

⟨0| V̂ ∗ |ν⟩ ⟨ν| V̂ |0⟩ = ⟨0| V̂ ∗V̂ |0⟩ = 1, (1.37)

where we used that V̂ ∗V̂ = eiqre−iqr = 1. Thus, for an atom with a single
electron, ( ∂σ

∂Ω

)
=
( ∂σ
∂Ω

)
coh

+
( ∂σ
∂Ω

)
inc

=
( ∂σ
∂Ω

)
e
,( ∂σ

∂Ω

)
coh

=
( ∂σ
∂Ω

)
e

· |f(q)|2,( ∂σ
∂Ω

)
inc

=
( ∂σ
∂Ω

)
e

·
(
1 − |f(q)|2

)
.

(1.38)

This means, an atom with a single electron will scatter in total as much as
a single free electron (Thomson scattering). A certain fraction the scattered

3if the wave functions |ν′⟩ form a complete orthonormal set of eigenfunctions, the
following identity is true: 1 =

∑
ν′ |ν′⟩ ⟨ν′| . Thus, for any operators Â and B̂ the

identity (closure relation) is true:∑
ν′

⟨ν| Â |ν′⟩ ⟨ν′| B̂ |ν⟩ = ⟨ν| ÂB̂ |ν⟩

.
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photons will be coherent (elastic scattering) and the rest of the scattered
photons will be incoherent (inelastic scattering).

The X-ray scattering by a many-electron atom has two main complica-
tions. First, one has to consider many-electron wave functions. Second,
the interaction operator V̂ =

∑Z
n=1 e

−iqrn is now a sum over all electrons
n = 1, 2, ..., Z in the atom. In this case, one can still calculate the intensity
of coherent scattering as it was done before via the total atomic scatter-
ing form factor given by Eq. (1.29). Equations (1.34-1.36) are still valid,
but the sum (1.37) cannot be easily evaluated. An approximation for X-ray
scattering from a many-electron atom is discussed in Appendix B.

1.2 Interaction of neutrons with matter

Neutrons are not charged, but they have a magnetic moment µn ≈ −1.9µN ,
where µN = |e|ℏ/(2mpc) is the nuclear magneton. Therefore, neutrons can
interact with both the electrical charge and the magnetic moment of the
nuclei. Apart from these processes, which will be discussed in more details
below, also a resonant neutron scattering through an intermediate excited
state may happen.

Also a neutron capture is possible resulting in creation of a new stable
isotope. This processs occurs with the probability inversely proportional to
the neutron speed. Below we will consider an elastic scattering of a neutron
by an atom.

1.2.1 Elastic scattering of a neutron by a nucleus

𝑑Ω
𝑒!"!"#⃗
𝑘!%

𝑘&'(

𝑒!"#$%#⃗

𝑓(Ω)
𝑒!"#$%#

𝑟

nucleus at 
𝑟 = 0

Fig. 1.16: Neutron scattering by a nucleus.

The straightforward way to analyze elastic scattering of neutron on a nucleus
is to consider the stationary Schrödinger equation for neutrons

− ℏ2

2mn
∇2ψ(r) + V̂N (r)ψ(r) = ℏ2k2

2mn
ψ(r), (1.39)

where V̂N (r) is the interaction potential between the nucleus and the neu-
tron. (Fig. 1.16). The potential V̂N (r) is non-zero only at very short range
(order of the size of the nucleus, ∼ 10−5 Å, as shown in Fig. 1.17).

Let us put the origin of coordinates at the position of the nucleus. In
the following consideration we will assume that the heavy nucleus does not
move.4 Assuming that the incident neutrons can be described by a plane
wave, eikinr, it can be shown that far away from the scattering center the
neutron wave function can be represented as a sum of the incident wave and
the spherical divergent scattered wave:

ψ(r) ≈ eikinr︸ ︷︷ ︸
incident

wave

+ fn(Ω)e
ikr

r︸ ︷︷ ︸
scattered

wave

. (1.40)

Here fn(Ω) has units of length and is called the scattering amplitude. It is

𝑉"!

𝑟

−𝑉" ≈ 10	MeV

0
𝑅" ≈ 10#$	Å

Fig. 1.17: Typical interaction potential V̂N (r)
between the nucleus and a neutron.

directly related to the differential scattering cross-section:( ∂σ
∂Ω

)
= |fn(Ω)|2. (1.41)

4If the nucleus is free, one has to consider the scattering process in the center-of-mass
system. In this case, the result will be the same as derived in the text, but the neutron
mass mn has to be replaced by reduced mass µ = mnM/(mn + M), where M is the
nucleus mass.
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An analogous quantity for X-ray scattering would be the product ref(q)
which also has units of length.

To consider the scattering in a given solid angle Ω, or, in other words,
in the direction of kout, we can select the portion of the scattered wave
propagated in this direction and approximate it with a plane wave eikoutr.

One of the easiest approaches to finding the scattering amplitude fn(Ω)
is to use the first Born approximation, as described in section 2.7.2), which
is essentially the first order perturbation theory (see also: Fermi’s golden
rule). Strictly speaking, this approximation can not be applied to the nu-
clear scattering of thermal neutrons, because the nuclear potential is not
small (Fig. 1.17). However, the first Born approximation still gives the
qualitatively correct result (independence of the scattering amplitude on
the direction), and one can even obtain the quantitatively correct result by
replacing the actual attracting nuclear potential V̂N (r) by a short-range re-
pulsive pseudo-potential V̂ psN (r) = αδ(r) [9, 10]. The approximation with
a delta function is justified by the fact, that the range of the nuclear po-
tential ∼ 10−5 Å is much smaller than the thermal neutron wavelength
λ = 2π/k ∼ 1 Å.

Using this pseudo-potential, we can find fn(Ω) as a matrix element:

fn(Ω) = − mn

2πℏ2 · ⟨eikoutr|V̂ psN (r)|eikinr⟩ = − mn

2πℏ2

∫
V̂ psN (r)e−iqrdr

= − mn

2πℏ2

∫
αδ(r)e−iqrdr = − mn

2πℏ2α = −b
(1.42)

where q = kout−kin. Thus, we obtain that the neutron scattering amplitude
is independent on the scattering vector q and equals to −b (note the sign
convention). The constant b is called the bound neutron scattering length
and is positive for the majority of the isotopes.5

The neutron scattering length does not depend on the scattering vector
q (unlike X-rays), but it strongly depends on type of the nucleus (both
chemical element and isotope). The latter fact is illustrated in Fig. 1.18.
For the purpose of our calculations of the neutron scattering from condensed
matter, knowledge of this one number, the q-independent scattering length b
for a given isotope (and spin orientation), is sufficient, and our considerations
will be based on this.

Fig. 1.18: Neutron scattering length bcoh for
natural isotopes of different elements with Z =
1 − 95 [13].

Since the neutron scattering amplitude does not depend on the scattering
angle, the total scattering cross-section can be easily calculated as

σ = 4πb2. (1.43)

1.2.2 Coherent and incoherent neutron scattering

In the previous section 1.2.1, we ignored the interaction between the nuclear
spin I and the spin S of a neutron. If the nuclear spin is zero, I = 0, the

5If we want to understand the origin of the scattering length b in some more detail,
we consider the scattering of a thermal neutron from a nucleus, which we model as a
potential well V (r) with depth V0 (typically several 10 MeV deep) and spatial extension
R0 (typically only a few fm).

For the full calculation we refer to textbooks [11, 12]. In fact, this is a typical problem
in quantum mechanics, and from matching the wave function inside (typically strongly
curved for typical V0) and outside the potential (typically very slowly varying or indeed
essentially constant on the scale of femtometers if the neutron wavelength is ∼1Å) at r =
R0 we finally obtain a certain scattering phase δ0 (for the scattering from the individual
nucleus), which is then used to determine the scattering length.

For an average mass number ⟨A⟩ ≈ 100 Turchin estimates an approximately 3 % prob-
ability for a negative scattering length [12], which makes plausible that they do occur in
the table of isotopes, but are rather the exception (e.g., b < 0 for 1H, 48Ti, 55Mn, 62Ni).
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scattering amplitude does not depend on the direction of the neutron spin
and the scattering length can be calculated by Eq. (1.42).

If the nuclear spin is non-zero, I ̸= 0, one has to consider spin-spin
interaction. Since S = 1/2, there are only two possible orientations of the
neutron spin S and the nuclear spin I:

• the spin of neutron S is parallel to the nuclear spin I, so the total
angular momentum has the absolute value J+ = I + 1/2. The total
amount of N+ = 2J+ + 1 = 2I + 2 wave functions correspond to the
parallel orientation of S and I.

• the spin of neutron S is anti-parallel to the nuclear spin I, so the
total angular momentum has the absolute value J− = I − 1/2. The
total amount of N− = 2J− + 1 = 2I wave functions correspond to the
anti-parallel orientation of S and I.

The neutron scattering length will be also different in these two cases:

b =
{
b+ , for S ↑↑ I,
b− , for S ↑↓ I.

(1.44)

If the neutron is not in a polarized state, the probabilities W± to find the
neutron in a parallel or anti-parallel states can be directly calculated from
the total number of the corresponding wave functions:

W+ = N+

N+ +N−
= I + 1

2I + 1 , for S ↑↑ I,

W− = N−

N+ +N−
= I

2I + 1 , for S ↑↓ I.
(1.45)

It can be seen, that W+ > W−, because there are more wave function
corresponding to the parallel state (S ↑↑ I) then to the anti-parallel state
(S ↑↓ I). The mean scattering length denoted as bcoh can be calculated as

bcoh ≡ ⟨b⟩ = W+b+ +W−b− = I + 1
2I + 1b+ + I

2I + 1b−. (1.46)

It is called the bound-coherent scattering length, because it describes the
process in which all atoms scatter neutrons identically, i.e. coherently. In
contrast to that, the bound-incoherent scattering length binc is defined as
the standard deviation of the neutron scattering length:

b2
inc ≡ ⟨b2⟩ − ⟨b⟩2 =W+b

2
+ +W−b

2
− − (W+b+ +W−b−)2

=(b+ − b−)2 · I(I + 1)
(2I + 1)2 .

(1.47)

It describes the scattering processes that depend on the mutual orientation of
the neutron spin S and nuclear spin I, and therefore the atoms are scattering
individually, i.e. incoherently.

The difference between the coherent and incoherent scattering of neu-
trons can be further illustrated by considering the scattering of unpolarized
neutron beam on N nuclei positioned at rn. We can write an expression for
the differential cross-section similarly to Eq. (1.28), but taking into account
that each atom scatters neutrons with the scattering length bn and one has
to average the result over all possible orientations of the neutron spins:

( ∂σ
∂Ω

)
=
〈∣∣∣∣∣

N∑
n=1

bne
−iqrn

∣∣∣∣∣
2〉

=
N∑

n,m=1
⟨bnb∗

m⟩e−iq(rn−rm), (1.48)
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where the asterisk denotes complex conjugation. For the majority of the
isotopes, the scattering length is a real number, i.e. Im{b} ≪ Re{b} [12, 14],
so the complex conjugation can be omitted.

The mean values in sum (1.48) can be calculated separately for the di-
agonal terms (n = m) and off-diagonal terms (n ̸= m):

⟨bnbm⟩ = ⟨b2⟩, for n = m,

⟨bnbm⟩ = ⟨bn⟩⟨bm⟩ = ⟨b⟩2, for n ̸= m.
(1.49)

Two Eqs. (1.49) can be merged together and written in a single line as
⟨bnbm⟩ = ⟨b⟩2 + δnm

(
⟨b2⟩ − ⟨b⟩2). Then the differential scattering cross-

section in Eq. (1.48) can be written as

( ∂σ
∂Ω

)
= ⟨b⟩2

N∑
n,m=1

e−iq(rn−rm)

︸ ︷︷ ︸
coherent scattering

+
(
⟨b2⟩ − ⟨b⟩2)N︸ ︷︷ ︸

incoherent

scattering

. (1.50)

It is now explicitly shown that the interference between the neutrons scat-
tered by different nuclei occurs only in coherent scattering, while the inco-
herent scattering does not depend on position of the nuclei. The scattering
effects arising due to the presence of different orientations of nuclear and
neutron spins in the sample are called spin-incoherent scattering.

The total neutron scattering cross-section also can be written as a sum
of coherent and incoherent parts:

σ = 4π⟨b2⟩ = 4π
(
W+b

2
+ +W−b

2
−
)

= 4π⟨b⟩2 + 4π
(
⟨b2⟩ − ⟨b⟩2) = σcoh + σinc.

(1.51)

As it was mentioned before, the neutron scattering lengths and cross-sections
strongly depend not only on chemical element (see Fig. 1.18), but also on
isotopes. The values for well-known examples hydrogen and carbon isotopes
are given in Table 2 The presence of different isotopes in the sample leads
to the so-called isotopic incoherent neutron scattering.

1
1H 2

1D 12
6C 13

6C
I 1/2 1 0 1/2
c 99.985 0.015 98.90 1.10
b+ 10.85 9.53 - 5.89
b− -47.52 0.95 - 7.12
bcoh -3.74 6.67 6.65 6.19
binc 25.27 4.04 0 -0.52
σcoh 1.76 5.59 5.56 4.81
σinc 80.28 2.05 0 0.03
σ 82.03 7.64 5.56 4.84

Table 2: Neutron scattering length and cross-
sections for some isotopes. In the second line
the natural abundance c for the isotopes is
given in per cents. The values for the scat-
tering lengths are given in fm, for the cross-
sections - in barns (1 barn = 100 fm2). Data
are taken from [14].

1.2.3 Magnetic scattering of neutrons

Due to non-zero magnetic moments of neutrons, they also interact electro-
magnetically with electrons in partially filled atomic shells. The correspond-
ing amplitude of neutron magnetic scattering is proportional the atomic form
factor f(q) given in Eq. (1.29) and can be calculated as

fm = 2reγf(q) · ⟨S′M ′|V̂M |SM⟩,

V̂M = (SatS) − (qS)(Satq)
q2

(1.52)

Here γ = µn/µN = −1.9 is the magnetic moment of neutrons in the units
of nuclear magnetons, S and S′ are the initial and final spin states of the
neutron, M and M ′ are the initial and final states of the atomic spin Sat
(not the nuclear spin I). From the equation for V̂M it follows, that the
magnetic scattering is determined by the component of the magnetic moment
perpendicular to the momentum transfer q.

The magnitude of the magnetic scattering is comparable with the nu-
clear scattering (see section 1.2.2), which leads to a noticeable interference
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between these two scattering mechanisms. The resulting differential scatter-
ing cross-section is ( ∂σ

∂Ω

)
= b2 + f2

m ± 2b|fm|, (1.53)

where b is the amplitude of nuclear scattering, fm is the amplitude of mag-
netic scattering, and the sign of the interference term depends on the mutual
orientation of the nuclear and atomic spins. The interference term 2b|fm|
allows to produce polarized neutron beams via the scattering on ferromag-
netics.

1.3 Interaction of electrons with matter

Electrons being electrically charged particles interact with the electrons of
the atom as well as the nuclei. The resulting elastic atomic electron scatter-
ing form factors can be estimated by the Mott–Bethe formula [15]:

fe(q) = 2
a0

· Z − fx(q)
q2 . (1.54)

Here a0 = 0.529 Å is the Bohr radius, the scattering vector q is defined
in Eq. (1.26), and fx(q) is an elastic X-ray atomic scattering factor defined
in Eq. (1.29). Note that traditionally the electron scattering form factor
is defined as the scattering amplitude in quantum mechanics, i.e. ( ∂σ∂Ω ) =
|f(q)|2, so it has units of length. The comparison between the X-ray, neutron
and electron form factor for Cu is shown as example in Fig. 1.19.

Fig. 1.19: Scattering length by copper atom
for electrons (fe(q)), X-rays (refx(q)) and neu-
trons (bcoh) [16].

The most important point about electron scattering is, of course, that
the scattering cross section is so high, that the single-scattering assumption
is no longer valid. The single-scattering approximation works very well for
X-ray and neutron scattering, which makes these techniques much much
more straight-forward to analyze and allows one to use Fourier transfrom
to calculate the scattering magnitudes (as for example in Eq. (1.29)). In
this course, we will focus on single-scattering approximation, and mostly
consider X-rays and neutrons, although one should remember that the elec-
tron diffraction is also broadly used in material science and allows to achieve
incredible spatial resolution and "see" individual atoms in thin samples.

Of course, there are also electron inelastic scattering processes, the most
important of which are thermal diffuse scattering, plasmon excitations, in-
terband and intraband excitations, inner-shell excitations (for more details
see [17]).
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2 Scattering from surfaces and interfaces
2.1 Index of refraction

2.1.1 X-ray index of refraction for electron gas

A detailed derivation of the index of refraction for electromagnetic waves,
including X-rays, can be found for example, in [18, 19]. Here we will present
a simplified approach, which nevertheless leads to the correct result.

Let us first consider a gas of free electrons with density ne. When the
electromagnetic field propagates through such a system, the electrons at
position r will be displaced by the electric field E(r, t) = E0e

ikr−iωt from
their initial positions by the value (compare with Eq. (1.12))

∆r = − eE0

meω2 e
ikr−iωt = − e

meω2 E. (2.1)

The volumetric polarization (polarization of the unit of the volume) of the
gas can then be calculated as

P = ne · e · ∆r. (2.2)

This allows us to evaluate the electric displacement field D

D = E + 4πP = εE (2.3)

and write the permittivity as

ε = 1 + 4πP
E = 1 − 4π · ne

e2

meω2 , (2.4)

using the fact that all vectors D, E and P are collinear to each other. Using
the relation kc = ω for photons, it is easy to see that the second term in
Eq. (2.4) is of the order of nereλ2, where re is the classical radius of an
electron. With the values typical for X-rays (λ ∼ 1Å, re ≈ 2.8 · 10−5Å,
ne ∼ 1Å−3), this second term is just a small correction to unity. This allows
us to use the Taylor series to evaluate the index of refraction for X-rays:

n =
√
ε ≈ 1 − 2π · ne

e2

meω2 . (2.5)

One should note here that the value of the index of refraction is slightly
below unity, meaning that the phase velocity of X-rays, c/n = ω/k is slightly
above the speed of light. There is, however, no contradiction to the theory
of relativity, which limits the group velocity Vgr = ∂ω/∂k to be less than the
speed of light. There is no restriction on the value of the phase velocity.

In the case of bound electrons, one should modify the equation for the
displacement of electrons, as it was done in section 1.1.4. This leads to the
following expression for the X-ray index of refraction:

n = 1 + 2πne · e
2

me
· 1
ω2

0 − ω2 − iγω
. (2.6)

From this equation it is evident that the index of refraction has a real part
(describing refraction) and an imaginary part (describing absorption).

The latter fact can be easily shown by writing the index of refraction as
n = 1 − δ + iβ and substituting it into the equation for the electromagnetic
wave propagating through the media with the index of refraction n:

E = E0e
iknx−iωt =E0 exp

[
i
ω

c
(1 − δ + iβ)x

]
exp[iωt]

=E0 exp
[
i
ω(1 − δ)

c
x
]

exp[iωt] exp
[

− ωβ

c
x
]
.

(2.7)
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Therefore for the intensity one can write

I ∝ |E|2 = I0 exp
[

− 2ω
c
βx
]
. (2.8)

Comparing this result with Eq. (1.11) shows that the absorption coefficient
µ is proportional to the imaginary part of the index of refraction

β = Im{n} = c

2ωµ = λ

4πµ. (2.9)

2.1.2 X-ray index of refraction for atoms

E = 8.04 keV
(Cu-Kα)

δ β

Be 5.3 · 10−6 2.3 · 10−9

C 7.1 · 10−6 1.2 · 10−8

SiO2 7.1 · 10−6 9.3 · 10−8

Si 7.6 · 10−6 1.7 · 10−7

Cu 2.4 · 10−5 5.5 · 10−7

Au 4.7 · 10−5 4.9 · 10−6

E = 16 keV
δ β

Be 1.3 · 10−6 2.7 · 10−10

C 1.8 · 10−6 7.9 · 10−10

SiO2 1.7 · 10−6 6.1 · 10−9

Si 1.9 · 10−6 1.2 · 10−8

Cu 6.7 · 10−6 3.4 · 10−7

Au 1.2 · 10−5 1.6 · 10−6

Table 3: X-ray index of refraction n = 1−δ+iβ
for various materials. The electron density was
calculated for most common crystal structure
(e.g. graphite for carbon). Data are taken
from [2].

To write the expression for the X-ray index of refraction for the gas of atoms,
let us rewrite Eq. (2.5) as

n = 1 − 2πnere
k2 , (2.10)

and modify it in the following way. First, we should replace the electron
density ne with atomic density ρat. Second, we should replace the scattering
amplitude corresponding to a single electron, i.e. re, with the scattering by
an atom, i.e. ref(0). Here we took into account the fact, that the index
of refraction is very close to unity, which means that the X-ray photons
only very slightly change their direction when scattered by the atoms, so the
atomic scattering form factor f(q) should be taken at q ≈ 0. Finally, we can
write the X-ray index of refraction as

n = 1 − 2πρatref(0)
k2 = 1−δ + iβ, (2.11)

δ = 2πreρat
k2 Re{f(0)}, (2.12)

β = −2πreρat
k2 Im{f(0)}. (2.13)

The form factor f(0) changes monotonically with the X-ray energy ℏω,
except of the region near the absorption edges, where the dispersion correc-
tions to the atomic scattering form factor can not be neglected (see Eq. (1.31)
and Fig. 1.14). However, away from the absorption edges, one can neglect
the dispersion corrections and obtain the following estimate for the index of
refraction:

n = 1 − 2πρatref(0)
k2 = 1 − δ, (2.14)

with
δ = 2πreρat

k2 = 2πreρe
k2 , (2.15)

where ρe = Z · ρat is the total electron density of the material.
Since we consider only small changes in the direction of the X-rays (small

scattering angles), the index of refraction is not sensitive to the structure of
the material. The only quantity it depends on is the total electron density
(as in Eq. (2.14)) or, more precisely, the type of atoms as in Eqs. (2.11-2.13),
where the dispersion corrections are taken into account. Some typical values
for δ and β are given in Table 3.

λ = 1 Å
δ β

Be 1.5 · 10−6 1.6 · 10−12

C 1.2 · 10−6 1.7 · 10−13

SiO2 2.5 · 10−7 2.4 · 10−12

Si 3.3 · 10−7 4.0 · 10−12

Cu 1.0 · 10−6 1.8 · 10−10

Au 7.4 · 10−7 2.6 · 10−9

Table 4: Neutron index of refraction n =
1 − δ + iβ for various materials with natural
isotopic mixture. The neutron wavelength λ =
1 Åcorresponds to the energy E = 81.8 meV
(see Eq. (1.2)). Data are taken from [14, 20].

2.1.3 Neutron index of refraction for atoms

Since neutron scattering is very similar to X-ray scattering (the order of
magnitude of the scattering cross sections is similar), the index of refraction
for neutrons can be also written as n = 1 − δ + iβ. However, for neutrons
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the corrections should expressed through the scattering cross sections and
scattering length. To do this, let us use the result of Eq. (2.9) and rewrite
the index of refraction for X-rays as following:

n = 1 − δ + iβ = 1 − λ2

2π reρatRe{f(0)} + i
λ

4πµ. (2.16)

Now it is very easy to rewrite this result for neutrons, by replacing the
X-ray scattering length reRe{f(0)} by the neutron scattering length bcoh
and rewriting the linear absorption coefficients according to Eq. (1.10) as
µ = ρat(σabs+σinc). Here we took into account the fact that only coherently
scattered neutrons can interfere and therefore contribute to the real part of
the index of refraction. Incoherently scattered neutrons, as well as absorbed
neutrons, are "lost" and therefore should be included in the imaginary part
of the index of refraction [21]. Finally, the index of refraction for neutrons
is

n = 1 − δ + iβ = 1 − λ2

2πρatbcoh + i
λ

4πρat(σabs + σinc). (2.17)

Since the neutron and X-ray scattering cross-sections have the same order
of magnitude, the correction to the neutron index of refraction δ is also
10−6 − 10−5 as for X-rays, as shown for some materials in Table 4.

2.2 Scattering at an ideal interface
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Fig. 2.1: Incident, reflected and transmitted
waves at an ideal interface between two ma-
terials with different refraction indices: n1 for
z > 0 and n2 for z < 0.

Let us consider an ideal flat interface between two materials with the refrac-
tion indices n1 and n2 (see Fig. 2.1). When the incident wave (X-rays or
neutrons) with a wave vector k0 propagates through the first materials and
hits the interface, part of it is reflected (reflected wave). From optics it is
known, that the angle of reflection equals to the angle of incidence:

α1 = α0. (2.18)

The part of the wave that continues to propagate through the second ma-
terial (transmitted wave) slightly changes its direction due to the difference
in refraction indices. According to Snell’s law:

n1 cosα0 = n2 cosα2. (2.19)

Note that here the angles are counted from the surface, not from the normal
to it, as it is common in optics.

2.2.1 Total external reflection

𝐸(𝑧)
𝑧

𝐸 𝑧 = 𝐸!"# & exp
𝑧
2Λ

Fig. 2.2: Magnitude of the electric field in the
evanescent wave below the surface (z < 0).

Let us consider the situation, when the incident wave propagates in vacuum
(n1 = 1), and the second material has the refractive index slightly less than
unity (n2 = n = 1 − δ + iβ), which is very typical for X-rays and neutrons.
If the incident angle is too small, the whole incident wave is reflected, i.e.
there is no transmitted wave. This effect is called total external reflection, in
contrast to the total internal reflection for visible light in optics. The critical
angle of incidence αc below which the total external reflection is observed,
can be found from the condition

cosα2 = n1

n2
cosα0 ≤ 1, (2.20)

from which one finds using the Taylor series (and neglecting absorption)

α0 ≥ αc =
√

2δ. (2.21)
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For more shallow incidence angles α0 < αc, the wave vector of the trans-
mitted wave becomes an imaginary number:

k2z =
√
k2

2 − k2
2x =

√
k2

0n
2 − k2

0 cos2 α0 ≈ ik0

√
α2
c − α2

0. (2.22)

This means that the transmitted wave is evanescent:

E2(z) = E2e
−ik2zz−iωt = E2e

k0z
√
α2

c−α2
0e−iωt,

and its intensity decays exponentially for z < 0 (below the surface):

I2(z) ∝ |E2(z)|2 = I0e
2k0z

√
α2

c−α2
0 = I0e

z/Λ.

This is illustrated by Fig. 2.2. The penetration depth of the evanescent
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Fig. 2.3: Reflection and transmission of the un-
polarized neutron wave with the wave function
ψ = ψ0eikr−iωt at an ideal interface.

wave into the material can be evaluated as

Λ = 1
2k0
√
α2
c − α2

0
(2.23)

or, including absorption,

Λ = 1
2Im{k2z}

= 1

k0
√

2
√
α2
c − α2

0 +
√

(α2
c − α2

0)2 + 4β2
. (2.24)

In case of large incidence incidence angles, one cannot use the approxi-
mation sinα0 ≈ α0 anymore, so everywhere in Eqs. (2.22-2.24), one has to
replace α0 with sinα0 back. It is easy to check, that for the normal incidence
(α0 = π/2 and sinα0 = 1), the result of Eq. (2.24) coincides with Eq. (2.9).

If the X-ray critical angle αc is known, one can estimate the difference
of electron densities of two materials as

∆ρe = ρ2
e − ρ1

e = π

reλ2 · α2
c . (2.25)

2.2.2 Transmission and reflection at ideal interface (Fresnel coef-
ficients)

Let us consider a wave function ψ = ψ0e
ikr−iωt describing plane monochro-

matic wave of neutrons (Fig. 2.3). In this section we will evaluate the am-
plitude reflectivity r and transmittivity t of the interface that are defined as
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Fig. 2.4: Reflection and transmission of the
X-ray wave at an ideal interface. So-called
s-polarization is shown in panel (a) and p-
polarization - in panel (b).

r = ψ1

ψ0

t = ψ2

ψ0
,

(2.26)

where ψ1 is the reflected wave and ψ2 is the transmitted wave. The quantities
r and t characterize not only how strongly the neutrons are reflected or
transmitted by the interface, but also how the phase of the wave is changed.

In experiment, however, it is much more common to use the intensity
reflectivity R and transmittivity T defined as

R = |r|2 =
∣∣∣ψ1

ψ0

∣∣∣2
T = |t|2 =

∣∣∣ψ2

ψ0

∣∣∣2. (2.27)

Using the boundary conditions at the interface, namely, continuity of the
wave function and its derivative across the interface,

ψ0|z=0 + ψ1|z=0 =ψ2|z=0

∂ψ0

∂z

∣∣∣
z=0

+ ∂ψ1

∂z

∣∣∣
z=0

=∂ψ2

∂z

∣∣∣
z=0

,
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one obtains
r = n1 sinα0 − n2 sinα2

n1 sinα0 + n2 sinα2
= kz − k′

z

kz + k′
z

, (2.28)

t = 2n1 sinα0

n1 sinα0 + n2 sinα2
= 2kz
kz + k′

z

, (2.29)

where

kz =k · n1 · sinα0 ≈ kn1α0,

k′
z =k · n2 · sinα2 ≈ kn2α2

(2.30)

are the z-components of the wave vector in two materials at the interface
(k = 2π/λ is the wave vector in vacuum). The relations (2.28-2.29) are
known as Fresnel equations and are very important in optics.

For X-rays, the result is identical for so-called s-polarization6, when the
electric field E is parallel to the interface, i.e. E ∥ y-axis (Fig. 2.4(a)):

rs =n1 sinα0 − n2 sinα2

n1 sinα0 + n2 sinα2
= kz − k′

z

kz + k′
z

,

ts = 2n1 sinα0

n1 sinα0 + n2 sinα2
= 2kz
kz + k′

z

.

(2.32)
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Fig. 2.5: Dependence of the intensity reflec-
tivity R (a), intensity transmittivity T (b),
penetration length Λ (in logarithmic scale) (c),
phase shift of the reflected wave ∆φr (d), and
phase shift of the transmitted wave ∆φt (e) on
the incidence angle α0 .

Let us now consider in more detail the case of the interface between
vacuum (n1 = 1) and some material with the index of refraction n2 = 1 −
δ+ iβ ̸= 1 To get an idea of how the transmission and refraction coefficients
depend on the incidence angle α0, it is instructive to express the value k′

z in
Eq. (2.30) through α0:

k′
z =kn2

√
1 − cos2 α2 = k

√
n2

2 − n2
2 cos2 α2 = k

√
n2

2 − cos2 α0

≈k
√

(1 − δ + iβ)2 − (1 − 1
2α

2
0) ≈ k

√
α2

0 − α2
c + 2iβ.

(2.33)

Here we assumed the common situation when the critical angle exist, which
is always true for X-ray scattering and for most of the isotopes for neutron
scattering. Finally, the Fresnel equations (2.29-2.28) can be written as

r = α0 −
√
α2

0 − α2
c + 2iβ

α0 +
√
α2

0 − α2
c + 2iβ

t = 2α0

α0 +
√
α2

0 − α2
c + 2iβ

.

(2.34)

Now it is easy to consider three cases (especially for β = 0):

• α0 ≪ αc: for small incidence angles, r → −1 and t ∝ α0 ≈ 0. This
means that there is no transmitted wave and the incidence wave is
totally reflected from the interface. At the same time the phase of the
reflected wave is shifted by ∆φr ≈ −π with respect to the incident
wave.

6In case of so-called p-polarization, when the electric field E lies in the plane of scat-
tering and the magnetic field H is parallel to the interface, i.e. H ∥ y-axis (Fig. 2.4(b)),
the reflectivity and transmittivity are slightly different:

rp =
n2 sinα0 − n1 sinα2

n2 sinα0 + n1 sinα2
=
n2

2kz − n2
1k

′
z

n2
2kz + n2

1k
′
z

,

tp =
2n1 sinα0

n2 sinα0 + n1 sinα2
=

2n1n2kz

n2
2kz + n2

1k
′
z

.

(2.31)

However, for X-rays n1 ≈ n2 ≈ 1 and α0, α2 ≪ 1, and therefore the difference between s-
and p-polarization is very small and can be neglected (which is not true for visible light).
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• α0 = αc: at the critical angle, r ≈ 1 and t ≈ 2α0/α0 = 2. This
still corresponds to the total external reflection, however the phase
of the reflected wave matches with the phase of the incident wave
(∆φr ≈ 0). The value t = 2 means that the electric field near the
surface is two times larger than in the incoming wave (and the intensity
of the evanescent wave near the surface is four times larger than in the
incident intensity).

• α0 ≫ αc: at large incident angles, the Taylor expansion of the nomi-
nator gives for the reflectivity:

r ≈
α0 − α0(1 − α2

c

2α2
0

+ iβ
α2

0
)

2α0
≈ α2

c

2α2
0

=
( qc

2qz

)2
, (2.35)

where
qz = k1z − k0z = 2k · sinα0 ≈ 2kα0 (2.36)

is the scattering vector corresponding to the reflection from the inter-
face, and

qc = 2k · sinαc ≈ 2kαc (2.37)

is some critical value. Eq. (2.35) states that above the critical angle the
intensity of the scattered wave decays very fast, namely, as ∝ α−4

0 or
∝ q−4. Accordingly to that, the transmittivity t ≈ 1 at large incidence
angles.
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Fig. 2.6: Multiple scattering at the two inter-
faces created by a slab of thickness d. Different
colors represent multiple scattering of the wave
from the interfaces.

The sketches of the intensity reflectivity R = |r|2, intensity transmittivity
T = |t|2, the penetration depth Λ, and the phase shifts of the reflected and
transmitted waves ∆φr and ∆φt are shown in Fig. 2.5.

2.3 Scattering from a homogeneous thin film on a substrate

Let us evaluate the reflectivity of a homogeneous film of thickness d with a
refractive index n2 between two media with refractive indices n1 and n3 as
shown in Fig. 2.6. The lower media with the refractive index n3 is usually a
substrate on which the film is grown, and the upper medium is air or vacuum
in the simplest case. To calculate the reflectivity of a film, we need to take
into account the effects of interference between waves scattered multiple
times from two interfaces.

Some fraction of the incident wave will be reflected already at the upper
interface between two materials with refraction indices n0 and n1. We will
denote this fraction by r01. Depending on the nature of the incident wave
r01, can be evaluated using one of the Eqs. (2.29, 2.28, 2.32, or 2.31). In the
case of neutrons, the amplitude of the incoming wave can be written as ψ0,
and then the amplitude of the wave reflected from the first interface is r01ψ0.
Therefore, the first approximation of the reflectivity of a film is simply r01. 𝑑
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Fig. 2.7: Evaluation of the phase difference
p2 = ei∆ϕ between the wave reflected from the
upper interface and the wave traveled to the
lower interface and back. Using the conditions
k1x = k2x = k′

1x and ACx = ABx+BCx, one
can evaluate the phase ∆ϕ = k′

2zd+k2z(−d) =
q2zd, where q2z = k′

2z −k2z = 2k′
2 sinα2 is the

scattering vector at the lower interface.

However, part of the incoming wave (t01ψ0) will pass through the film and
reflect from the lower interface between the film with the index of refraction
n1 and the lower medium with the index of refraction n2, and finally pass
through the upper interface with the transmission coefficient t21. This wave
reflected from the lower interface travels two times through the thickness of
the film (back and forth) and therefore exhibits an additional phase shift of
p2, which can be evaluated as

p2 = ei∆ϕ = eiq2zd, (2.38)

where q2z = k′
2z − k2z = 2k2 sinα2 is the z-projection of the scattering

vector inside the film (see Fig. 2.7). Therefore, the amplitude of the wave
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scattered from the lower interface can be written as t12r23t21p
2ψ0 (shown

with red color in Fig. 2.6). Analogously, the wave reflected three times (from
the lower interface, then from the upper interface, then again from the lower
interface) and leaving the film can be written as t12r23r21r23t21p

4ψ0 (note
that it travels the thickness of the slab four times, therefore the phase shift
is p4). This scattering path is outlined with blue color in Fig. 2.6.
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Fig. 2.8: Intensity reflectivity of an ideal inter-
face R12 = |r12|2 (blue dash line) and intensity
reflectivity Rslab = |rslab|2 homogeneous slab
with the thickness d (red line). The so-called
Kiessig oscillations of appear due to interfer-
ence between the wave scattered from the up-
per and lower interfaces of the slab, and there-
fore their period ∆α is inversely proportional
to the thickness of the slab d.

Finally, summing up the results of all possible multiple reflections, we
can evaluate the reflectivity of the film as

rfilm = ψrefl
ψ0

=r12 + t12r23t21p
2 + t12r23r21r23t21p

4+

+ t12r23r21r23r21r23t21p
6 + ...,

(2.39)

which can be evaluated as a sum of geometric progression:

rfilm = r12 + t12t21r23p
2

∞∑
m=0

(r23r21p
2)m

= r12 + t12t21r23p
2 1

1 − r23r21p2 .

(2.40)

This result can be further simplified using the equalities r12 = −r21 and
t12t21 = 1 − r2

12 that directly follow from Eqs. (2.29,2.28):

rfilm = r12 + r23p
2

1 + r21r23p2 = r12 + r23e
iq2zd

1 + r21r23eiq2zd
. (2.41)

A practically important case is when the materials above and below the
film are identical, i.e. n1 = n3 and therefore r23 = r21 = −r12. This
free-standing films is sometimes called a slab. For this case,

rslab = r12(1 − eiq2zd)
1 − r2

12e
iq2zd

, (2.42)

where
q2z = 2k2 sinα2. (2.43)

Two limiting cases can be easily considered:

• α0 ≪ αc: for small scattering angles (assuming d ≫ Λ), r12 ≈ −1 (see
the first limit case in section 2.2.2), so rslab ≈ r12 meaning that the
reflectivity of the slab equals to the reflectivity of its upper interface,
because the wave does not penetrate the slab.

• α0 ≫ αc: for larger scattering angles, r12 ≪ 1, so rslab ≈ r12(1 −
eiq2zd) meaning that the reflectivity of the slab has so-called Kiessig
oscillations, the period of which is ∆α0 ∼ λ/2d or in reciprocal space
units ∆q ∼ 2π/d. Measuring these oscillations is a commonly used
technique to experimentally determine the thickness of thin films.

The reflectivity of a slab in comparison with a reflectivity from an interface
is shown in Fig. 2.8.
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Fig. 2.9: A stack of N bilayers with period Λ.

2.4 Scattering from a multilayer

In various applications [22, 23, 24, 25], it is common to have a stack of thin
layers of different materials - a so-called multilayer. A reflectivity curve from
such a stack of layers allows one to characterize the structure of the layers
(in case of neutrons, also the magnetic order of layers).
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2.4.1 Kinematical approximation

Let us consider a specific case of a multilayer - a stack of N bilayers com-
posed of two materials (A and B) with the indices of refraction nA and nB ,
correspondingly (Fig. 2.9). For large angles of incidence (α0 ≫ αc) we can
can neglect multiple scattering between the bilayers. Therefore the total
reflectivity of a multilayer will be a sum of N reflectivities of bilayers with
corresponding phase factors (here we also neglect scattering from the upper
and lower interfaces of the multilayer):

rN =
N−1∑
m=0

r1 · (p2e−β)m = r1 · 1 − eiqzΛNe−iβN

1 − eiqzΛe−iβ . (2.44)

Here r1 is reflection from a single bilayer, p2 = eiΛqz is a phase shift between
two bilayers, β is absorption in a single bilayer.
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Fig. 2.10: Absorption in a single bilayer.

The reflecticivity r1 of a single bilayer can be calaulated as (see the case
α0 ≫ αc after Eq. (2.43) and the corresponding reflectivity in Eq. (2.35))

r1 =rAB
(
1 − eiqzBΓΛ) =

(
qc

2qzB

)2(
1 − eiqzBΓΛ

)
=2k2(nB − nA)

q2
zB

· eiqzB
ΓΛ
2

(
e−iqzB

ΓΛ
2 − eiqzB

ΓΛ
2

)
︸ ︷︷ ︸

−2i sin
(
qzB

ΓΛ
2

)
= − i

2k2(nB − nA)ΓΛ
qzB

·
sin
(
qzBΓΛ

2

)
(
qzBΓΛ

2

) · eiqzB
ΓΛ
2 .

(2.45)

Absorption of a single bilayer can be evaluated as (see Fig 2.10)

β = 2
[µB

2 · ΓΛ
sinα + µA

2 · (1 − Γ)Λ
sinα

]
= Λ

sinα

[
µBΓ + µA(1 − Γ)

]
, (2.46)

where the factor 2 in the beginning originates from the fact that each bilayer
is passed two times (back and forth), and the absorption coefficient µ/2 for
amplitude is twice smaller than the absorption coefficient for intensity µ,
introduced in Eqs. (1.11) and (2.9). Here we also neglected the refraction
and considered that the incidence angle is α in both materials.

Fig. 2.11: Reflectivity RN of a multilayer
shown in Fig. 2.9 and calculated by Eq. (2.47)
for the following parameters: N = 10, Λ =
50 Å, Γ = 0.2, λ = 1 Å, nA = 1, nB =
1 − 5 · 10−5 + i · 10−6. The reflectivity of a
single bilayer (N = 1) is shown with blue dash
line.

Finally, from Eqs. (2.44-2.46) we obtain for the reflectivity of a multilayer
the following expression (in kinematical approximation):

rN = −i2k
2(nB − nA)ΓΛ

qzB
·

principal minima

at qzB = 2πn
ΓΛ︷ ︸︸ ︷

sin
(qzBΓΛ

2

)
(
qzBΓΛ

2

) ·eiqzB
ΓΛ
2 ·

auxiliary minima

at qzB = 2πn
NΛ︷ ︸︸ ︷

1 − eiqzΛNe−iβN

1 − eiqzΛe−iβ︸ ︷︷ ︸
principal maxima

at qzB = 2πn
Λ

.

(2.47)
The intensity reflectivity RN = |rN |2 calculated with this equation in shown
in Fig. 2.11. Due to constructive interference of the waves scattering from
different bilayers, the resulting reflectivity approaches 100% for the first
principal diffraction maxima. This effect allows one to create very effective
mirrors for X-ray and neutrons that can reflect almost the incident wave
almost completely even at high angles.
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2.4.2 Parratt’s formalism (exact solution) for a multilayer

Since a multilayer has only a limited number of ideal interfaces, it is also
possible to find the exact expression for reflectivity known as Parratt’s for-
malism [26]. Let us consider a stack of N layers on a substrate, each layer has
a thickness dj and an index of refraction nj = 1−δj+iβj where j = 1, . . . , N
(Fig. 2.12). First of all, let us note that the tangential component of the
wave vector kx is the same for all the layers: kxj = kx. This follows from
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Fig. 2.12: Illustration of a multilayer structure
consisting of N layers with dj and an index of
refraction nj = 1 − δj + iβj . The substrate is
denoted as ∞.

the translational symmetry of the system along the direction of x − axis
or from the boundary conditions at the interface (the wave function has to
be continuous across the interface). Since the magnitude of the wave vec-
tor depends on the index of refraction, kj = nj · k, one can calculate the
perpendicular component of the wave vector in each layer as

kzj =
√
n2
zjk

2 − k2
xj =

√
(1 − 2δj + 2iβj)k2 − k2

x =
√
k2
z − 2δjk2 + 2iβk2.

(2.48)
With this result we can calculate the exact reflectivity at the interface be-
tween any two adjacent layers "j" and "j + 1" using Eq. (2.28) (Fresnel
reflectivity)

r′
j,j+1 = kzj − kzj+1

kzj + kzj+1
, (2.49)

where the prime denotes absence of multiple scattering effects (there is no
multiple scattering at a single interface).

In Parratt’s approach, the reflectivity is calculated recursively starting
from the lowest interface between the N th layer and the substrate (denoted
by ”∞”)

(interface) (reflectivity)

”N”/”∞” : r′
N,∞ = kzN − kz∞

kzN + kz∞

”N − 1”/”N” : r′
N−1,N =

r′
N−1,N + r′

N,∞ · p2
N

1 + r′
N−1,Nr

′
N,∞ · p2

N

”N − 2”/”N − 1” : r′
N−2,N−1 =

r′
N−2,N−1 + r′

N−1,N · p2
N−1

1 + r′
N−2,N−1r

′
N−1,N · p2

N−1

”N − 3”/”N − 2” : r′
N−3,N−2 =

r′
N−3,N−2 + r′

N−2,N−1 · p2
N−2

1 + r′
N−3,N−2r

′
N−2,N−1 · p2

N−2

. . .

(2.50)

Here the multiple scattering is taken into account by using the exact ex-
pression for the reflectivity of the film (Eq. (2.41)) with the phase factor
p2
j = eiqzjdj = ei·2kzj ·dj .

2.5 Scattering from a graded interface

In this section we consider scattering of a wave from a graded interface, i.e.
from the interface between two media at which the index of refraction does
not change abruptly (as it was in section 2.2.2), but can be described with
a smooth function n(z), as it is shown in Fig. 2.13. Here we assume that
the changes in the index of refraction occur in the vicinity of z = 0, and for
convenience select the direction of z − axis along the incident wave.

To evaluate reflectivity at such interface, we can approximately it as a
stack of 2N + 1 ideal homogeneous slabs with a thickness dj and an index
of refraction nj (j = −N : N). Here we assume that the interface j = −N
lies deep in the upper medium (z < 0) with the index of refraction n1, and
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the interface j = −N lies in the lower medium (z > 0) with the index
of refraction n2. Since the differences in index of refraction nj+1 − nj at
each interface is infinitesimally small, the corresponding critical angle is also
infinitesimally small, so one can use Eq. (2.35) to calculate the reflectivity
rj,j+1 at this interface:

rj,j+1 =
( αc

2α0

)2
= 2(nj+1 − nj)

(2α0)2 , (2.51)

where we assumed that the incident waves always comes at the incidence
angle α0.
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Fig. 2.13: Scattering from a graded interface
centered around z = 0, at which the index of
refraction n(z) is a smooth function.

Following the same arguments as in section 2.3, the amplitude of the
reflected wave from the graded interface is a sum of the waves reflected at
each interfaces taken with a phase shift eiqzzj corresponding to the additional
distance that the wave need to travel from the interface at zj and back.
Therefore, the total reflectivity r of the graded interface can be approximated
with a sum

r =
N∑

j=−N
rj,j+1e

iqzzj = 1
2α2

0

N∑
j=−N

nj+1 − nj
dj

eiqzzj · dj , (2.52)

which can be further evaluated as an integral

r = 1
2α2

0

∫ ∞

−∞

dn

dz
eiqzzdz = ∆n

2α2
0

· 1
∆n

∫ ∞

−∞

dn

dz
eiqzzdz, (2.53)

where ∆n = n(z = ∞)−n(z = −∞) = n2 −n1. The first factor in Eq. (2.53)
is simply the Fresnel reflectivity of an ideal interface from Eq. (2.35) with the
same total change of the index of refraction. The second factor is the cor-
rection which takes into account smooth variation of the index of refraction
across the interface.

Finally, the intensity reflectivity of a graded interface can be written as

R = RF ·
∣∣∣ 1
∆n

∫ ∞

−∞

dn

dz
eiqzzdz

∣∣∣2, (2.54)

where RF is the Fresnel reflectivity of an ideal interface:

RF =
( qc

2q

)4
=
(αc

2α

)4
=
(∆n

2α

)2
. (2.55)
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Fig. 2.14: Intensity reflectivity of a slab with
graded upper interface (shown in the upper
panel) in comparison with intensity reflectiv-
ity from an ideal slab with two sharp inter-
faces. The Kiessig oscillations become less pro-
nounced at higher scattering angles for the slab
with a graded interface.

In practice, a smooth change of the index of refraction across the interface
can be modeled by the error function:

n(z) = n1 + ∆n · erf
( −z√

2σ

)
, (2.56)

where σ describes the width of the interface. In this case, the integral in
Eq. (2.54) can be evaluated to yield the final answer

R = RF · e−σ2q2
. (2.57)

The reflectivity of a slab with one graded interface is shown in Fig. 2.14.

2.6 Scattering from a rough surface

In this section we will consider the sharp interface between two media, but in
this case the border between them is no longer a flat surface. As it is evident
from Fig. 2.15, in this case one can observe not only specular reflection, but
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also non-specular scatterinig, at which the scattering angle is different from
the incidence angle.

Here, we will follow the description published in [27] and consider the
X-ray scattering cross section in the form (see the corresponding illustration
in Fig. 2.16)( ∂σ

∂Ω

)
=
∣∣∣− re

∫
e−iqrρe(r)dr

∣∣∣2 = r2
eρ

2
e

∫∫
V

e−iq(r−r′)drdr′. (2.58)

Here we assumed that the upper part of the space is vacuum, and the lower

𝑧
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Fig. 2.15: Origin of non-specular scattering
from a rough surface.

part (volume V ) has the electron density ρe. In the case of neutrons, the
X-ray scattering length −reρe should be replaced with a neutron scattering
length b. Now the scattering vector q is not parallel to the z-axis, but all its
three components are non-zero.

The volume integral in Eq. (2.58) can be re-written as an integral over
the surface between the two media using the Ostrogradsky-Gauss theorem
(see Appendix C):( ∂σ

∂Ω

)
= r2

eρ
2
e

∮
S

∮
S′

e−iq(r−r′)

(q · A)2 (AdS)(AdS′), (2.59)

where A is an arbitrary vector, and S is a normal to the surface. Choosing
A = ẑ as a unit vector normal to the average interface (in our case, ẑ is
a unit vector of z-axis), we can use q · ẑ = qz (projection of the scattering
vector) and ẑ · dS = dxdy (projection of the area of the rough surface onto
the xy-plane), we can further simplify the scattering cross section:
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Fig. 2.16: Illustration to application of the
Ostrogradsky-Gauss theorem to Eq. (2.58).

( ∂σ
∂Ω

)
= r2

eρ
2
e

q2
z

∫∫
dxdy

∫∫
dx′dy′e−iqz [h(x,y)−h(x′,y′)]e−iqy(y−y′)e−iqx(x−x′).

(2.60)
Here h(x, y) is the height variation of the rough surface.

We can approximate the first exponential factor in the Eq. (2.60) with its
average value and evaluate it, assuming that the height difference is small:

exp
(

− iqz[h(x, y) − h(x′, y′)]
)

≈
〈

exp
(

− iqz[h(x, y) − h(x′, y′)]
)〉

≈ exp
(

− q2
z

2
〈
[h(x, y) − h(x′, y′)]2

〉)
.

(2.61)

The approximation is exact if h(x, y) is a Gaussian variable (the Baker-
Hausdorff theorem). Let us also assume that

〈
[h(x, y) − h(x′, y′)]2

〉
depend

only on difference between positions (x, y) and (x′, y′), and therefore intro-
duce the height difference correlation function:

g(x− x′, y − y′) =
〈
[h(x, y) − h(x′, y′)]2

〉
. (2.62)

Thus, Eq. (2.60) can be further simplified:

𝑥, 𝑦

𝑔(𝑥, 𝑦)

𝛼 ≈ 1

𝛼 ≪ 1

smooth surface

jagged  surface

2𝜎!

~𝜉

Fig. 2.17: The height difference correlation
function g(x, y) for smooth and jagged surfaces
with the same mean square surface fluctua-
tions σ2.

( ∂σ
∂Ω

)
= r2

eρ
2
e

q2
z

LxLy

∫∫
exp

[
− q2

z

2 g(x, y)
]

exp(−iqyy) exp(−iqxx)dxdy,

(2.63)
where Lx · Ly =

∫∫
dxdy is the area of the projection of the surface onto

xy-plane.
While different types of surfaces produce different functions g(x, y), in

many cases the surface can be described with g(x, y) ∝ (x2 + y2)α for the
small values of argument (see Fig. 2.17). For large distances, the height
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difference correlation function of a flat surface should saturate:
g(x, y) =

〈
[h(x, y) − h(0, 0)]2

〉
=
〈
h2(x, y)

〉︸ ︷︷ ︸
σ2

−2
〈
h(x, y) · h(0, 0)

〉︸ ︷︷ ︸
C(x,y)

+
〈
h2(0, 0)

〉︸ ︷︷ ︸
σ2

= 2σ2 − 2C(x, y),
(2.64)

where ⟨h2⟩ = σ2 is the mean square surface fluctuations and ⟨h(x, y) ·
h(0, 0)⟩ = C(x, y) is the height-height correlation function., which approaches
zero at the distances much larger than a characteristic size ξ. Finally, for
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Fig. 2.18: Smooth surface h(y) (a), the cor-
responding height-height correlation function
C(y) (b) and the scattered intensity I(qy) (c).

many surfaces we can use the following model:

g(x, y) = 2σ2

(
1 − exp

[
− (x2 + y2)α

ξ2α

])
,

C(x, y) = σ2 exp
[

− (x2 + y2)α
ξ2α

]
.

(2.65)

Substituting Eq. (2.64) into Eq. (2.63), we obtain for the scattering cross
section:( ∂σ

∂Ω

)
= r2

eρ
2
e

q2
z

LxLy

∫∫
e−q2

zσ
2
eq

2
zC(x,y)e−iqyye−iqxxdxdy. (2.66)

Since for large distances C(x, y) → 0 and exp(q2
zC(x, y) → 1, the integral

in Eq. (2.66) does not converge. It help to explicitly separate the diverging
part (δ-function-like specular reflection) by subtracting and adding unity:( ∂σ

∂Ω

)
= r2

eρ
2
e

q2
z

LxLye
−q2

zσ
2
∫∫ [

eq
2
zC(x,y) − 1︸ ︷︷ ︸

diffuse

+1︸︷︷︸
specular

]
e−iqyye−iqxxdxdy.

(2.67)
Thus the scattering cross section can be split into two parts: the specular re-
flection from the average surface which occurs only when the scattering angle
matches the incidence angle, and the diffuse scattering from the roughness:( ∂σ
∂Ω

)
=
( ∂σ
∂Ω

)
spec

+
( ∂σ
∂Ω

)
diff
, (2.68)( ∂σ

∂Ω

)
spec

= r2
eρ

2
e

q2
z

LxLye
−q2

zσ
2
(2π)2δ(qx)δ(qy), (2.69)( ∂σ

∂Ω

)
diff

= r2
eρ

2
e

q2
z

LxLye
−q2

zσ
2
∫∫ [

eq
2
zC(x,y) − 1

]
e−iqyye−iqxxdxdy,

(2.70)

where δ(q) denotes the Dirac delta function. For small scattering angles
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Fig. 2.19: Smooth surface h(y) with a charac-
teristic period a (a), the corresponding height-
height correlation function C(y) with a char-
acteristic correlation length ξ (b) and the scat-
tered intensity I(qy) with diffuse scattering
wings (c).

(q2
zσ

2 ≪ 1), one can expand the exponential in Eq. (2.70) in the Taylor
series, to show that the expression in the brackets approximately equals to
q2
z · C(x, y), leading to( ∂σ

∂Ω

)
diff

≈ r2
eρ

2
eLxLye

−q2
zσ

2
∫∫

C(x, y)e−iqyye−iqxxdxdy. (2.71)

Therefore, the diffuse scattering is proportional to the Fourier transform of
the height-height correlation function.

In Fig. 2.18 the scattering profile I(qy) is shown for a typical rough
surface, for which the model Eqs. (2.65) can be applied. It is also not
uncommon that the hills and valleys of a rough surface have approximately
the same size, so the correlation function C(x, y) is oscillating and decaying.
In this case, the diffuse scattering will exhibit characteristic wings, as shown
in Fig. 2.19.
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2.7 Distorted wave Born approximation (DWBA)

The above results (Section 2.6) were obtained using the first Born approx-
imation, which means that we considered only single scattering events and
neglected the possibility that an X-ray photon or neutron can interact with
several atoms and be scattered multiple times. This approximation is justi-
fied by weak interaction of X-ray photons and matter, but it fails to describe
the surface scattering close to the critical angle, when the whole incoming
beam is reflected and therefore the interaction can not be considered weak.
One of the ways to describe the surface scattering close to the critical angle
is to consider the multiple scattering processes in the perturbation theory.

2.7.1 The Helmholtz equation for neutrons and X-rays

Let us consider a plane monochromatic wave of neutrons with energy E =
ℏ2k2/2m, elastically scattered by some potential V (r). The stationary Schrödinger
equation is

∇2ψ(r) + 2mn

ℏ2 (E − V (r))ψ(r) = 0, (2.72)

where ∇2 = ∇ · ∇ = grad div = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplace operator.
The case of a scattering from a single nucleus, V (r) = V̂N (r) was al-

ready considered in Section 1.2.1. Here we will consider scattering from an
extended object, for example, an interface between some material and vac-
uum. In this case, V (r) = 0 in vacuum, and in the medium one can take
into account the density of the atoms and calculate the averaged potential:

V (r) =
〈∑

R
V̂N (r − R)

〉
= 1
v

∫
v

∑
R
V̂N (r − R)dr

=ρat(r) ·
∫
V̂N (r)dr = ρat(r) · 2πℏ2

mn
bcoh,

(2.73)

where angular brackets denote coarse-grain averaging over a small volume
v around the position r, b is the neutron scattering length introduced in
Eq. (1.42), R is the positions of the nuclei inside the volume v, and ρat(r)
is the density of atoms (nuclei) inside the volume v.

This allows us to rewrite the Schrödinger equation (2.72) using the index
of refraction n(r) [21]:

∇2ψ(r) + k2 (1 − V (r)
E

)︸ ︷︷ ︸
n2(r)

ψ(r) = 0, (2.74)

because from Eqs. (2.17) and (2.73) it follows that

n2 =
(

1 − λ2

2πρatbcoh

)2

≈ 1 − 2 · 2π
k2 ρatbcoh = 1 − 4π

k2
mn

2πℏ2V (r). (2.75)

Therefore to describe the scattering of neutrons from the object (i.e.surface)
described with the index of refraction n(r), one has to solve the Helmholtz
equation:

∇2ψ(r) + k2n2(r)ψ(r) = 0. (2.76)

This equation describes propagation of monochromatic wave (therefore the
wave vector k = 2π/λ is constant) through an homogeneous medium with
the index of refraction n(r).
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A similar equation can be derived for the electric field of X-rays from
Maxwell’s equations (see Appendix D):

∇2E(r) + k2n2(r)E(r) = 0. (2.77)

In the following, we will consider only neutrons described by a scalar wave
function ψ(r) and will be solving Eq. (2.76).

2.7.2 Born approximation (BA)

In this section, we will be solving the Helmholtz equation (2.74) written as:

∇2ψ(r) + k2ψ(r) = V (r)ψ(r), (2.78)

with the potential V (r) = k2[1 − n2(r)]. The solution of this equation in
vacuum (V (r) = 0) is known: it is a plane monochromatic wave ψ0 ∼ eik1r.
If the potential V (r) decays fast at large distances (faster than ∼ 1/r), the
solution ψ(r) of Eq. (2.78) should have an assymptotic behavior [28]:

ψk1(r) −−−→
r→∞

eik1r + f(k1,k2)e
ikr

r
, (2.79)

where f(k1,k2) is the scattering amplitude (i.e. |f(k1,k2)|2 i the probability
to detect a particle with momentum k2 far away from the scattering center).
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Fig. 2.20: Illustration of the asymptotic behav-
ior of the wave function given in Eq. (2.79).

In vacuum, we also know the Green function

G(r, r′) = − 1
4π · e

ik|r−r′|

|r − r′|
, (2.80)

which satisfies the equation

∇2G(r, r′) + k2G(r, r′) = (∇2 + k2)G(r, r′) = δ(r − r′). (2.81)

This allows us to write the solution of the inhomogeneous equation

(∇2 + k2)ψ(r) = F (r) (2.82)

as a sum of a vacuum solution ψ0(r) and an integral term:

ψ(r) = ψ0(r) +
∫
G(r, r′)F (r′)dr′. (2.83)

Using Eqs. (2.82-2.83), we can assume F (r) = V (r)ψ(r) and write the
solution of Eq. (2.78) as

ψ(r) = ψ0(r) +
∫
G(r, r′)V (r′)ψ(r′)dr′, (2.84)

which is essentially an integral equation equivalent to the initial Helmholtz
equation (2.78).

Assuming that the scattering potential V (r) is weak, we can treat the
integral term in Eq. (2.84) as a small perturbation, which allows us to solve
it iteratively:

ψ
(0)
k1

(r) = eik1r,

ψ
(1)
k1

(r) = eik1r +
∫
G(r, r′)V (r′)ψ(0)

k1
(r′)dr′,

ψ
(2)
k1

(r) = eik1r +
∫
G(r, r′)V (r′)ψ(1)

k1
(r′)dr′

. . .

(2.85)
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This series is known the Born series. The multiple scattering effects are
taken into account in different orders of this series.

to calculate the scattering amplitude f(k1,k2) defined in Eq. (2.79) we
need to consider the asymptotic behavior of the exact solution (2.84), i.e.
for |r| ≫ |r′|, where |r′| is the characteristic length scale of the scattering
potential V (r′). In this limit, using the approximation

|r − r′| =
√

(r − r′)2 ≈ r
(
1 − rr′

r2

)
= r − r′ r

r
= r − r′k2

k
(2.86)

and calculate the asymptotic behavior of the Green function (2.80):

G(r, r′) −−−−−→
|r|≫|r′|

− 1
4π · e

ikre−ik2r′

k
. (2.87)

Substituting this approximation into Eq. (2.78) we obtain

ψk1(r) −−−→
r→∞

eik1r − 1
4π · e

ikr

r

∫
e−ik2r′

V (r′)ψk1(r′)dr′, (2.88)

which immediately gives for the scattering amplitude (compare with Eq. (2.79))

f(k1,k2) = − 1
4π

∫
e−ik2rV (r)ψk1(r)dr = − 1

4π ⟨eik2r|V |ψk1(r)⟩ . (2.89)

This result is exact, and in order to calculate the scattering amplitude
f(k1,k2) one needs to know the exact wave function ψk1(r). But using
this equation, the scattering amplitude f(k1,k2) can be calculated with any
given precision by substituting the exact wave function ψk1(r) with one of
the approximations from the Born series (2.85). For example, the so-called
first Born approximation (BA), can be obtained by using the zeroth-order
approximation ψ

(0)
k1

(r) = eik1r from Eq. (2.85):

f(k1,k2) ≈ − 1
4π ⟨eik2r|V |eik1r⟩ = − 1

4π

∫
V (r)e−i(k2−k1)rdr, (2.90)

which we already used in Eq. (1.42). This result for the scattering amplitude
is equivalent to calculating the first-order approximation ψ

(1)
k1

(r) using the
Born series (2.85).

2.7.3 The essence of the distorted wave Born approximation (DWBA)

𝑒!"!#⃗ 𝑘%

𝑉 = 𝑉& + ∆𝑉

𝑘%

𝑘%
𝑘' = 𝑘% = 𝑘

𝑉(𝑟)

Fig. 2.21: Illustration of scattering by the po-
tential V (r) = V0(r) + ∆V (r).

Sometimes the potential V (r) is too large, so the Born series does not con-
verge well. The situation can be improved by choosing the basis functions
more accurately. Let us assume that the potential V (r) in the Helmholtz
equation (2.78) can be represented as a sum

V (r) = V0(r) + ∆V (r), (2.91)

where ∆V (r) is a small perturbation of the potential V0(r) (Fig. 2.21). Let
us also assume, that for the undisturbed potential V0(r) we know the corre-
ponding Green function GV0

k1
(r, r′) which satisfies the identity[

∇2 + k2 − V0(r)
]
GV0

k1
(r, r′) = δ(r − r′), (2.92)

and we also know the solution ψk1(r) of the Helmholtz equation:[
∇2 + k2 − V0(r)

]
ψk1(r) = 0. (2.93)
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Analogously to how it was done in section 2.7.2, the solution ϕk1(r) of
the Helmholtz equation with the disturbed potential (2.91),[

∇2 + k2 − V0(r)
]
ϕk1(r) = ∆V (r)ϕk1(r), (2.94)

can be written as (compare to Eq. (2.84))

ϕk1(r) = ψk1(r)︸ ︷︷ ︸
exact solution

for V0(r)

+
∫
GV0

k1
(r, r′)∆V (r′)dr′︸ ︷︷ ︸

perturbation from ∆V (r)

. (2.95)

To calculate the scattering amplitude f(k1,k2), we should consider the
asymptotic behavior of the exact solution ϕk1(r) and write it as

ϕk1(r) −−−→
r→∞

eik1r + f(k1,k2)e
ikr

r
. (2.96)

This can be done in a similar way as in section 2.7.2, by considering the
asymptotic behavior of the Green function GV0

k1
(r, r′). Although the exact

form of this function is unknown, it can be shown [29], that the Green
function GV0

k1
(r, r′) has the following asymptotics (compare with Eq. (2.87)):

GV0
k1

(r, r′) −−−−−→
|r|≫|r′|

− 1
4π · e

ikr

r
· ψ−k2(r′). (2.97)

Substituting (2.97) into (2.95), we obtain

ϕk1(r) −−−→
r→∞

ψk1(r) − 1
4π · e

ikr

r
·
∫
ψ−k2(r′)∆V (r′)ψk1(r′)dr′︸ ︷︷ ︸

⟨ψ∗
−k2

|∆V |ϕk1 ⟩

≈eik1r − 1
4π · e

ikr

r
⟨eik2r|V0 |ψk1⟩ − 1

4π · e
ikr

r
· ⟨ψ∗

−k2
| ∆V |ϕk1⟩ ,

(2.98)

where we used the asymptotics (2.88) for the exact solution ϕk1(r) of the
undistorted Helmholtz equation. Comparing Eqs. (2.98) and (2.96) imme-
diately gives the exact identity for the scattering amplitude

f(k1,k2) = − 1
4π ⟨eik2r|V0 |ψk1⟩ − 1

4π ⟨ψ∗
−k2

| ∆V |ϕk1⟩ . (2.99)

Using the scattering reversibility (see Appendix E), the scattering am-
plitude can be written as

f(k1,k2) = − 1
4π ⟨ψ∗

−k2
|V0 |eik1r⟩ − 1

4π ⟨ψ∗
−k2

| ∆V |ϕk1⟩ . (2.100)

Now we can we continue in the spirit of the first Born approximation and
replace the exact wave function ϕk1 in the distorted potential V0+∆V by the
wave function in the undistorted potential V0, assuming that the distortion
∆V is small. Thus, we obtain the following equation for the scattering
amplitude in the distorted wave Born approximation (DWBA)

f(k1,k2) = − 1
4π ⟨ψ∗

−k2
|V0 |eik1r⟩ − 1

4π ⟨ψ∗
−k2

| ∆V |ψk1⟩ . (2.101)

The first term in Eq. (2.101) describes the exact solution (multiple scatter-
ing) for the undistorted potential V0(r), and the second term correspond to
a single scattering of the distorted wave ψ(r) by the perturbation ∆V (r).

29



2.7.4 Application of DWBA to scattering from a rough surface

In this section we will follow the work [27] and apply the DWBA equation
(2.101) to the X-ray and neutron scattering from a rough surface. In this
approach we will treat the roughness as a small perturbation of an ideal
interface, since the exact solution for the ideal are known (see Fresnel equa-
tions in section 2.2.2).
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Fig. 2.22: Illustration to Eq. (2.103) describ-
ing the exact wave function ψk1 at an ideal
interface.

Let us start with explicitly writing the undistorted potential V0(r) and
the corresponding exact wave functions, ψk1 and ψ∗

−k2
. Assuming an ideal

interface at z = 0 between the vacuum at z > 0 and the medium at z < 0,
we can write

V0 =
{

0 , for z > 0,
k2(1 − n2) , for z < 0.

(2.102)

The wave function ψk1 is an exact solution of the scattering problem
when the incident wave has a wave vector k1 (Fig. 2.22). Therefore, using
the results of section 2.2.2, we can write

ψk1 =
{
eik1r + r(k1)eikr

1r , for z > 0,
t(k1)eikt

1r , for z < 0,
(2.103)

where kr1 and kt1 are the wave vectors of the reflected and transmitted
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Fig. 2.23: Illustration to Eq. (2.104) describ-
ing the exact wave function ψ∗

−k2
at an ideal

interface. Note that the function ψ∗
−k2

is a
time inversion of the function ψk2 , which is the
solution, when the incident wave has a wave
vector k2.

waves correspondingly, and the reflectivity r(k1) and transmittivity t(k1)
are defined by the Fresnel equations (see section 2.2.2).

Analogously, the wave function ψ∗
−k2

can be seen as a solution of the
scattering problem when the reflected wave has a wave vector k2 (Fig. 2.23):

ψ∗
−k2

=
{
r∗(k2)eikr

2r + eik2r , for z > 0,
t∗(k2)eikt

2r , for z < 0.
(2.104)

Now let us define the distortion potential ∆V in such a way, that the total
potential V = V0 + ∆V = 0 above the surface h(x, y), and V = V0 + ∆V =
k2(1 − n2) > 0 below the surface h(x, y) (h(x, y) is the height variation of
the rough surface introduced in section 2.6). This can be done assuming
(Fig. 2.24)

∆V =


k2(1 − n2) , for 0 < z < h(x, y) , if h(x, y) > 0,
−k2(1 − n2) , for h(x, y) < z < 0 , if h(x, y) < 0,
0 , elsewhere.

(2.105)

Substituting V = V0 +∆V from Eqs. (2.102) and (2.105) into Eq. (2.90)
leads to the following cross section of the diffuse scattering in the first Born
approximation (it is identical to Eq. (2.70)):

𝑥

𝑧

𝑛 ≠ 1

𝑛 = 1

ℎ(𝑥, 𝑦)

𝑧 = 0

𝑉! = 0

𝑉! = 𝑘"(1 − 𝑛")

∆𝑉 > 0

∆𝑉 < 0

Fig. 2.24: Illustration to Eq. (2.105) describ-
ing the distortion potential ∆V (r) correspond-
ing to the surface roughness. Red regions cor-
respond to the "hills" on the surface where
∆V > 0, and blue regions correspond to the
"valleys" on the surface where ∆V < 0. In all
other regions ∆V = 0.

( ∂σ
∂Ω

)
diff

= |f(k1,k2)|2

=
∣∣k2(1 − n2)

∣∣2
16π2 LxLye

−q2
zσ

2
∫∫ [

eq
2
zC(x,y) − 1

]
e−iqyye−iqxxdxdy.

(2.106)

The DWBA result can be obtained [27] substituting Eqs. (2.102)-(2.105)
into Eq. (2.101):

( ∂σ
∂Ω

)
diff

=
∣∣k2(1 − n2)

∣∣2
16π2 LxLy|t(k1)|2|t(k2)|2 ·

exp
[

− σ2

2 (qtz)2 − σ2

2 (qt∗z )2
]

|qt2|2
×

×
∫∫ [

e|qt
z|2C(x,y) − 1

]
e−iqyye−iqxxdxdy.

(2.107)
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In Eqs. (2.106)-(2.107), σ2 = ⟨h2⟩ are the mean square surface fluctuations,
t is transmittivity (see section 2.2.2), q = k2 − k1 is the scattering vector,
and qtz = kt2z−kt1z is the z-component of the scattering vector in the media.

While the DWBA solution (2.107) looks much more complicated than
the BA solution (2.106), they actually match for high incident and reflected
angles α1, α2 ≫ αc, because for high angles the transmittivity approaches
unity, t(k1) = t(k2) = 1 and qtz = qz becomes a real-value. However, when
the incident angle or the angle of reflection is close to the critical angle
of the material, the DWBA solution significantly differs from the BA. A
particularly known effect is a dramatic increasing of the transmittivity |t|2 =
4 at the critical angle, i.e. α1 ≈ αc or α2 ≈ αc (see Fig. 2.5b). It leads to a
dramatic increase of the diffuse scattering intensity - so-called Yoneda wings,
since the diffuse scattering is proportional tp the transmittivity (Fig. 2.25).

𝐼

𝜔

specular reflection 
and diffuse scattering
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0 𝛼! − 𝜃− 𝛼! − 𝜃
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𝑘#
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𝜔

Fig. 2.25: Scheme for measuring a so-called
rocking curve: the incident and reflection an-
gles are set to θ, and then the sample is rocked
by an angle ω. In the bottom part the result-
ing reflected intensity is shown: it has a strong
specular peak at ω = 0 and diffuse scattering
around this point, i.e. when the incident angle
matches the angle of reflection, α1 ≈ α2 ≈ θ.
The Yoneda wings appear when either the in-
cident angle α1 or the angle of reflection α2
matches with the critical angle αc.

2.7.5 Application of DWBA to scattering from a nanoparticle on
a surface

Another instructive and rather common example of DWBA is scattering
from a single nanoparticle on a flat surface. As in the previous section,
the undistorted potential V0 corresponds to a flat interface between vacuum
and a material with the index of refraction n, and therefore it is defined by
Eq. (2.102). The nanoparticle with the index of refraction nNP is described
by a distortion potential

∆V =
{
k2(1 − n2

NP ) , inside the nanoparticle,
0 , outside the nanoparticle.

(2.108)

The diffusion scattering from such a nanoparticle on a surface can be
written as ( ∂σ

∂Ω

)
diff

=
∣∣k2(1 − n2

NP )
∣∣2

16π2 · |F |2, (2.109)

in both approximations (BA and DWBA). In the first Born approximation,
the form factor F represents single scattering of a plane wave by a nanopar-
ticle:

FBA =
∫
NP

e−iqrdr =
∫
NP

e−iqxxe−iqyye−iqzzdxdydz, (2.110)

where the integral is taken over the volume of the nanoparticle. In the dis-
torted wave Born approximation, the form factor F represents a single scat-
tering of the distorted wave by the nanoparticle. It means, that it contains
all possible multiple scattering from the flat surface and single scattering by
the nanoparticle, therefore F can be represented as a sum of four terms [30]:
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Fig. 2.26: The four scattering channels taken
into account by DWBA in Eq. (2.111). Only
the first channel is taken into account by BA
in Eq. (2.110).

FDWBA =
∫
NP

e−iqxxe−iqyye−i(k2z−k1z)zdxdydz

+r(α1)
∫
NP

e−iqxxe−iqyye−i(k2z+k1z)zdxdydz

+r(α2)
∫
NP

e−iqxxe−iqyyei(k2z+k1z)zdxdydz

+r(α1)r(α2)
∫
NP

e−iqxxe−iqyyei(k2z−k1z)zdxdydz.

(2.111)

The origin of these four terms is illustrated in Fig. 2.26. The first term
matches with the BA (Eq. (2.110)), while the other terms which include mul-
tiple scattering from the surface are only taken into account within DWBA.
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3 Scattering from non-crystalline materials
In this section, we will consider small angle scattering from an individual
nanoparticle and investigate how its shape influences the scattering. Later
we will consider an ensemble of nanoparticles, e.g. solution of nanoparticles,
and discuss when the solution can be considered as diluted, and when the
interaction between the nanoparticles have to be taken into account.

By nanoparticle we mean any nanoobject, be it an inorganic nanoparticle
itself or a micelle of a liquid crystalline phase, or a large organic molecule
[31], for example, a polymer or protein.

For the simplicity, we will consider only X-ray scattering, and we will not
include the polarization effects (see the polarization factor P 2 in Eq. (1.17)).
However the obtained results can be easily converted to the neutron scat-
tering by replacing the classical radius of electron re (Eq. (1.16) with the
neutron scattering length b (Eq. (1.42)) and the electron density ρe with the
atomic density ρat (similarly to how it was done with the index of refraction
in section 2.1.3). Strictly speaking, in the following sections we will consider
the scattering cross-section

(
∂σ
∂Ω

)
defined in Eq. (1.18) which does not de-

pend on the distance R between the scatterer and the detector. However,
to be closer to the real experiment, where the intensity I of the scattered
X-rays is measured, we will write all equations in terms of the scattered in-
tensity. To summarize, we will omit the factor (−re ·P/R)2 in all equations
for intensity and write them using proportionality.

3.1 Small angle scattering from a single nanoparticle

3.1.1 Scattering form factor

Let us consider small angle X-ray scattering from an individual nanoparticle
positioned at RNP with electron density ρNP (r) in a solvent with electron
density ρsol (Fig. 3.1). The magnitude of the scattered wave is a sum of the
photons scattered by the nanoparticle and by the solvent:

E ∝
∫
ρele

−iqrdr =
∫
ρsole

−iqrdr +
∫

[ρNP (r − RNP )]e−iqrdr

=
∫
ρsole

−iqrdr + e−iqRNP

∫
[ρNP (r) − ρsol]︸ ︷︷ ︸

∆ρ(r)

e−iqrdr.

(3.1)
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Fig. 3.1: Illustration of elastic X-ray scattering
by a single nanoparticle in solution.

If the nanoparticle is floating in the solvent, its position RNP is not fixed,
so the average value of the phasor ⟨e−iqRNP ⟩ = 0 is zero. Therefore, the
total scatted intensity Itot ∝ ⟨|E|2⟩ does not contain the cross-term, which
is proportional to ⟨e−iqRNP ⟩:

Itot ∝ ⟨|E|2⟩ ∝
∣∣∣ ∫ ρsole

−iqrdr
∣∣∣2︸ ︷︷ ︸

Isol

+
∣∣∣ ∫ ∆ρ(r)e−iqrdr

∣∣∣2︸ ︷︷ ︸
INP

. (3.2)

Thus, the total scattered intensity has two contributions: scattering from
the nanoparticle INP and scattering from the solvent Isol. In an experi-
ment, the term Isol can contain all scattering signal which does not come
from the nanoparticle, for example, scattering from the parts of the experi-
mental setup (glass capillary with the solvent), scattering from air etc. This
scattering signal Isol can be treated as a background and measured sepa-
rately in an identical scattering experiment which has everything except of
the nanoparticle. The scattering signal from the nanoparticle INP can be
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then calculated as a difference between the total scattering signal and the
scattering from the solvent (background):

INP (q) = Itot − Isol =
∣∣∣ ∫ ∆ρ(r)e−iqrdr

∣∣∣2. (3.3)

Obviously, if the nanoparticle has the same electron density as the solvent,
i.e. ∆ρ ≡ 0, there will be no scattering from the nanoparticle, because
there will be no interface between the nanoparticle and solvent at which
the refraction of X-rays could happen. There is an important technique
(especially for neutron scattering) called contrast variation [32], where the
scattering of the solvent matches the scattering from a certain region of a
nanoparticle, making this region "invisible" in the scattering experiment.

In the case of N non-interacting nanoparticles floating in the solvent, the
magnitude of the scattered wave can be written similarly to Eq. (3.1):

E ∝
∫
ρsole

−iqrdr +
N∑
i=1

e−iqRi
NP

∫
∆ρi(r)e−iqrdr. (3.4)

Since the nanoparticles do not interact with each other (for example, in the
case of a very diluted solution), ⟨e−iq(Ri

NP −Rj
NP

)⟩ = 0 for i ̸= j, meaning
that there will be no interference between the X-rays scattered from different
nanoparticles. Therefore,

INP (q) = Itot − Isol =
N∑
i=1

∣∣∣ ∫ ∆ρi(r)e−iqrdr
∣∣∣2, (3.5)

or in the case of identical nanoparticles

INP (q) = Itot − Isol = N ·
∣∣∣ ∫ ∆ρ(r)e−iqrdr

∣∣∣2. (3.6)

Here we see that the scattered intensity is proportional to the number of
scatterers N (and not N2, as it would be if the positions of nanoparticles
would be correlated).

For rigid nanoparticles with a constant electron density inside its volume

∆ρ(r) =
{

∆ρ , inside
0 , outside.

(3.7)

we can write

INP (q) = Itot − Isol = N · ∆ρ2 · V 2
NP |F (q)|2, (3.8)

where VNP is the volume of individual nanoparticle, and F (q) is the scat-
tering form factor of individual nanoparticle7

F (q) = 1
VNP

∫
VNP

e−iqrdr. (3.9)

The scattering form factor defined in Eq. (3.9) is analogous to the atomic
scattering form factor introduced in Eq. (1.29).

For a nanoparticle, which electron density is not a constant, the form
factor can be calculated in a similar way as

F (q) =
∫

∆ρ(r)e−iqrdr∫
∆ρ(r)dr . (3.10)

7Sometimes, instead of the form factor, F (q), a so-called shape factor P (q) = |F (q)|2
is used.
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The form factor F (q) depends on the shape of the nanoparticle, therefore
measuring the small angle scattering from the solution of nanoparticles can
revel information about the shape of the nanoparticles, which is especially
important in the case when the nanoparticles only exist in solution and
can not be observed ex situ by AFM or another imaging techniques. For
example, this is the case for liquid crystal micelles or large protein molecules
or another molecular agglomerates which can only exist in a solution.

3.1.2 Absolute intensity at q = 0

From the definition of the scattering form factor (Eq. (3.9)), it is clear that
F (q = 0) = 1. Therefore, the scattered intensity (Eq. (3.8)) in the forward
direction (q →0) depends on the electron density ∆ρ and the volume of the
nanoparticle VNP . In an experiment, one can measure the scattered intensity
I(q) (in photons/sec), normalized by the scattering volume V (the volume
of the solution) and the flux of an incident beam Φ0 (in photons/sec/cm2).
In result, using definition (1.6), one obtains the differential scattering cross-
section normalized per volume of the sample:

Itot(q) − Isol(q)
V Φ0

= 1
V

( ∂σ
∂Ω

)
−−−→
q→0

r2
e

N

V
∆ρ2V 2

NP . (3.11)

Since we want to work with absolute values, it is important to explicitly
write the classical radius of the electron in this equation. The combination
on the left hand side has units of inverse length (by convention, cm−1). It
is common in SAXS experiment, that this combination is denoted simply
as I(0), and only from the units it is clear that the measured intensity was
normalized, as shown above. Such normalization is usually called "absolute
scale".
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Fig. 3.2: Intensity scattered from a spherical
nanoparticle. Red curve shows the asymptotic
behavior at qR ≪ 1 (see Eq. (3.17)); blue
line indicates the envelope for qR ≫ 1 (see
Eq. (3.18)).

Now, Eq (3.11) can be used to determine the molecular weight of a single
nanoparticle. For example, this is one of the techniques which allows one to
determine the molecular weight of large protein molecules with an accuracy
of ∼ 10% by measuring the intensity of the X-ray scattered in the forward
direction.

To do this, let us write the mass concentration of the nanoparticles c
(in mg/ml) via a specific volume of nanoparticles ν (inverse mass density of
nanoparticle material, in ml/mg):

c = N

V
· VNP

ν
. (3.12)

Here the first term is the concentration of nanoparticles, and the second term
- mass of a single nanoparticle. Then, the molecular weight of a nanoparticle
Mw, i.e. weight of one mole of nanoparticles (in g/mole) can be calculated
via the weight of a single nanoparticle as

Mw = VNP
ν

·NA, (3.13)

whereNA ≈ 6.022·1023 mol−1 is Avogadro’s number. Combining Eqs. (3.11-

Fig. 3.3: Intensity scattered from an ensemble
of spherical particles of different sizes with the
same mean radius R. The radii of the spheres
are distributed normally with σ = 0.01R,
0.05R and 0.1R.

3.13), we obtain
Itot(q) − Isol(q)

V Φ0
−−−→
q→0

c
ν

VNP
·r2
e∆ρ2V 2

NP = c·νr2
e∆ρ2·Mwν

NA
= cν2Mw

NA
r2
e∆ρ2.

(3.14)
Here we should note, that one cannot directly measure the scattered

intensity at q = 0, because at this point the intensity is dominated by the
direct beam, i.e. the photons which passed through the sample without
scattering. Instead, one has to measure the scattered intensity at small
values of the scattering vector q and then approximate it to q → 0. How
exactly to do this approximation, will be discussed in section 3.1.4.

34



3.1.3 Example: scattering form factor of a solid sphere

As an example, let us calculate the scattering form factor of a solid sphere
with radius R and constant electron density ∆ρ inside the sphere. In this
case, we need to evaluate the integral in Eq. (3.9), which can be done using
spherical system of coordinates:

F (q) = 1
VNP

∫
VNP

e−iqrdr

= 1
4
3πR

3

∫ R

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφ︸ ︷︷ ︸

2π

e−iqr cos θ

= 1
2
3R

3

∫ R

0
r2dr

∫ π

0
e−iqr

t︷︸︸︷
cos θ

−dt︷ ︸︸ ︷
sin θdθ = 3

2R3

∫ R

0
r2dr

∫ 1

−1
e−iqr·tdt.

(3.15)

The inner integral can be easily evaluated∫ 1

−1
e−iqr·tdt = e−iqr − eiqr

−iqr
= 2sin(qr)

qr
.

The outer integral in Eq. (3.15) can be evaluated using partial integra-
tion:

∫ R

0

2r
q

sin(qr)dr = 2
q3

∫ R

0

t︷︸︸︷
qr

sin t︷ ︸︸ ︷
sin(qr)

dt︷ ︸︸ ︷
d(qr) = − 2

q3

∫ qR

0
t d cos t

= − 2
q3 · t cos t

∣∣∣qR
0

+ 2
q3

∫ qR

0
cos tdt = − 2

q3 qR cos(qR) + 2
q3 · sin(qR).
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Fig. 3.4: Radius of gyration for (a) solid sphere
with radius R, (b) solid ellipsoid with semi-
axes a, b and c, (c) solid cylinder with diameter
D and height L, (d) flat disc with diameter D,
(e) thin rod with length L.

Substituting this result in Eq. (3.15), we obtain

F (q) = 3 · sin(qR) − qR cos(qR)
(qR)3 . (3.16)

The intensity I(q) ∝ |F (q)|2 scattered by a sphere is shown in Fig. 3.2.
In a real experiment, one has to take into account polydispersity of the

nanoparticles. It means, that different nanoparticles can have different sizes,
which would lead to the smearing of the strong oscillations of the scattering
structure factor (Fig. 3.3). Moreover, since the scattered intensity is propor-
tional to the square of the nanoparticle’s valume (see Eq. (3.8)), the larger
particles dominate in the scattering curve I(q).

When qR = tan(qR), the scattered intensity drops to zero (this happens
for qR ≈ 4.49, 7.73, 10.90, ...). For the small scattering angles (qR ≪ 1),
one can use Taylor expansion to calculate the asymptotic behavior:

F (q → 0) = 3
(qR)3

(
qR− (qR)3

3! + (qR)5

5! − . . .︸ ︷︷ ︸
sin(qR)

−qR+ (qR)3

2! − (qR)5

4! + . . .︸ ︷︷ ︸
−qR cos(qR)

)

≈ 3
(qR)3

( (qR)3

3 − (qR)5

30

)
= 1 − (qR)2

10 ≈ e− (qR)2
10 .

(3.17)

Such a quadratic decay of intensity at small q is a general result, which will
be discussed in section 3.1.4.
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In another limiting case, qR ≥ 1, one can neglect the sine function in the
nominator of Eq. (3.16), and obtain the asymptotic behavior

F (q) qR≥1−−−→ 3 · cos(qR)
(qR)2 . (3.18)

The decay of the scattered intensity as I ∝ |F (q)|2 ∝ q−4 is also a general
result (see sections 2.2.2 and 3.1.5).

3.1.4 Guinier analysis at q → 0

Let us investigate the dependence of the scattering form factor at q → 0
for a nanoparticle with an arbitrary shape. To consider a general case (not
only hard-core nanoparticles as in Eq. (3.9)), we will use the scattering form
factor written as

F (q) = 1
VNP

∫
VNP

∆ρ(r)e−iqrdr. (3.19)

This will allow us to consider the variation of the electron density ∆ρ(r)
within the nanoparticle. We will consider such small values of the scattering
vector q that qr ≪ 1 for any r inside the nanoparticle. This allows us to use
the Taylor expansion for the exponential, exp(−iqr) ≈ 1 − i(qr) − (qr)2

2 :

F (q → 0) = 1
VNP

∫
∆ρ(r)e−iqrdr

≈ 1
VNP

∫
∆ρ(r)dr − i

VNP
q
∫

r∆ρ(r)dr︸ ︷︷ ︸
rc

− 1
2VNP

∫
(qr)2∆ρ(r)dr.

(3.20)

Here the first term is related to the total electron density of a nanoparti-
cle, and it can be denoted as F (0). The integral in the second term, denoted
as rc, defines the position of the "center of scattering density". Let us assume
that the particle is placed in the origin of the coordinates, so that rc = 0.
After all, the translation of the particle by a vector ∆RNP will introduce a
phase e−iq∆RNP to the form factor (see Eq. (3.19)), which doesn’t influence
the scattered intensity, because INP ∝ |F |2. Therefore, we can write for
qr ≪ 1

F (q) −−−→
q→0

F (0) − 1
2VNP

∫
(qr)2∆ρ(r)dr. (3.21)

𝐼(
𝑞)

𝑞!0

𝐼(𝑞 → 0)

slope = − 𝑅"!

3

Fig. 3.5: Dependence of the scattered intensity
I(q) vs. q2 for a nanoparticle (in logarithmic
scale). The slope of the intensity at q ≈ 0 de-
pends on the radius of gyration Rg . For this il-
lustration, intensity scattered by a solid sphere
was used (as in Fig. 3.2).

Usually the orientation of the particle is not fixed, so one has to average
F (q) over all possible orientations of a nanoparticle. The same result will be
obtained if one averages over all possible orientations of the scattering vector
q. Therefore, we need to calculate ⟨(qr)2⟩, where averaging is taken over
all possible orientations of q. The easiest way to do this is to use spherical
coordinates:

⟨(qr)2⟩ =
∫ π

0 (qr
t︷︸︸︷

cos θ)2 ·
−dt︷ ︸︸ ︷

sin θdθ
∫ 2π

0 dϕ∫ π
0 · sin θdθ

∫ 2π
0 dϕ

=
q2r2 ∫ 1

−1 t
2dt · 2π

4π = q2r2

3 .

(3.22)
Therefore,

F (q) −−−→
q→0

= 1
VNP

∫
∆ρ(r)dr︸ ︷︷ ︸

F (q=0)

− 1
2VNP

· q
2

3

∫
r2∆ρ(r)dr

= F (q = 0)
(

1 −
q2R2

g

6

)
,

(3.23)
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where we introduced radius of gyration Rg defines as

R2
g =

∫
r2∆ρ(r)dr∫
∆ρ(r)dr . (3.24)

Radius of gyration Rg is a mean square distance from the center of scattering
density. It it an important parameter which characterizes the size and the
shape of the nanoparticle. Mathematically, it is related to the moment of
inertia in mechanics with the difference that the gyration radius is related to
the distribution of the scattering density, and moment of inertia is related
to the distribution of mass density. The gyration radius for some simple
geometrical shapes is shown in Fig. 3.4.

The scattered intensity for q → 0 is then

I(q) ∝ |F (q)|2 ∝ I(0) ·
(

1 − 2 ·
q2R2

g

6

)
. (3.25)

Therefore, the experimental determination of the radius of gyration is pos-
sible by calculating the slope of I(q) vs q2 in logarithmic scale, as shown in
Fig. 3.5.

3.1.5 Porod analysis at q → ∞

For a solid sphere, we can use the result of Eq. (3.18) and write the scattered
intensity in Eq. (3.6) for qR ≥ 1 as

I(q) = N ·∆ρ2 ·V 2
NP · |F (q)|2 qR≥1−−−→ N ·∆ρ2 ·

(4
3πR

3
)2

·9 · cos2(qR)
(qR)4 . (3.26)

Introducing the area of the nanoparticle’s surface SNP = 4πR2 and tak-
ing the average of the oscillating form factor, ⟨cos2(qR)⟩ = 1

2 , we can rewrite
Eq. (3.26) as

I(q) qR≥1−−−→ 2πN∆ρ2 · SNP
q4 ∝ SNP

q4 . (3.27)

This asymptotic result is general for all 3D nanoparticles with a sharp inter-
face [33]; and the exponent of the algebraic decay of the scattered intensity
is called Porod’s exponent. A similar dependence, I ∝ q−4 was also obtained
for the scattering from a sharp interface in section 2.2.2, however we did not
do angular averaging there.

Fig. 3.6: Squared scattering form factor
|F (q)|2 for two cylinders with different as-
pect ratios: (a) D/H = 20 (disc-like), (b)
D/H = 0.02 (rod-like). For qRg ≤ 1 the form
factor can be well approximated with Guinier
law (see Eq. (3.25) and Fig. 3.4). For qRg ≫ 1
the form factor decays as ∝ q−4 according to
Eq. (??). For the intermediate values, the disc-
like cylinder exhibits ∝ q−2 dependence, typ-
ical for 2D objects, and the rod-like cylinder
exhibits ∝ q−1 dependence, typical for 1D ob-
jects. The figure is plotted in double logarith-
mic scale.

For a 3D nanoparticle with a rough interface (which can be described by
a fractal dimensionality 2 < d < 3), the dependence is slightly different:

I(q) ∝ 1
q6−d . (3.28)

It can be shown, that the Porod exponent also depends on the dimensionality
of the nanoparticle; I ∝ q−2 for 2D nanoparticles and I ∝ q−1 for 1D
nanoparticles. For example [34],

• 2D disk with diameter D:

|F (q)|2 = 8
q2D2

[
1 − 2J1(qD)

qD

]
∝ 1
q2 , (3.29)

where J1(x) is the first-order Bessel function.

• 1D rod with length L:

|F (q)|2 = 2
qL

[
Si(qL) − 1 − cos(qL)

qL

]
∝ 1
q
, (3.30)

where Si(x) =
∫ x

0
sin t
t dt is sine integral function.
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Any real nanoparticle is of course a 3D object, which means that at
sufficiently high q-values (which corresponds to a very small length scale
in real space), any 3D nanoparticle scatters as ∝ q−4. However, at some
intermediate q-values (q ∼ R−1

g ), we can expect some deviations from the
lawI ∝ q−4, which are related to the dimensionality. This is illustrated in
Fig 3.6, where the scattered intensity is calculated for two cylinder with
different aspect ratios (disk-like and rod-like).

3.2 Scattering from an ensemble of nanoparticles

3.2.1 Structure factor

Let us consider X-ray scattering from a solution of nanoparticles, similarly to
what was done in section 3.1.1. However, now we will not assume that the
positions of the individual nanoparticles are completely independent from
each other, and therefore we will not be able to neglect the interference
between the X-ray photons, scattered from different nanoparticles.

Let us consider N nanoparticles with ositioned at rj (j = 1, 2, ..., N).
The electron density of each nanoparticle is ρj(r), and the electron density
of the solution is ρsol. The magnitude of the scattered wave is a sum of the
photons scattered by the nanoparticles and by the solvent:

E ∝
∫
ρele

−iqrdr =
∫
ρsole

−iqrdr +
N∑
j=1

∫
[ρj(r − rj)]e−iqrdr

=
∫
ρsole

−iqrdr +
N∑
j=1

e−iqrj

∫ ∆ρj(r)︷ ︸︸ ︷
[ρj(r) − ρsol] e−iqrdr︸ ︷︷ ︸

∝Fj(q)

,

(3.31)

analogously to how it was done in Eq. (3.1). The Fourier transform of
the electron density of each nanoparticle is proportional to the scattering
structure factor Fj(q), which was considered before (see Eqs. (3.9-3.10))8.
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Fig. 3.7: Illustration of elastic X-ray scattering
by an ensemble of N nanoparticles in solution.

The total scattered intensity Itot ∝ ⟨|E|2⟩ contains the squares of each
term in Eq. (3.31) as well as the cross-products. However, the average value
of the cross-products are proportinal to ⟨e−iqrj ⟩ = 0, which equals to zero,
since the position of the nanoparticles is not fixed (similar to Eq. (3.2)).
Therefore the total scattered intensity can be written as

Itot ∝ ⟨|E|2⟩ ∝
∣∣∣ ∫ ρsole

−iqrdr
∣∣∣2︸ ︷︷ ︸

Isol

+
〈∣∣∣ N∑

j=1
e−iqrj · Fj(q)

∣∣∣2〉︸ ︷︷ ︸
INP

. (3.32)

Here the averaging is taken over all possible positions of the nanoparticles,
i.e. ensemble averaging.

Similarly to how it was done in section 3.1.1, we can treat Isol as back-
ground and include in there all scattered photons which come not from the
nanoparticles. The scattering signal from the nanoparticles (which we will

8For a solid nanoparticle with a constant electron density, the integral in Eq. (3.31)
equals to ∆ρj · Fj(q). In the following consideration, we will not explicitly write it the
electron density, but rather include it into the form factor
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simply denote as I(q)) can be written as

I(q) ≡ INP (q) = Itot − Isol =
〈∣∣∣ N∑

j=1
Fj(q) · e−iqrj

∣∣∣2〉

=
〈 N∑
j=1

Fj(q)e−iqrj ·
N∑
i=1

F ∗
i (q)eiqri

〉

=
〈 N∑
i,j=1

F ∗
i (q)Fj(q) · e−iq(rj−ri)

〉
,

(3.33)

where asterisk denotes complex conjugation. We can separate the terms
with i = j from the double sum in Eq. (3.33):

I(q) =
N∑
i=1

〈
|Fi(q)|2

〉
+

N∑
i,j=1
i ̸=j

〈
F ∗
i (q)Fj(q) · e−iq(rj−ri)

〉

=N
〈

|F (q)|2
〉

+
N∑

i,j=1
i ̸=j

〈
F ∗
i (q)Fj(q) · e−iq(rj−ri)

〉
.

(3.34)

Here the first term is proportional to the number of particles N and it
corresponds to the sum of the scattering intensities from each individual
nanoparticle (we have already obtained this term in Eq. (3.8)).

To evaluate the second term in Eq. (3.34), we will use so-called decou-
pling approximation. Specifically, we will assume that the position of the
nanoparticle rj does not depend on its size, shape or orientation, i.e. its
form factor Fj(q). This allows us to write〈

F ∗
i (q)Fj(q) · e−iq(rj−ri)

〉
=
〈
F ∗
i (q)

〉
·
〈
Fj(q)

〉
·
〈
e−iq(rj−ri)

〉
=
∣∣∣〈F (q)

〉∣∣∣2 ·
〈
e−iq(rj−ri)

〉
.

(3.35)

The decoupling approximation works well in the diluted systems, however
when the distance between the individual nanoparticles becomes compa-
rable to the size of the nanoparticles, one cannot simply assume that the
orientation of the nanoparticles is independent on their position. An exam-
ple of such system can be liquid crystal phases, where strongly anisotropic
molecules have preferred orientation [35, 36].

Now the scattered intensity can be written as

I(q) = N
〈

|F (q)|2
〉

+
∣∣∣〈F (q)

〉∣∣∣2 ·
〈 N∑
i,j=1
i ̸=j

e−iq(rj−ri)
〉
, (3.36)

which does not depend on absolute positions of the nanoparticles, but only
on their relative positions (rj − ri). This allows us to define the structure
factor as

S(q) =
〈 1
N

N∑
i,j=1

e−iq(rj−ri)
〉

= 1 + 1
N

〈 N∑
i,j=1
i ̸=j

e−iq(rj−ri)
〉
, (3.37)

where the N terms for which i = j can be include in the double sum, or
evaluated separately which gives the unity. The structure factor S(q) is the
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ensemble-averaged Fourier transform of the positions of the nanoparticles,
as it will be clear from the upcoming sections. It contains information on
the relative position of the nanoparticles, but it does not depend on the size
or shape of the individual nanoparticle (this information is "hidden" in the
scattering form factors).

Finally, the scattered intensity (Eq. (3.36)) can be written using the
structure factor S(q) as

I(q) =N
〈

|F (q)|2
〉

·

(
1 +

∣∣∣⟨F (q)⟩
∣∣∣2〈

|F (q)|2
〉 · 1

N

〈 N∑
i,j=1
i ̸=j

e−iq(rj−ri)
〉

︸ ︷︷ ︸
S(q)−1

)

=N
〈

|F (q)|2
〉

·

(
1 +

∣∣∣⟨F (q)⟩
∣∣∣2〈

|F (q)|2
〉 ·
[
S(q) − 1

])
.

(3.38)

Often the system consists of identical nanoparticles (with the same size,
shape and orientation), or at least can be approximated by such a model.
In this case, the fraction in Eq. (3.38) approximately equals to unity∣∣∣⟨F (q)⟩

∣∣∣2〈
|F (q)|2

〉 = β(q) ≈ 1, (3.39)

and the scattered intensity can be written as a simple product of three
factors:9

I(q) = N ·
〈

|F (q)|2
〉

· S(q). (3.40)

Thus, the scattered intensity is proportional to the number of particles N ,
to the average shape factor of the nanoparticles P (q) = ⟨|F (q)|2⟩, which
determines the scattering from individual nanoparticle, and to the structure
factor S(q), which is defined by the relative position of the nanoparicles.

When the polydispersity of the nanoparticles has to be taken into ac-
count, one can keep the beta function introduced in Eq. (3.39) (so-called
beta-decoupling approximation) and evaluate the scattered intensity as

I(q) = N ·
〈

|F (q)|2
〉

·
(
1 + β(q)

[
S(q) − 1

])
, (3.41)

where β(q) is defined in Eq. (3.39).

3.2.2 Pair distribution function (PDF)

In this section we will establish a connection between the structure factor
S(q) and the relative positions of the nanoparticles in real space. In order to
do this, let us first define a number density function n(r) which determines
a probability to find a nanoparticle at the position r:

n(r) =
N∑
j=1

δ(r − rj), (3.42)

where δ(r) is the Dirac delta-function, and the sum runs over all nanopar-
ticles in the system. According this definition, the amount of nanoparticles

9Remember, that the form factor F (q) is proportional to the electron density differ-
ence ∆ρ. Therefore, the larger is the difference between the electron densities of the
nanoparticles and the solution, the stronger is the scattered intensity.
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within a volume V is N =
∫
V
n(r)dr. Therefore, the physical meaning

of n(r) is the concentration of the nanoparticles (number of nanoparticles
per volume) at the position r. For a solution, the ensemble-averaged value
⟨n(r)⟩ = ⟨n⟩ is just an average concentration of nanoparticles, which does
not depend on the position.

We have already seen that in the scattering problem, only the relative
position of the nanoparticles, rj − ri, is important. Moreover, in real space
the translation of the system as a whole over some vector ∆R should not
change any physical processes in the system (translation invariance or trans-
lation symmetry). Therefore, only relative positions of the nanoparticles are
essential to describe the system. This leads us to the necessity to introduce
a density-density correlation function in real space:

G(r1, r2) = 1
N

⟨n(r1)n(r2)⟩ = 1
N

〈 N∑
i,j=1

δ(r1 − ri)δ(r2 − rj)
〉
. (3.43)

Here ⟨. . .⟩ denotes ensemble averaging, which means averaging over all mi-
croscopy realizations of a macroscopic system at the given thermodynamic
parameters (temperature, concentration, pressure etc.)

If the system is translationally invariant, as suggested above, the corre-
lation function G(r1, r2) only depends on the difference r = r2 − r1, so one
can explicitly integrate the correlation function over r1 (averaging over all
other microscopic parameters is kept):

G(r) =
∫
G(r1, r2)dr1 =

∫ 1
N

〈
n(r1)n(r1 + r)

〉
dr1

= 1
N

∫ 〈 N∑
i,j=1

δ(r1 − ri)︸ ︷︷ ︸
r1=ri

δ(r1 + r − rj)
〉
dr1

= 1
N

〈 N∑
i,j=1

δ(r − (rj − ri))
〉
.

(3.44)

The obtained density-density correlation function G(r) is proportional to

Fig. 3.8: (a) System of N particles. Each par-
ticle is a hard-core disc with radius R. The
separation between the particle j = 1 and
some other particle for evaluation of the corre-
lation functions is shown. The average amount
of particles within the volume dr (marked
with red rectangle) at the separation r from
any given particle is ⟨n⟩g(r)dr. (b) Calcu-
lated density-density correlation function G(r)
with self-correlations. (c) Calculated pair
distribution function g(r) with excluded self-
correlations is shown with blue solid line. The
peaks of the correlation functions (the most
prominent one around 2R) correspond to the
highest probability of finding the particles at
this separation in a dense system.

the probability to find a pair of particles separated by the vector r. This
function also includes self-correlations at r = 0, which are always present for
any system. To exclude these self-correlations, the pair distribution function
g(r) (PDF) is introduced and used even more often than the density-density
correlation function. The PDF is obtained by explicit separation of the terms
with i = j from the double sum in Eq. (3.44):

G(r) = 1
N

〈 N∑
i,j=1
i=j

δ(r − (rj − ri)) +
N∑

i,j=1
i ̸=j

δ(r − (rj − ri))

︸ ︷︷ ︸
N ·
∑N

j=2
δ(r−(rj−r1))

〉

= N

N
δ(r) + N

N

〈 N∑
j=2

δ(r − (rj − r1))
〉

= δ(r) + ⟨n⟩ · g(r).

(3.45)

Here we evaluated the terms with i ̸= j assuming that on average, the
separations between any given ith particle are the same, so we instead of
calculating the sum over i for every particle, we can calculate this sum just
once (for i = 1), and then multiply this result by N .
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From Eq. (3.45) one can obtain the mathematical definition of the PDF
g(r):

g(r) = 1
⟨n⟩

〈 N∑
j ̸=1

δ
(
r − (rj − r1)

)〉
. (3.46)

A clear physical meaning has the combination ⟨n⟩g(r)dr, which is an average
amount of particles that can be found in the vicinity dr at the separation
r from a given particle excluding self-correlations. The exclusion of self-
correlation means that g(r → 0) → 0. At the limit of large distances r, one
can expect that the probability to find the particle should not depend on the
distance and just be equal to the average concentration of the particles ⟨n⟩,
so g(r → ∞) → 1. The sketch of the PDF for a liquid is shown in Fig. 3.8.

Let us find now the relation between the structure factor defined in
Eq. (3.37) and the density-density correlation function given by Eq. (3.43).
In order to do this, let us rewrite the structure factor via integral over delta
functions and then change the order of the integration and summation:

Fig. 3.9: Calculation of the pair distribution
function g(r) (Eq. (3.46)) and the correspond-
ing structure factor S(q) (Eq. (3.51)) for a
model 1D system [37]. The system consists
of a hard-core discs with the average radius R
distributed normally with a standard deviation
σ. The values of the standard deviation are (a)
σ = 15%, (b) σ = 25% and (c) σ = 35%. The
PDF g(r) shown with a blue line exhibits peaks
at r = 2R, 4R, 6R, . . ., and the structure fac-
tor S(q) shown with a red line has peaks at
q = 2π/2R, 4π/2R, 6π/2R, . . .. The horizon-
tal dash line indicates the asymptotic behav-
ior g(r → ∞) = 1 and S(q → ∞) = 1. The
stronger polydiversity of the discs results in
less pronounced peaks of the PDF and the cor-
responding structure factor.

S(q) =
〈 1
N

N∑
i,j=1

e−iq(rj−ri)
〉

=
〈 1
N

N∑
i,j=1

∫
e−iq(r1−r2)δ(r1 − ri)δ(r2 − rj)dr1dr2︸ ︷︷ ︸

e−iq(rj −ri)

〉

=
∫
e−iq(r1−r2)

〈 1
N

N∑
i,j=1

δ(r1 − ri)δ(r2 − rj)
〉

︸ ︷︷ ︸
G(r1,r2)

dr1dr2

=
∫
e−iq(r1−r2)G(r1, r2)dr1dr2.

(3.47)

This means that the structure factor is just a Fourier transform of the
density-density correlation function, as it was claimed in section 3.2.1. For
a translationally invariant system (as described by Eq. (3.44)), one should
keep the Fourier transform over the difference r = r1 − r2 and perform the
integration over absolute position r1:

S(q) =
∫
e−iq

r︷ ︸︸ ︷
(r1 − r2)G(r1, r2)dr1dr2

=
∫
e−iqr G(r1, r2)dr1︸ ︷︷ ︸

G(r)

dr

=
∫
e−iqrG(r)dr.

(3.48)

Finally, we can write the relation between the structure factor and the num-
ber density, which is also broadly used [35]:

S(q) = 1
N

〈
n(q)n(−q)

〉
, where n(q) =

∫
e−iqrn(r)dr. (3.49)

Substituting Eq. (3.45) into Eq. (3.48), we can obtain the relation be-
tween the structure factor S(q) and the pair distribution function g(r):

S(q) =
∫
e−iqrG(r)dr =

∫
e−iqr(δ(r)+⟨n⟩·g(r)

)
dr = 1+⟨n⟩

∫
e−iqrg(r)dr.

(3.50)
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Although Eq. (3.50) is exact, it is not very useful for numeric computa-
tions. The reason for this is the asymptotic behavior of the PDF at large
distances, g(r) → 1, which makes the Fourier integral in Eq. (3.50) to con-
verge very slowly. One can avoid this problem by subtracting and adding
unity from the PDF, and therefore ensure the fast convergence of the inte-
gral:

S(q) =1 + ⟨n⟩
∫
e−iqr[g(r) − 1 + 1

]
dr

=1 + ⟨n⟩
∫
e−iqr[g(r) − 1

]
dr + ⟨n⟩

∫
e−iqrdr

=1 + ⟨n⟩
∫
e−iqr[g(r) − 1

]
dr + ⟨n⟩(2π)3δ(q)︸ ︷︷ ︸

often neglected

,

(3.51)

where we used
∫
e−iqrdr = (2π)3δ(q). The first term here (unity) comes

from the self-correlation of the particles; the second term (integral of the
PDF) arises from the correlation between different particles; and the third
term (delta function) comes from the uncorrelated particles. In practice, the
last term is sometimes omitted, because it is non-zero only for q = 0, which
is experimentally is challenging to measure because of the direct beam.

Omitting this term also leads to the symmetry between S(q) − 1 and
g(r) − 1, which are now just related via the Fourier transform. In order
to show this, one has to multiplying both sides of Eq. (3.51) by eiqr′ and
integrate it over q, which leads to

g(r) = 1 + 1
(2π)3⟨n⟩

∫
[S(q) − 1]eiqrdq. (3.52)

3.2.3 Radial distribution function (RDF)
𝑑𝑟

𝑟

Fig. 3.10: Definition of the radial distribution
function g(r). The combination ⟨n⟩ · g(r) ·
4πr2dr the average amount of particles within
the distance [r, r+dr] from any given particle.

For an isotropic system, the pair distribution function g(r) (PDF) and the
structure factor S(q) are independent on the direction of vectors r and q,
correspondingly. Therefore, one can introduce the radial distribution func-
tion g(r) (RDF), where the integration over directions of vector r is already
performed. In spherical coordinates:

S(q) =
∫
S(q) sin θdθdϕ,

g(r) =
∫
g(r) sin θdθdϕ.

(3.53)

The radial distribution function shows the probability of finding a particle
at a distance r from any given particle. In other words, ⟨n⟩ · g(r) · 4πr2dr is
the average amount of particles at the distances from r to r + dr separated
from any given particle (see Fig. 3.10)

Let us now establish the connection between S(q) and g(r) by explicit
calculating of the Fourier integral, for example, in Eq. (3.51), where the term
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proportional to δ(q) was omitted:

S(q) = 1 + ⟨n⟩
∫
e−iqr[g(r) − 1]dr

= 1 + ⟨n⟩
∫ +∞

0
r2dr

∫ π

0

−dt︷ ︸︸ ︷
sin θdθ

∫ 2π

0
dϕ︸ ︷︷ ︸

2π

e−iqr

t︷︸︸︷
cos θ[g(r) − 1]

= 1 + 2π⟨n⟩
∫ +∞

0
[g(r) − 1]r2dr

∫ 1

−1
e−iqr·tdt︸ ︷︷ ︸

2· sin(qr)
qr

= 1 + 4π⟨n⟩
q

∫ +∞

0
[g(r) − 1] sin(qr)rdr.

(3.54)

Performing the same procedure with Eq. (3.52) leads to

g(r) = 1 + 1
2π2⟨n⟩r

∫ +∞

0
[S(q) − 1] sin(qr)qdq. (3.55)

3.2.4 The structure factor S(q) at q → 0
(isothermal compressibility)

Let us discuss the asymptotic behavior of the structure factor S(q) at small
values of the scattering vector q [38]. We will start the definition of the
structure factor given in Eq. (3.49), and assume that the local concentration
of the particles n(r) at any point can be represented as a sum of the average
concentration n plus the local fluctiation ∆n(r). Therefore, the structure
factor can be written as

S(q) = 1
N

〈
n(q)n(−q)

〉
= 1
N

∫
e−iq(r1−r2)〈n(r1)n(r2)

〉
dr1dr2

= 1
N

∫
e−iq(r1−r2)〈(n+ ∆n(r1))(n+ ∆n(r2))

〉
dr1dr2

= 1
N

⟨n⟩2
∫
e−iq(r1−r2)dr1dr2︸ ︷︷ ︸

(2π)6δ(q)

+ 1
N

⟨n⟩
∫
e−iq(r1−r2)

(
⟨∆n(r1)⟩︸ ︷︷ ︸

0

+ ⟨∆n(r1)⟩︸ ︷︷ ︸
0

)
dr1dr2

+ 1
N

∫
e−iq(r1−r2)〈∆n(r1)∆n(r2)

〉
dr1dr2.

(3.56)

As it was already done before, we will neglect the first term proportional to
δ(q) (see section 3.2.2). Furthermore, the cross-terms equal to zero, because
the average value of the fluctuation is zero, ⟨∆n⟩ = 0. Therefore, leaving
only the last term in Eq. (3.56) and assuming that q(r1 − r2) → 0 we obtain

S(q → 0) = 1
N

∫ 〈
∆n(r1)∆n(r2)

〉
dr1dr2

= 1
N

〈∫
∆n(r1)dr1 ·

∫
∆n(r2)dr2

〉
=
〈
∆N2〉
N

,

(3.57)

where ∆N is the total fluctuation of the number of the particles in the
system.
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For a system with a fixed number of particles, the fluctuation of the
total number of particles is zero. However, if we consider only a part of
such a system (in a diffraction experiment, we can illuminate only some
part of the solution with nanoparticles), the amount of the nanoparticles
within the considered volume can be fluctuating. If we assume that the
average concentration n = N/V is constant, to a first approximation we can
write that the fluctuations of the number of particles is proportional to the
fluctuations of the volume:

∆N
N

= ∆V
V

,

and from that
⟨∆V 2⟩ = V 2

N2 · ⟨∆N2⟩ = ⟨∆N2⟩
n2 . (3.58)

Using the fact that the average square fluctuations of the volume are
proportional to the isothermal compressibility, ⟨∆V 2⟩ = kBTχTV (see Ap-
pendix F), we can write now for the structure factor

S(q → 0) = n2⟨∆V 2⟩
N

= n2

N
· kBTχTV = n · kBT · χT . (3.59)

Therefore, the structure factor and hence the scattered intensity in the limit
of q → 0 is determined by a thermodynamic parameter, namely, isothermal
compressibility χT . This explains the effect of critical opalescence, when
the close to the critical point of the liquid χT increases leading to stronger
scattering at small q (which is small even for large angles for visible light).

It is easy to see, that for non-interacting particles (an ideal gas of parti-
cles, for which PV = NkBT and χT = 1/P ), the structure factor at small
values of q approaches unity, S(q → 0) → 1. Including interaction, for
example via the Van der Waals equation of state, leads to the fact that
S(q → 0) < 1. This happens because the interactions between the particles
modify their pair distribution function g(r), which according to Eq. (3.51)
leads to the changes in the structure factor. The connection between the
inter-particle interaction and the correlation function will be considered in
more details in the next section.

3.2.5 Virial coefficients and Mayer f-function

In an ideal gas, the particles do not interact with each other. It means,
that the probability to find another particle at any separation r from a
given one is constant and equal to the average density of the particles in the
system ⟨n⟩. In other words, g(r) ≡ 1 for an ideal gas. From Eq. (3.51), it
immediately follows, that the structure factor of an ideal gas is S(q) ≡ 1
everywhere outside of the point q = 0. If one could slowly "turn on" the
interactions between the particles, one could see how the PDF g(r) would
start to deviate from unity, and accordingly, the structure factor S(q) would
also deviate from unity. The goal of this section is to show, how weak
interactions between the particles result in deviations from the ideal gas
model, and how these interactions can be experimentally measured in a
scattering experiment via considering S(q → 0).

Let us start with a diluted gas (or solution) of weakly interacting parti-
cles. The total energy of such a system can be written as a sum of kinetic
energy of all particles plus the potential energy of their interactions:

E = Ekin + U =
N∑
j=1

p2
j

2m + U(r1, ..., rN ), (3.60)
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where rj and pj is the position and momentum of jth particle. Eventu-
ally, we want to calculate the Helmholtz free energy F and pressure P of
this system [39]. To do this, let us first evaluate the partition function Z
(Zustandssumme):

Z = 1
(2πℏ)3NN !

∫
...

∫
dp1...dpNdr1...drN exp

[
− E

kBT

]
. (3.61)

Here the integration is performed over all coordinates and momenta of the
particles in the system.

Using the fact, that the total energy of the system is a sum of kinetic
and potential energies, we can represent the partition function as a product
of two factors: the first includes integration over momenta and the second -
over coordinates:

Z = 1
(2πℏ)3NN ! · V N ·

∫
dp1...dpN

N∏
j=1

exp
[

−
p2
j

2mkBT

]

· 1
V N

·
∫
dr1...drN exp

[
− U(r1, ...rN )

kBT

]
.

(3.62)

In the case of ideal gas (U = 0), the second multiplier equals to unity. This
means, that the first multiplier corresponds to the case of the ideal gas. This
term can be easily evaluated, taking into account that it is just a product
of 3N Gaussian integrals10. Therefore, the second multiplier describes the
deviation of the gas from being ideal, which is not a huge surprise, since
the potential energy of the interaction between the particles only enters the
second factor.

Finally, we can write the partition function of a non-ideal gas as a product

Z = Zid ·Q, (3.63)

where the partition function of an ideal gas Zid equals to

Zid = V N

N !

(
mkBT

2πℏ2

) 3N
2

, (3.64)

and the configuration integral Q is

Q = 1
V N

·
∫
dr1...drN

[
e

− U(r1,...rN )
kB T − 1

]
+ 1. (3.65)

Here we subtracted and added unity from the exponential under the inte-
gral11. This is done to explicitly indicate that the value of the configuration
integral Q is unity for an ideal gas (U = 0) and only slightly deviates from
unity if the interactions between the particles are weak (U ≈ 0).

Let us now estimate, how a weak interaction potential between the par-
ticles would affect the value of the configuration integral. First, let us as-
sume that only pair interactions exist in the system, i.e. U(r1, ...rN ) =

10Note that ∫ +∞

−∞
exp
[ −p2

2mkBT

]
dp =

√
π · 2mkBT

11Note that
1
V N

·
∫

dr1...drN =
V N

V N
= 1
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∑N
i>j u(ri, rj), where u(ri, rj) describes the pair interaction between the ith

and jth particles. Even under this assumption, the computation of the in-
tegral (3.65) is an extremely complex problem which includes consideration
of non-direct interactions between the particles [39, 40, 41] (also see section
3.2.7 for a short summary of the Ornstein-Zernike theory).

We will make another assumption and consider a diluted system, in which
the probability of three particles to be close enough to interact with each
other (pairwise) is negligible. To introduce this assumption mathematically,
it is convenient to introduce so-called Mayer f-function as

fij = e
−

u(ri,rj )
kB T − 1. (3.66)

The Mayer f-function fij is non-zero only if the ith and jth particles are close
enough, so the interaction potential between them is zero. If the particles
are far apart from each other, the interaction potential is zero u(ri, rj) = 0,
and consequently the Mayer f-function is also zero fij = 0.

Now we can split the total potential energy of the system into pair in-
teractions of N(N − 1)/2 ≈ N2/2 pairs of particles and write

exp
[

− U(r1, ..., rN )
kBT

]
= exp

[
− 1
kBT

N∑
i>j

u(ri, rj)
]

=
N∏
i>j

exp
[

− u(ri, rj)
kBT

]
=

N∏
i>j

(1 + fij).

(3.67)

In this product, it is sufficient to take into account only linear terms. Indeed,
for example, the quadratic term f12f13 will be non-zero only if the particle
"1" is surrounded by two other particles "2" and "3", so that f12 ̸= 0 and
f13 ̸= 0. But we have already assumed that the system is so diluted, that
three particles can not be simultaneously so close to each other. Therefore,
for a diluted system we can assume

exp
[

− U(r1, ..., rN )
kBT

]
=

N∏
i>j

(1 + fij) = 1 +
N∑
i>j

fij . (3.68)

The number of terms in the sum (3.68) equals to the number of pairs in the
system, N2/2. Since we are going to integrate over all possible positions
of the particles in Eq. (3.65), the integral over each pair will be the same.
Therefore, we can evaluate this integral for any selected two particles (for
example, "1" and "2") and then multiply the result by total amount of pairs
N2/2:∫

dr1...drN
[
e

− U(r1,...rN )
kB T − 1

]
≈
∫
dr1...drN

[
1 + N2

2 f12 − 1
]

=N2

2 · V N−2
∫
f12dr1dr2.

(3.69)

If we now assume that the interaction potential u(r1, r2) depends only on
separation between two particles r = r1 − r2, we can also evaluate one more
integral in Eq. (3.69) which will give the volume of the system V . Finally,
we can write∫
dr1...drN

[
e

− U(r1,...rN )
kB T −1

]
≈ N2

2 ·V N−1
∫
f(r)dr = −N2 ·V N−1 ·B2(T ),

(3.70)
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where we introduced so-called second virial coefficient B2(T ) (note the sign
convention)

B2(T ) = −1
2

∫
f(r)dr = 1

2

∫ [
1 − e

− u(r)
kB T

]
dr. (3.71)

This temperature-dependent coefficient is non-zero when the direct pair in-
teraction between two particles u(r) is non-zero.

The non-zero value of the second virial coefficient B2(T ) is our first ap-
proximation to which the interaction between the particles can be consid-
ered. It is instructive to evaluate the second virial coefficient B2(T ) for some
simple systems, which will be done in the section 3.2.6.

Now we can finally return back to the configuration integral given by
Eq. (3.65) and write

Q = 1
V N

· −N2V N−1B2(T ) + 1 = 1 − N2

V
B2(T ). (3.72)

Using the Taylor expansion ln(1 − x) ≈ −x for x ≪ 1, we can evaluate the
Helmholtz energy of the system of weakly interacting particles:

F = −kBT lnZ = −kBT lnZid︸ ︷︷ ︸
Fid

−kBT lnQ = Fid + N2

V
kBTB2(T ), (3.73)

where Fid is the Helmholtz energy of the ideal gas. The pressure can be now
easily evaluated as

P = −
(∂F
∂V

)
T

= −
(∂Fid

∂V

)
T

−NkBT · −N
V 2 B2(T )

=NkBT

V
+ nkBT · N

V
B2(T )

=NkBT

V

(
1 + nB2(T )

)
,

(3.74)

where we used the pressure of the ideal gas Pid = −
(
∂Fid
∂V

)
T

= NkBT
V .

Here we see that the correction term to pressure that we have just eval-
uated is proportional to the density n. The same applies to the correction
to the free energy in Eq. (3.73). In principle, it is possible to evaluate the
next correction terms and write the pressure of a non-ideal gas as a power
series of density n:

P = NkBT

V

+∞∑
m=1

Bm(T )nm−1. (3.75)

This series is called the virial expansion and the coefficients Bm - the virial
coefficients. The first term of this series corresponds to the ideal gas (no
interactions), so B1 = 1. The second term with the second virial coefficient
B2(T ) defined in Eq. (3.71) we just have evaluated. In practice, the third
term is sometimes also included.

Knowing the virial coefficients is important, because they describe the
deviation of a system from ideal gas and they depend on pair interactions
between the particles. The virial coefficients, and particularly B2(T ) can
be experimentally measured in a scattering experiment by considering the
scattering form factor S(q → 0).

In section 3.2.4, we have shown that S(q → 0) = n · kBT · χT . Let us
now explicitly evaluate the isothermal compressibility χT using the virial
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expansion (3.75). First,

(∂P
∂V

)
T

= kBT

+∞∑
m=1

Bm(T ) ∂

∂V

(Nm

V m

)
= −kBT

V

+∞∑
m=1

Bm(T )mNm

V m
. (3.76)

Then, using the definition of the isothermal compressibility,

χT = − 1
V

(∂V
∂P

)
T

= − 1
V

· 1(
∂P
∂V

)
T

= 1
kBT (B1n+ 2B2n2 + 3B3n3 + ...)

≈ 1
nkBT

· 1
1 + 2nB2(T ) ,

(3.77)

where we kept only the second virial coefficient. This immediately gives us
the asymptotic behavior of the structure factor (see Eq. (3.59))

S(q → 0) = n · kBT · χT = 1
1 + 2nB2(T ) . (3.78)

In practice, one would measure the scattered intensity I(q → 0) ∝ n/(1 +
2nB2(T )) for different concentrations n of particles in the solution. By fitting
this dependence, one can obtain the value of the second virial coefficient
B2(T ).

3.2.6 Model inter-particle interaction potential u(r)

Partition functions and pair distribution function provide us two alternative
approaches for the statistical description of the systems [39]. While the par-
tition function formalism is founded on a solid theoretical basis and therefore
is used to describe simple systems, this approach becomes too complicated
in the case of a real dense system of strongly interacting particles. Contrary
to that, the pair distribution function allow one to consider dense systems
with reasonable accuracy. For example, the total average potential energy
of N nanoparticles interacting with each other via potential u(r) will be

⟨U⟩ = 1
2

〈 N∑
i,j=1
i ̸=j

u(ri − rj)
〉

= 1
2

∫
u(ri − rj)

〈 N∑
i,j=1
i ̸=j

δ(r1 − ri)δ(r2 − rj)
〉
dr1

︸ ︷︷ ︸
N⟨n⟩g(r)

dr2

= N⟨n⟩
2

∫
u(r)g(r)dr,

(3.79)

where we used the definition of the PDF g(r) from Eq. (3.45).
Moreover, pair distribution functions can be measured experimentally

by elastic scattering as we have seen in this chapter. Finally, the formalism
of correlation functions (such as PDF) works even for the non-equilibrium
systems, for which the partition function Z can not be defined.

In order to fully connect the microscopic interactions between the in-
dividual nanoparticles and the resulting pair distribution function, let us
first consider the case of a dilute system, so only the pair interactions need
to be taken into account. In this case, the distance between particles is
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distributed according to the Boltzmann statistics, which would lead to the
following approximation for the PDF:

g(r) ≈ exp
[

− u(r)
kBT

]
. (3.80)

One can use different models for the potential u(r), and below we will list a
few most common ones (Fig. 3.11):

• Hard spheres of diameter D

u(r) =
{

∞ , for r ≤ D,

0 , for r > D.
(3.81)

• Sticky hard spheres

u(r) =


∞ , for r ≤ D,

−U0 , for D < r ≤ D + ∆,
0 , for r > D.

(3.82)

Fig. 3.11: Potentials u(r) of interaction
between two particles for different models
given by Eqs. (3.81-3.85): (a) hard spheres,
(b) sticky hard spheres. (c) hard spheres
with weak attraction, (d) hard spheres with
screened Coulomb interaction, (e) Lennard-
Jones potential.

Fig. 3.12: The model pair distribution function
g(r) calculated with Eq. (3.80) for the poten-
tials given by Eqs. (3.81-3.85).

• Hard spheres with weak attraction

u(r) =
{

∞ , for r ≤ D,

−U0

(
D
r

)m
, for r > D.

(3.83)

• Hard spheres with screened Coulomb interaction

u(r) =


∞ , for r ≤ D,

Z2e2

ϵ

(
1+ κDD

2

)2 · exp[−κD(r−D)]
r , for r > D. (3.84)

• Lennard-Jones potential

u(r) = 4U0

[(D
r

)12
−
(D
r

)6
]

(3.85)

The corresponding PDFs g(r) calculated using Eq. (3.80) are shown in
Fig. 3.12.

Finally, let us calculate the second virial coefficient B2 for some interac-
tion potentials using the definitions in Eqs. (3.71-3.66). Thus, for the hard
spheres, the Mayer f-function is

f(r) = exp
[

− u(r)
kBT

]
− 1 =

{
−1 , for r ≤ D,

0 , for r > D.
(3.86)

Therefore, the second virial coefficient BHS2 is

BHS2 = −1
2

∫
f(r)dr = 4π

2

∫ D

0
r2dr = 4 · 4π

3

(D
2

)3
, (3.87)

meaning that the second virial coefficient is simply four times the volume
of the sphere. Its positive value is a characteristic feature of any repulsive
potential. In the particular case of hard spheres, the second virial coefficient
does not depend on temperature.
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One can also analytically calculate B2(T ) for the Lennard-Jones poten-
tial. Omitting the evaluation, we will just write the result:

BLJ2 (T ) = 2π
3 D3

[(
4U0

kBT

) 1
4

Γ
(

3
4

)
−

(
4U0

kBT

) 1
2

Γ
(

1
2

)]
, (3.88)

where Γ(z) =
∫∞

0 tz−1e−tdt is Euler’s gamma-function. In this case, the
second virial coefficient B2(T ) depends on temperature (Fig. 3.13). More-
over, it is negative for low temperatures and positive for high temperatures.
This means that at low temperatures, the attraction between the particles

0

𝐵!
"#

𝑇𝑇$%&'(

Fig. 3.13: Sketch of the temperature depen-
dence of the second virial coefficient BLJ

2 (T )
for the Lennard-Jonnes potential given by
Eq. (3.88).

is dominating. At high temperatures, the kinetic energy of particles is so
high that the weak attraction potential at large distances does not play a
role, and the particles behave similar to the hard spheres. The temperature,
at which the second virial coefficient B2(T ) changes its sign is called the
Boyle temperature.

3.2.7 Ornstein-Zernike equation

1 2

3
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Fig. 3.14: Illustration to the Ornstein-Zernike
equation (3.90). The correlation between two
particles are determined by direct interaction
between these two particles and the indirect
interactions via a third particle.

In a dense system, each particle is influenced by many neighbors. Therefore,
the correlation function is determined by the potential of mean force w(r),
which includes indirect interactions between several particles:

g(r) = exp
[

− w(r)
kBT

]
. (3.89)

But the mean force potential w(r), in turn, depends on distribution of par-
ticles, i.e. the pair distribution function g(r). It is possible to construct
an integral equation for the pair distribution function, known as Ornstein-
Zernike equation [40]. To write down this equation, let us introduce two new
correlation functions:

• h(r) = g(r)−1 - total correlation function, which is determined by the
potential of mean force, and therefore describes the real correlation in
the system;

• c(r) - direct correlation function, which is determined exclusively by
pair interactions u(r) between two particles.

Then, the Ornstein-Zernike equation can be written (without derivation)

h(r12) = c(r12) + ⟨n⟩
∫
c(r13)h(r23)dr3. (3.90)

Here rij = ri−rj denotes the relative position of two particles. The Ornstein-
Zernike equation states that the correlation between two particles are de-
termined by the direct correlations between these two particles plus indirect
correlations via a third particle (Fig. 3.14). In the case of a dilute system
⟨n⟩ → 0, h(r12) = c(r12), i.e. the correlations between particles are deter-
mined only by direct pair interactions between them.

If the direct correlation function c(r) is known, the Ornstein-Zernike
equation can be solved recursively:

1 2

1 2

1 2

3

3 4

+

+

…

Fig. 3.15: Graphical illustration for the recur-
sive terms in Eq. (3.91).

h(r12) = c(r12)︸ ︷︷ ︸
direct interaction

+ ⟨n⟩
∫
dr3c(r13)c(r23)︸ ︷︷ ︸

inderect interaction via an intermediate particle

+ ⟨n⟩2
∫ ∫

c(r13)dr3

∫
dr4c(r24)c(r34)︸ ︷︷ ︸

inderect interaction via two intermediate particles

+ . . . ,

(3.91)
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as illustrated by Fig. 3.15.
Another approach to the Ornstein-Zernike equation is to consider it in

reciprocal space. To do this, let us rewrite Eq. (3.90):

h(r12) = c(r12) + ⟨n⟩
∫
c(r13)h(r23)d (r3 − r2)︸ ︷︷ ︸

−r23

= c(r12) + ⟨n⟩
∫
c(r12 + r23)h(r23)d(−r23).

Now, denoting r12 = r, −r23 = r′, and using h(−r′) = h(r′), we can write
the Ornstein-Zernike equation as a convolution:

h(r) = c(r) + ⟨n⟩
∫
c(r − r′)h(r′)dr′. (3.92)

Using the convolution theorem, the Fourier transforms h(q) and c(q)of the
correlation functions h(r) and c(r) are related to each other in a much less
complicated way:

h(q) = c(q) + ⟨n⟩ · c(q) · h(q). (3.93)

Since S(q) = 1+⟨n⟩h(q) (Eq. (3.51)), the structure factor S(q) is determined
by the Fourier transform of the direct correlation function:

S(q) = 1
1 − ⟨n⟩ · c(q) . (3.94)

This allows us to estimate the shape of the structure factor peak. Indeed,
if the system has some periodicity (or characteristic distance), the Fourier
transform of a direct correlation function c(q) will have a peak at some value
q0. In the vicinity of this maximum, we can approximate c(q) with the Taylor
series, c(q) ≈ c(q0)+c′(q0) · 1

2 (q−q0)2. This will lead to the Lorentzian shape
of the structure factor:

S(q ∼ q0) ∝ 1
ξ−2 + (q − q0)2 , (3.95)

where ξ is the correlation length. This can be illustrated by Fig. 3.9, where
the peak of the structure factor has Lorentzian shape, and its width is in-
versely proportional to the correlation length in the system.

3.2.8 Closure relations

The Ornstein-Zernike equation (3.90) is exact, but it can not be solved
because it contains two unknown functions, the direct correlation function
c(r) and the total correlation function h(r) = g(r)−1. To be able to find the
correlation functions, one needs to have another equation, which would be
a reasonable assumption about c(r) or a connection between h(r) and c(r).
These additional relations are called closure relations, and there are many
different forms of closure relations. Here we will give just two examples:

• Mean-spherical approximation (MSA)
At low densities of the particles, we can assume that c(r) ≈ h(r) =
g(r) − 1 = exp[−u(r)/kBT ] − 1. For r → ∞, the pair interactions
between the particles go to zero, u(r) → 0, so we can use Taylor
expansion

c(r) ≈ − 1
kBT

· u(r). (3.96)

In the MSA approximation, this behavior extends to all distances.
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• Percus-Yevick approximation (PY)
Let us rewrite Eq. (3.92) using the PDF g(r):

g(r) − 1 = c(r) + ⟨n⟩
∫
c(r′)

[
g(|r − r′|) − 1

]
dr′,

c(r) = g(r) −

{
1 + ⟨n⟩

∫
c(r′)

[
g(|r − r′|) − 1

]
dr′

}
︸ ︷︷ ︸

gind(r)

= g(r) − gind(r).

Here we introduced the indirect part of the pair correlation function.
Since g(r) = exp

[
− w(r)/kBT

]
(Eq. (3.89)), we can assume that

the indirect part of the correlation function has the same form, the
potential of mean force w(r) should be replaced by the difference w(r)−
u(r): gind(r) ≈ exp

[
− (w(r)−u(r))/kBT

]
. Using this approximation,

the direct correlation can be calculated as

c(r) =g(r) − gind(r) ≈ exp
[

− w(r)
kBT

]
− exp

[
− w(r) − u(r)

kBT

]
= exp

[
− w(r)
kBT

]
·
(

1 − exp
[u(r)
kBT

])
=g(r) ·

(
1 − exp

[u(r)
kBT

])
.

(3.97)

This is the PY closure equation, which works quite well for the short-
ranged potentials.
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4 Inelastic neutron scattering
In this section, we will continue discussing the scattering from an ensemble
of atoms or nanoparticles (see section 3.2.1). Now we will consider inelastic
scattering, which will naturally lead us to the generalized time-dependent
van Hove correlation function (time-independent correlation functions rele-
vant for elastic scattering were considered in sections ?? and 3.2.3).

Inelastic scattering means that the particle (X-ray photon or neutron)
exchanges energy with the system which scatters the wave. This means, that
the systems changes its state and the obtain or loose some energy ∆E, which
is transferred to the X-ray photon or neutron. In condensed matter, this en-
ergy ∆E is usually related to a certain excitation, such as phonon or magnon,
and its magnitude is rarely exceeding a few eVs (a characteristic energy at
room temperature is actually much smaller, kBT ≈ 0.025 eV). Such a small
energy change can be neglected in many cases when we consider X-ray scat-
tering of the photons with the initial energy E ∼ 10 keV (∆E/E ∼ 10−6). It
is quite difficult to measure such a small change in the X-ray photon energy,
so the inelastic X-ray scattering is a challenging technique, which requires
extremely good energy resolution. In contrast, the energy of a neutron with
a wavelength λ ∼ 1 Å is of the order of 10−1 eV (Eq. 1.2), which means that
∆E/E ∼ 0.3. This is already a significant change of the neutron’s energy
which can be relatively easy detected. Therefore, inelastic scattering is much
more common effect when neutron scattering is considered.

For the sake of simplicity, in the following text, we will consider inelastic
scattering of neutrons on a systems consisting of N nuclei. The obtained
results can be transferred to inelastic neutron scattering on other systems
(molecules, nanoparticles etc.) or to the inelastic X-ray scattering.

4.1 Nuclear neutron scattering by an ensemble of atoms

Let us consider a system of N atoms which scatter the incident plane
monochromatic wave of neutrons. The positions of the atoms are given
by radius vectors R1,R2, . . .RN , which we will simply denote as R. The
positions of the atoms are not fixed, and the probability to find the atoms
at certain positions R is determined by the wave function of the system
χ(R1,R2, . . .RN ) = χ(R). Since we only consider scattering by nuclei with
a very short-range nuclear potential (see section 1.2.1), the interaction be-
tween the neutrons and the atoms can be written as

V̂ (R, r) = 2πℏ2

mn

N∑
n=1

bjδ(Rn − r), (4.1)

where mn is the neutron mass, bn is the neutron scattering length (see
Eq. (1.42 and the text before it), and r is the position of the neutron.
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Fig. 4.1: Inelastic neutron scattering by an en-
semble of N atoms.

The wave function of the incident neutrons can be written as a plane
monochromatic wave with a wave vector kin:

ψin(r) = 1√
V
eikinr. (4.2)

Here we used so-called "box normalization" and consider only some space
with the volume V → ∞ around the system of atoms. This will make
calculations easier, and the result will be independent of V .

The neutrons will be scattered in all directions (see Eq. (1.40)), but we
will only consider those with a wave vector kout, i.e. described by the wave
function:

ψout(r) = 1√
V
eikoutr. (4.3)
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In other words, we consider the scattering problem in the first Born approxi-
mation (see sections 2.7.1 and 2.7.2). Note, that here the energy of a neutron
is not conserved, so |kin| ̸= |kout|. The scheme of the scattering problem is
shown in Fig. 4.1.

4.1.1 Double-differential scattering cross-section

Similar to Eq. (1.6), we will define double-differential cross-section( ∂2σ

∂Ω∂E′

)
= Isc

Φ0 · dΩdE′ , (4.4)

where Isc is a flux of the photons (photons per second) scattered into a solid
angle dΩ with the energy within the range from E′ to E′ + dE and Φ0 is
the density of the incoming flux (photons per second per square meter). In
a real experiment, one would directly measure Isc, and the defined double-
differential cross-section is just a normalized value of it.
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Fig. 4.2: Definition of the double-differential
scattering cross-section

Using Eq. (4.2), we can immediately calculate the incoming flux as a
product of neutron velocity and their density:

Φ0 = ℏkin
mn

· |ψin|2 = ℏkin
mnV

. (4.5)

Another step, which we will need in the next section, is to calculate the
number of neutron states dNk, for which the wave vector lies in a solid angle
dΩ and has an absolute value between kout and kout + dk (corresponding to
the energy range from E′ to E′ +dE). It is known [42], that a single neutron
state occupies the volume Vk = (2π)3

V in reciprocal space. Therefore, the
number of neutron states will be just the volume of the cylinder shown in
Fig. 4.2, divided by Vk:

dNk = ρk · dk = k2
outdΩdk
Vk

= V

(2π)3 · k2
outdΩdk, (4.6)

where ρk is the density of states in reciprocal space. The range dk can be
found from the neutron dispersion E = ℏ2k2

2mn
as

dk = mn

ℏ2kout
dE′. (4.7)

Combining Eqs. (4.6) and (4.7) gives

dNk = V

(2π)3 · mnkout
ℏ2 · dΩdE′. (4.8)

4.1.2 Fermi’s golden rule

Fermi’s golden rule allows one to calculate the transition probability per unit
of time for a system to change its state from |i⟩ to |f⟩ as a result of some
small perturbation V̂ :

Γi→f = 2π
ℏ
∣∣ ⟨f | V̂ |i⟩

∣∣2ρ(Ef ), (4.9)

where ρ(Ef ) is the density of final states.
In our case, we can use Fermi’s golden rule to evaluate Isc in Eq. (4.4).

Let us assume that the neutron interacts with the system via interaction
potential V̂ (Eq. 4.1), so it changes its wave vector from kin to kout, and
the system changes its state from |ν⟩ to |ν′⟩. In this case,

Isc = 2π
ℏ
∣∣Mνν′

∣∣2dNk, (4.10)
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where the corresponding matrix element is

Mνν′ =
∫
χ∗
ν′(R)ψ∗

out(r) · V̂ (R, r) · ψin(r)χν(R)dRdr. (4.11)

Using Eqs. (4.1-4.3), this matrix element can be further simplified

Mνν′ = 1
V

2πℏ2

mn

N∑
n=1

bn

∫
χ∗
ν′(R)e−ikoutr · δ(Rj − r) · eikinrχν(R)dRdr

= 1
V

2πℏ2

mn

N∑
n=1

bn

∫
χ∗
ν′(R) · e−iqRn · χν(R)dR.

(4.12)
Finally, combining Eqs. (4.4), (4.5), (4.8), (4.10), and (4.12), we obtain

the following double-differential scattering cross-section

( ∂2σ

∂Ω∂E′

)
νν′

= kout
kin

·

∣∣∣∣∣
N∑
n=1

bn

∫
χ∗
ν′(R) · e−iqRn · χν(R)dR

∣∣∣∣∣
2

= kout
kin

·

∣∣∣∣∣
N∑
n=1

bn ⟨ν′| e−iqRn |ν⟩

∣∣∣∣∣
2

.

(4.13)

Here the prefactor kout/kin is a result of the normalization of neutron flux.
The matrix element ⟨ν′| e−iqRn |ν⟩ corresponds to the wave function of the
neutrons scattered by the nth nucleus. Therefore the whole equation de-
scribes the interference of neutrons scattered by different nuclei.

So far we have calculated the probability of a transition from |ν⟩ to |ν′⟩,
but we have not discussed if this transition is possible at all. In the case of
neutron scattering, the total energy of the system and the neutron should
be conserved

Eν + E = Eν′ + E′, (4.14)
where Eν is the energy of the system in the initial state |ν⟩, Eν′ is the en-
ergy of the system in the final state |ν′⟩, E = ℏ2k2

in/2mn is the energy of the
incident neutron and E′ = ℏ2k2

out/2mn is the energy of the scattered neu-
tron. If the condition given by Eq. (4.14) is not fulfilled, the corresponding
double-differential cross-section should be zero.

Mathematically, this can be written by multiplying the probability of
the transition by the Dirac delta function, for example, already in Fermi’s
golden rule (4.9). We will do this now, so the final expression for the double-
differential scattering cross-section is

( ∂2σ

∂Ω∂E′

)
νν′

= kout
kin

·

∣∣∣∣∣
N∑
n=1

bn ⟨ν′| e−iqRn |ν⟩

∣∣∣∣∣
2

δ(Eν −Eν′ +E−E′). (4.15)

In this way, we can formally consider any possible transitions of the system
between any possible states |ν⟩ and |ν′⟩ while the wave vector of neutron is
changed from kin to kout. But if the total energy in such a transition is not
conserved, the corresponding double-differential cross section (4.15) will be
zero, because of the delta function.

Finally, denoting ℏω = E′ − E as the change in the neutron energy, we
can use the integral representation of delta function (see Appendix A) and
write12

δ(Eν − Eν′ + E − E′︸ ︷︷ ︸
−ℏω

) = 1
2πℏ

∫ +∞

−∞
e− i

ℏ (Eν′ −Eν )teiωtdt. (4.16)

12Here we used the property δ(αx) = |α|−1δ(x)
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This trick, which might look artificial here, will play an important role in
the following text, where we will establish a connection between the neutron
energy gain ℏω and the evolution of the system in time.

Substituting Eq. (4.16) into Eq. (4.15) and writing the modulus squared
as a double sum, we obtain13

( ∂2σ

∂Ω∂E′

)
νν′

= kout
kin

N∑
m,n=1

b∗
mbn ⟨ν| eiqRm |ν′⟩ ⟨ν′| e−iqRn |ν⟩ ×

× 1
2πℏ

∫ +∞

−∞
e− i

ℏ (Eν′ −Eν )teiωtdt.

(4.17)

Changing the order of summation and integration

( ∂2σ

∂Ω∂E′

)
νν′

= kout
kin

1
2πℏ

∫ +∞

−∞

N∑
m,n=1

b∗
mbn ⟨ν| eiqRm |ν′⟩ ×

× e
i
ℏEν′ t ⟨ν′| e−iqRn |ν⟩ e− i

ℏEνt︸ ︷︷ ︸
⟨ν′|e

i
ℏ Ĥt

e−iqRne
− i

ℏ Ĥt|ν⟩

·eiωtdt,
(4.18)

where we used the result

e
i
ℏEν′ t ⟨ν′| e−iqRn |ν⟩ e− i

ℏEνt = ⟨ν′| e i
ℏ Ĥte−iqRne− i

ℏ Ĥt |ν⟩ (4.19)

from Appendix G.
Now it can be seen, that in Eq. (4.19) we have obtained Heisenberg

representation of the operator e−iq Rn (see details in Appendix H):

e−iqR̂n(t) = e
i
ℏ Ĥte−iqRne− i

ℏ Ĥt. (4.20)

Analogously, the operator eiqRm in the first matrix element in Eq. ( 4.18)
can be seen as a corresponding Heisenberg operator at time t = 0:

eiqR̂m(0) = eiqRm . (4.21)

Here we remind that in Heisenberg picture, the operator R̂n(t) returns the
position Rn of the nth nucleus at the moment t.

Rewriting Eq. (4.18) with time-dependent Heisenberg operators, we ob-
tain ( ∂2σ

∂Ω∂E′

)
νν′

= kout
kin

1
2πℏ

∫ +∞

−∞

N∑
m,n=1

b∗
mbn ⟨ν| eiqR̂m(0) |ν′⟩ ×

× ⟨ν′| e−iqR̂n(t) |ν⟩ · eiωtdt.

(4.22)

4.1.3 Ensemble averaging

In a neutron scattering experiment, the parameters of the incident beam
(energy and wave vector) are known and the parameters of the scattered
beam are directly measured. However, usually nothing is known about the
scattering system, i.e. the initial state |ν⟩ and the final state |ν′⟩ are gen-
erally unknown. Therefore, to obtain the experimentally measured double-
differential scattering cross section,we have to average Eq. (4.22) over all
possible initial and final states. This is done in two steps:

13Here we used the following property of the conjugated matrix elements

⟨ν′| e−iqRm |ν⟩∗ = ⟨ν| eiqRm |ν′⟩
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• averaging over all possible initial states |ν⟩. Here we will assume that
the probability of the system to be in the initial state |ν⟩ with energy
Eν is given by ρν . In the case of Boltzmann statistics, this probability
if given by

ρν = 1
Z
e

− Eν
kB T = e

− Eν
kB T∑

ν e
− Eν

kB T

, (4.23)

where Z is partition function.

• summing over all possible final states |ν′⟩. Because of the delta func-
tion introduced in Eq. (4.15), the contribution of the final states, for
which the energy conservation is violated, will be zero.

Thus, the experimentally measured double-differential scattering cross-
section is ( ∂2σ

∂Ω∂E′

)
=
∑
ν

ρν
∑
ν′

( ∂2σ

∂Ω∂E′

)
νν′
. (4.24)

When Eq. (4.22) is inserted into Eq. (4.24), it is possible to perform
summation over all possible final states ν′ using the closure relation (see
footnote 3 on page 8):∑

ν′

⟨ν| eiqR̂m(0) |ν′⟩ ⟨ν′| e−iqR̂n(t) |ν⟩ = ⟨ν| eiqR̂m(0) · e−iqR̂n(t) |ν⟩ . (4.25)

Note that operators R̂m(0) and R̂n(t) do not commute, so one cannot change
the order of exponentials in Eq. (4.25).

Finally, the double-differential scattering cross-section is

( ∂2σ

∂Ω∂E′

)
= kout

kin

1
2πℏ

∑
ν

ρν

N∑
m,n=1

b∗
j′bj

∫ +∞

−∞
⟨ν| eiqR̂m(0) · e−iqR̂n(t) |ν⟩ · eiωtdt.

(4.26)
This expression is quite complex, and the proper calculation of the ma-
trix elements is possible for only limited amount of systems (e.g. ideal gas
of non-interacting free atoms, or atoms in a crystal which oscillate due to
phonons). In many practical applications, especially, in soft matter systems,
it is impossible to evaluate the double-differential scattering cross-section
using exact formula 4.26. However, one can use a classical approximation,
where the operators R̂m(0) and R̂n(t) are treated simply as numbers, i.e.
it is assumed that they commute. In the following we will use the classical
approximation

( ∂2σ

∂Ω∂E′

)cl
= kout

kin

1
2πℏ

∑
ν

ρν

N∑
m,n=1

b∗
mbn

∫ +∞

−∞
⟨ν| e−iq

[
Rn(t)−Rm(0)

]
|ν⟩ · eiωtdt,

(4.27)
and for the sake of simplicity we will omit the superscript "cl" in the following
text.

The last simplification can be made, if we use the definition of the en-
semble average of a value A with a corresponding operator Â:

⟨A⟩ =
∑
ν

ρν ⟨ν| Â |ν⟩ . (4.28)

Here we first calculate the average value of the operator Â for the state
of the system |ν⟩ and then average over all possible states |ν⟩. Thus, the
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double-differential neutron scattering cross-section can be written as

( ∂2σ

∂Ω∂E′

)
= kout

kin

1
2πℏ

N∑
m,n=1

b∗
mbn

∫ +∞

−∞

〈
e−iq

[
Rn(t)−Rm(0)

]〉
· eiωtdt,

(4.29)
where ⟨. . .⟩ denote ensemble averaging.

We should note, that although a specific moment of time t = 0 naturally
appears in Eqs. (4.20-4.22) the choice of the "time zero" is arbitrary. As
it is shown in Appendix H (specifically, Eq. (H.10)), the matrix elements
in Eqs. (4.25-4.26) only depend on time difference between two moments of
time. Therefore, the value of the scattering cross-section will not change if
one calculates the operators for times t′ and t′ + t instead of 0 and t.

4.1.4 Example: scattering from free nuclei

As an example of using Eq. (4.26), let us consider inelastic neutron scattering
from a single free nucleus. Let us assume that the initial wavevector of a
nucleus is K. It means that its wavefunction normalized to the volume V is

|K⟩ = 1√
V
eiKR. (4.30)

Since the initial state of the nuclei is defined, there is no need to perform
the averaging over all possible initial states. Also the double sum over all
nuclei is now consisting of a single term (m = n = 1) proportional to ⟨b2⟩
(incoherent scattering). Therefore Eq. (4.26) can be simplified to( ∂2σ

∂Ω∂E′

)
= kout

kin
⟨b2⟩ 1

2πℏ

∫ +∞

−∞
⟨K| eiqR̂(0) · e−iqR̂(t) |K⟩ · eiωtdt︸ ︷︷ ︸

Sinc(q,ω)

. (4.31)

Now we should evaluate the matrix element in Eq. (4.31), using Heisen-
berg picture (see Eqs. (4.20-4.21) and Appendix H):

⟨K| eiqR̂(0) · e−iqR̂(t) |K⟩ = ⟨K| eiqR · e i
ℏ Ĥte−iqRe− i

ℏ Ĥt |K⟩ . (4.32)

Since the nucleus is free, its Hamiltonian is Ĥ = − ℏ2

2M∇2, where the differ-
ential operator is calculated over the position of a nucleus R and M is the
mass of the nucleus. The wavefunction given by Eq. (4.30) is, obviously, an
eigenfunction of this Hamiltonian, i.e.

Ĥ |K⟩ = ℏ2K2

2M |K⟩ . (4.33)

Using the exponential of a Hamilton operator (see Appendix G), we
can step-by-step calculate the matrix element in Eq. (4.32) by applying the
operators to the nuclei wavefunction |K⟩:

e− i
ℏ Ĥt |K⟩ = e− it

ℏ · ℏ2K2
2M |K⟩ ,

e−iqRe− i
ℏ Ĥt |K⟩ = e−iqR · e− it

ℏ · ℏ2K2
2M · 1√

V
eiKR = e− it

ℏ · ℏ2K2
2M |K − q⟩ ,

e
i
ℏ Ĥte−iqRe− i

ℏ Ĥt |K⟩ = e
i
ℏ Ĥt · e− it

ℏ · ℏ2K2
2M |K − q⟩ = e− it

ℏ · ℏ2K2
2M · e it

ℏ · ℏ
2(K−q)2

2M |K − q⟩ ,

eiqR · e i
ℏ Ĥte−iqRe− i

ℏ Ĥt |K⟩ = eiqRe− it
ℏ · ℏ2K2

2M · e it
ℏ · ℏ

2(K−q)2
2M · 1√

V
ei(K−q)R = e− it

ℏ · ℏ2K2
2M · e it

ℏ · ℏ
2(K−q)2

2M |K⟩ .
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Finally,

⟨K| eiqR · e i
ℏ Ĥte−iqRe− i

ℏ Ĥt |K⟩ = e− it
ℏ · ℏ2K2

2M · e it
ℏ · ℏ

2(K−q)2
2M

= exp
[
it

ℏ

(ℏ2q2

2M − 2ℏ2Kq
2M

)]
.

(4.34)

Calculating the Fourier transform of this matrix element in time domain
gives the delta function:∫ +∞

−∞
⟨K| eiqR · e i

ℏ Ĥte−iqRe− i
ℏ Ĥt |K⟩ · eiωtdt

=
∫ +∞

−∞
exp

[
it

ℏ

(ℏ2q2

2M − 2ℏ2Kq
2M + ℏω

)]
dt

= 2πℏδ
(ℏ2q2

2M − 2ℏ2Kq
2M + ℏω

)
,

(4.35)

so the inelastic incoherent scattering form factor from a free nucleus is (see
Eq. (4.31))

Sinc(q, ω) = δ
(ℏ2q2

2M − 2ℏ2Kq
2M + ℏω

)
. (4.36)

It is easy to check, that the delta function in Eq. (4.36) is non-zero only
if the conservation of energy and momentum is fulfilled. In a particular case
of an initially motionless nucleus (K = 0), the scattered neutrons can only
give some energy to the nucleus (ℏω < 0). Therefore, after the scattering,
the nucleus will have a kinetic energy Ekinnuc = ℏω. Moreover, the momentum
transfer of the scattered neutrons will satisfy the condition ℏ2q2

2M = −ℏω =
Ekinnuc, which is the dispersion law for a free nucleus. This gives an illustration,
how measuring the inelastic neutron scattering can experimentally provide
one with information about the dispersion of certain excitation in the system.

Fig. 4.3: Incoherent scattering structure factor
Sinc(q, ω) for an ideal gas (Eq. (4.40)) at a
cold temperature T → 0 (a) and at T ≫ 0 (b).
In the first case, the atoms in the ideal gas
almost do not move, so the structure factor is
non-zero only along a line defined by Eq. (4.36)
for K = 0, which defines a dispersion curve for
the atoms of a gas.

The obtained result can be easily transferred to a system consisting of
many non-interacting nuclei. In this case, the positions of any to different
nuclei are not correlated, i.e.

⟨ν| eiqR̂m(0) · e−iqR̂n(t) |ν⟩ = 0, for n ̸= m. (4.37)

Therefore, only the diagonal elements with m = n will contribute to the dou-
ble sum in Eq. ( 4.26), therefore the cross section will again be proportional
to the incoherent scattering form factor given by Eq. (4.36):( ∂2σ

∂Ω∂E′

)
= kout

kin
⟨b2⟩ ·N · Sinc(q, ω). (4.38)

Moreover, one can consider the Maxwell distribution of the initial wavevec-
tors of the nuclei:

ρ(K) =
( ℏ2

2πMkBT

)3/2
exp

(
− ℏ2K2

2MkBT

)
. (4.39)

Including this particular ensemble averaging into Eq. 4.26) will lead to the
following incoherent scattering structure factor14:

Sinc(q, ω) =
√

M

2πkBT
· 1
ℏq

· exp
[

− M

2kBTq2ℏ2

(ℏ2q2

2M + ℏω
)2]

. (4.40)

This structure factor still exhibits maximum along the line ℏ2q2

2M = −ℏω,
similar to the result obtained in Eq. (4.36). Obviously, the result obtained

14This can be shown by substituting Eq. (4.34) and Eq. (4.39) into Eq. (4.26).
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for the Maxwell distribution does not feature a term Kq, because in this
case, ⟨Kq⟩ = 0.

Finally, it is interesting to note, that the classical approximation (Eq. 4.27))
gives a different result. The calculations are much easier in this case. Indeed,
for a free nucleus with a constant wavevector K, the difference between its
positions at two moments of time is R(t) − R(0) = ℏK

M t. Therefore, the
matrix element in Eq. 4.27) equals to e−itℏqK/M , and its Fourier transform
(i.e. the scattering form factor) is

Sclinc(q, ω) = δ
(

− 2ℏ2Kq
2M + ℏω

)
. (4.41)

The analogous calculations for the ideal gas with the Maxwell distribution
give:

Sclinc(q, ω) =
√

M

2πkBT
· 1
ℏq

· exp
[

− Mω2

2kBTq2

]
. (4.42)

Therefore, the classical approximation coincides with the exact solution only
when q ≪ K, i.e. the momentum transferred to the system by the neutron is
much smaller than the typical momentum of the particles in the system. In
other words, the classical approximation means that the experimental probe
(neutrons) do not influence the state of the system.

4.2 Van Hove correlation function

Analogously to how it was done in section 3.2.2, let us introduce so-called
van Hove generalized correlation function15 G(r, t):

G(r, t) = 1
N

〈 N∑
m,n=1

δ
(
r − [Rm(t) − Rn(0)]

)〉
, (4.43)

where ⟨. . .⟩ denote ensemble averaging [43]. Its definition almost coincides
with the expression for the correlation function G(r) in Eq. (3.44). The
difference between those two lies in the fact, that G(r) was defined for a
static system, so the positions Rn and Rm of two atoms are correlated at
the same moment of time. In the van Hove generalized correlation function
G(r, t), the position of the atoms Rn(t) and Rm(0) are considered at two
different times. Of course, for t = 0 the van Hove correlation function
matches with the static correlation function:

G(r, 0) = δ(r) + ⟨n⟩ · g(r), (4.44)

so it can be expressed via the pair distribution function g(r) defined in
Eq. 3.46).

𝑡 ≪ 𝜏

𝑡~𝜏

𝑡 ≫ 𝜏

(a)

(b)

(c)

Fig. 4.4: Illustration of the movement of atoms
in a liquid: (a) the initial positions of the
atoms at t ≪ τ , (b) the shift of the atoms
from their initial positions at t ∼ τ (c) further
displacement of the atoms at t ≫ τ . One atom
is marked with darker color, so it is easier to
track its movement.

The van Hove correlation function contains information about the struc-
ture of the system and how this structure changes with time, i.e. the dy-
namics in the system. In the following sections we will establish the relation
between the van Hove function G(r, t) and the inelastic neutron scattering.

15 If instead of the classical vectors Rn(t) one keeps the Heisenberg operators R̂n(t),
the corresponding "quantum" van Hove correlation function can be introduced as

G(r, t) =
1
N

N∑
m,n=1

∫
dr′

〈
δ
(

r′ − R̂m(0)
)
δ
(

r′ + r − R̂n(t)
)〉

.
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4.2.1 Self and distinct correlation functions

The double sum in Eq. (4.43) naturally splits into two parts: N diagonal
terms with m = n and the remaining N2 − N terms with m ̸= n. This
justifies the splitting of the van Hove correlation function G(r, t) into two
terms [43]:

G(r, t) = Gs(r, t) +Gd(r, t), (4.45)
where

Gs(r, t) = 1
N

〈 N∑
n

δ
(
r − [Rn(t) − Rn(0)]

)〉
, (4.46)

Gd(r, t) = 1
N

〈 N∑
m,n=1
m ̸=n

δ
(
r − [Rn(t) − Rm(0)]

)〉
, (4.47)

where the subscripts "s" and "d" stand for "self" and "distinct", respectively.
To illustrate the physical meaning of these two components, let us con-

sider a partially ordered condensed system (liquid). For consistency, let us
assume that this liquid consists of N atoms, although qualitatively the same
conclusions could be made for a molecular liquid. To characterize the dy-
namics of this liquid, let us assume that the movement of atoms happens
over some time-scale τ (Fig. 4.4).

The correlation function Gs(r, t) in Eq. (4.46) describes the average dis-
placement of an atom from its initial position Rn(0) to some new position
Rn(t). At the time t → 0 the position of the atom matches with its initial
position, so Gs(r, t) → δ(r) (first term in Eq. (4.44)). For the times t ∼ τ ,
the delta-like peak of Gs(r, t) becomes broader, which corresponds to dis-
placement of the atoms from their initial positions. Finally, at t ≫ τ , the
positions of the atoms is not related to their initial positions, so Gs(r, t) → 0.
This means, that because at such long time scale, all information about the
original position of the atoms is "lost". To summarize, Gs(r, t) describes
self-diffusion of individual atoms in the system. Its evolution in time is
schematically shown in Fig. 4.5.

Fig. 4.5: Sketch ofGs(r, t), Gd(r, t) andG(r, t)
for a liquid: (a) at the short times t ≪ τ , (b) at
the intermediate times t ∼ τ (c) at long times
t ≫ τ . The asymptotic value of the correla-
tion function at large distances equals to the
average concentration ⟨n⟩. The corresponding
illustration in real space is shown in Fig. 4.4.

The correlation function Gd(r, t) in Eq. (4.47) describes the average cor-
relation between potions of two distinct particles Rn(t) and Rm(0) at two
different moments of time. In the limit t ≪ τ , these two moments of time
are matching (t → 0), so Gd(r, t) → ⟨n⟩g(r) (second term in Eq. (4.44)).
This means that Gd(r, t) describes a static structure of the system at t → 0.
At larger times, t ∼ τ , the atoms move from it positions, so the peaks of the
correlation function Gd(r, t) become less pronounced. Finally, at t ≫ τ , the
correlation between any two atoms are lost. This means that the probability
of finding an atom at time t ≫ τ at some position does not depend on the
initial positions of the atoms. Therefore this probability is only defined by
the density of atoms, so Gd(r, t) → ⟨n⟩. A sketch of the function Gd(r, t) at
different times is also shown in Fig. 4.5.

4.2.2 Density operator

There is an alternative way to define the van Hove correlation function, which
we partially introduced in section 3.2.2. This formalism includes a number
density operator (see Eq. (3.42)), and it is sometimes used in condesed matter
physics.

To keep the general quantum approach, we will define number density
operator (i.e. we keep the Heisenberg operators here):

n(r, t) =
N∑
m=1

δ
(
r − R̂m(t)

)
. (4.48)
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The van Hove correlation function can be then expressed as (see footnote 15
on page 61):

G(r, t) = 1
N

∫ 〈
n(r′, 0)n(r′ + r, t)

〉
dr′. (4.49)

In the next section, we will also use the Fourier transform of the number
density operator:

n(q, t) =
∫
n(r, t)e−iqrdr =

N∑
m=1

e−iqRm(t). (4.50)

4.3 Dynamic structure factor

4.3.1 Intermediate scattering function

For the sake of simplicity, let us neglect for a moment that the neutron
scattering length bn in Eq. (4.28) is not the same for all nuclei (there could
be different chemical elements and isotops, or different orientation of nuclear
spin (see section 1.2.2) for details). Then we can define so-called intermediate
scattering function, which naturally appears in Eq. (4.28:

F (q, t) = 1
N

N∑
m,n=1

〈
e−iq

[
Rn(t)−Rm(0)

]〉
. (4.51)

It contains information about the structure and dynamics of the system (the
positions of the atoms and how they move with time). Therefore, the inter-
mediate scattering function is directly related to the van Hove correlation
function.

Indeed, similarly to Eq. (3.47), we can show that the spatial Fourier
transform of the van Hove correlation function is exactly intermediate scat-
tering function:∫

G(r, t)e−iqrdr = 1
N

N∑
m,n=1

〈∫
δ
(
r − [Rn(t) − Rm(0)]

)
e−iqrdr

〉

= 1
N

N∑
m,n=1

〈
e−iq

[
Rn(t)−Rm(0)

]〉
= F (q, t).

(4.52)

Inverting Eq. (4.45), we can express the van Hove correlation function via
the inverse Fourier transform of the intermediate scattering function F (q, t)
(see Appendix A):

G(r, t) = 1
(2π)3

∫
F (q, t)eiqrdq,

F (q, t) =
∫
G(r, t)e−iqrdr.

(4.53)

The pair of Eqs. (4.53) shows that the van Hove correlation funtionG(r, t)
and the intermediate scatttering function F (q, t) are connected to each other
via spatial Fourier transform (in space domain). One can go a step further
and perform a temporal Fourier transform (in time domain) of F (q, t) and
obtain a dynamic structure factor Scoh(q, t). For the reasons, explained in
the following secction, we will denote it as coherent structure factor. The
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connection between the coherent dynamic structure factor Scoh(q, ω) and
the intermediate scattering function F (q, t) can be written as

Scoh(q, ω) = 1
2πℏ

∫
F (q, t)eiωtdt,

F (q, t) =ℏ
∫
Scoh(q, ω)e−iωtdω.

(4.54)

Combining Eqs. (4.53) and (4.53), we can obtain the relation between
the correlation function and the dynamic structure factor:

Scoh(q, ω) = 1
2πℏ

∫
G(r, t)e−iqr+iωtdrdt,

G(r, t) = ℏ
(2π)3

∫
Scoh(q, ω)eiqr−iωtdqdω.

(4.55)

4.3.2 Coherent and incoherent dynamic structure factor

Let us go back to Eq. (4.29) for the double-differential neutron scattering
cross section. Even in the case, when the scattering system consists only from
the atoms of a single chemical element, there might be different isotopes or
orientations of the nuclear spin with respect to the spin of a neutron (parralel
or anti-parallel). This was already discussed in section 1.2.2. In result, one
has to average Eq. (4.29) over all possible orientations of the nuclear spin
and isotopes:

( ∂2σ

∂Ω∂E′

)
= kout

kin

1
2πℏ

N∑
m,n=1

⟨b∗
mbn⟩

∫ +∞

−∞

〈
e−iq

[
Rn(t)−Rm(0)

]〉
· eiωtdt.

(4.56)
The averaging of the scattering lengths can be conveniently done using
Eq. 1.49, written in a compact form:

⟨b∗
mbn⟩ = |⟨b⟩|2 + δnm

(
⟨|b|2⟩ − |⟨b⟩|2

)
= σcoh

4π + δmn
σinc
4π , (4.57)

where we expressed coherent and incoherent scattering length via the corre-
sponding cross-sections.16

Substituting Eq. (4.57) into Eq. (4.56) results in breaking the double sum
over m and n into two parts: the first part is proportional to σcoh and it
contains the double sum over all nuclei in the system, and the second part is
proportional to σinc and due to the delta function it only contains the terms
with m = n:

( ∂2σ

∂Ω∂E′

)
= kout

kin

σcoh
4π N

Scoh(q,ω)︷ ︸︸ ︷
N∑

m,n=1

1
2πℏN

∫ +∞

−∞

〈
e−iq

[
Rn(t)−Rm(0)

]〉
· eiωtdt

+ kout
kin

σinc
4π N

N∑
n=1

1
2πℏN

∫ +∞

−∞

〈
e−iq

[
Rn(t)−Rn(0)

]〉
· eiωtdt︸ ︷︷ ︸

Sinc(q,ω)

= kout
kin

N

4π

(
σcohScoh(q, ω) + σincSinc(q, ω)

)
.

(4.58)
16For the majority of isotopes, neutron scattering length b is a real number, so one can

ommit the complex conjugation, which simplifies the equations.
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We have already considered the first term in Eq. (4.58) containing the
double sum (see section 4.3.1). We called it the coherent structure factor17

Scoh(q, ω):

Scoh(q, ω) =
N∑

m,n=1

1
2πℏN

∫ +∞

−∞

〈
e−iq

[
Rn(t)−Rm(0)

]〉
· eiωtdt

= 1
2πℏ

∫
G(r, t)e−iqr+iωtdrdt.

(4.59)

The incoherent structure faction Sinc(q, ω) can be obtained in the same
way, but since it has only a single sum over n, it will be proportional to the
self-correlation function Gs(r, t) (see Eq. (4.46)):

Sinc(q, ω) =
N∑
n=1

1
2πℏN

∫ +∞

−∞

〈
e−iq

[
Rn(t)−Rn(0)

]〉
· eiωtdt

= 1
2πℏ

∫
Gs(r, t)e−iqr+iωtdrdt.

(4.60)

The coherent dynamic structure factor Scoh(q, ω) is a function of a total
correlation function G(r, t), therefore it describes the structure of the system
and the evolution of this structure with time. Thus, the coherent neutron
scattering depends on structure and dynamics of the system. The incoherent
dyncmic structure factor Sinc(q, ω) is a function of self-correlation function
Gs(r, t), so it describes how individual atoms in the system move with time.
The incoherent neutron scattering depends on dynamics of the system.

Using inverse Fourier transform, we can invert Eqs. (4.59) and (4.60):

G(r, t) = ℏ
(2π)3

∫
Scoh(q, ω)eiqr−iωtdqdω,

Gs(r, t) = ℏ
(2π)3

∫
Sinc(q, ω)eiqr−iωtdqdω.

(4.61)

In a neutron scattering experiment, one measures both coherent and
incoherent neutron scattering, so both terms contribute to the total cross-
section in Eq. (4.57). However, one can choose isotopes in such a way,
that the coherent or incoherent scattering dominates. For example, the
incoherent scattering cross-section σinc of 1

1H is almost 40 times larger than
the coherent scattering cross-section σcoh (see Table 2). This allows one to
study self-diffusion of hydrogen by measuring incoherent inelastic neutron
scattering. This is important for various biological systems, where hydrogen
is usually present is significant amount (for example, diffusion of protein
molecules in solution).

4.3.3 Principle of detailed balance

The van Hove correlation functionG(r, t), as well as the intermediate scatter-
ing function F (q, t) and the dynamic structure factor S(q, ω), fulfill certain
analytical properties which follow from their definition. An extensive list of
such properties can be found in [9]. These properties are important, because
in many cases the exact correlation function cannot be calculated, so one has
to use an approximation or a model. In this case, these analytical properties
serve as a constrain which help to make the model more realistic.

In this section, we will only discuss principle of detailed balance, which
has a deep physical meaning. To illustrate it, let us make a few steps back

17Sometimes Scoh(q, ω) is called a coherent scattering function.
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and write the coherent coherent dynamic structure factor as:

Scoh(q, ω) = 1
Z

∑
ν

ρν︷ ︸︸ ︷
e−Eν/kBT

∑
ν′

∣∣∣ N∑
n

⟨ν′| eiqRn |ν⟩
∣∣∣2 · δ(Eν − Eν′ − ℏω),

(4.62)
where we assumed Boltzmann’s statistics. Let us assume that ℏω > 0,
meaning that we consider a process, in which neutron gains energy ℏω and
momentum q while the system changes its state from |ν⟩ to |ν′⟩ and lowers
its energy by Eν − Eν′ (see Fig. 4.6(a)).

|𝜈⟩

|𝜈′⟩
𝑘

𝐸

𝑘 + 𝑞⃗

𝐸 + ℏ𝜔

(a)

|𝜈⟩

|𝜈′⟩
𝑘

𝐸

𝑘 −
𝑞⃗

𝐸 −
ℏ𝜔

(b)

Fig. 4.6: (a) Sketch of a neutron scattering
process in which the neutron gains energy ℏω
and the system lowers its state from |ν⟩ to |ν′⟩.
(b) Sketch of an inverse neutron scattering pro-
cess in which neutron loses energy ℏω and the
system increases its state from |ν′⟩ to |ν⟩.

An inverse process, in which neutron loses energy ℏω (or, in other words,
gains a negative energy −ℏω) and changes its momentum by −q, is described
by the following coherent dynamic structure factor:

Scoh(−q,−ω) = 1
Z

∑
ν′

e−Eν′/kBT
∑
ν

∣∣∣ N∑
n

⟨ν| eiqRn |ν′⟩
∣∣∣2 · δ(Eν′ −Eν +ℏω).

(4.63)
In this process, the system increases its energy and changes its state from
|ν′⟩ to |ν⟩ (see Fig. 4.6(b)). Using the energy conservation, Eν = Eν′ + ℏω,
replacing all matrix elements with the conjugated ones, and using the fact
that δ(x) = δ(−x), we obtain:

Scoh(−q,−ω)

= 1
Z

∑
ν′

e−Eν′/kBT eℏω/kBT
∑
ν

∣∣∣ N∑
n

⟨ν| eiqRn |ν′⟩∗
∣∣∣2 · δ(Eν′ − Eν + ℏω)

= eℏω/kBT
1
Z

∑
ν′

e−Eν′/kBT
∑
ν

∣∣∣ N∑
n

⟨ν′| e−iqRn |ν⟩
∣∣∣2 · δ(Eν − Eν′ − ℏω)

= eℏω/kBTScoh(q, ω).
(4.64)

The physical meaning of this result is that for a pair of states in the scattering
system, the values of the matrix elements | ⟨ν| eiqRn |ν′⟩ | and | ⟨ν′| e−iqRn |ν⟩ |
are the same, so the a priori probabilities of such transition to be caused
by a neutron are the same. However, the probability of the system being
initially in the higher energy state is lower than its probability of being in
the lower energy state. This is why Scoh(q, ω) is smaller than Scoh(−q,−ω)
by the factor eℏω/kBT . 0

𝑆!"#(𝑞⃗, 𝜔)

𝜔𝜔$ 𝜔%−𝜔% −𝜔$

anti-StokesStokes

Fig. 4.7: Dynamic structure factor of a neu-
tron scattering experiment on optical phonons
at low temperature. The elastic scattering is
represented by a peak at ω = 0. At the given
q-value, there are two phonon modes with fre-
quencies ω1 and ω2. The inelastic scatter-
ing is only possible when a phonon is created
(Stokes scattering, ω > 0) or absorbed (anti-
Stokes scattering, ω < 0). The intensity of
Stokes peaks is higher than the intensity of
anti-Stokes peaks.

The factor eℏω/kBT becomes especially notable at low temperatures. For
example, in a neutron scattering by a crystal, a phonon with energy ℏω can
be created by a neutron (Stokes scattering) or absorbed by it (anti-Stokes
scattering). At low temperatures, kBT łℏω, the amount of photons in the
crystal is low, so the probability of absorption of already existing phonon
is much lower than a probability of creation of a phonon. This leads to
the fact that the anti-Stokes scattering peaks (absorption of a phonon) have
lower intensity than the Stokes peaks (creation of a phonon); and at very
low temperatures the former can completely disappear from the scattering
spectrum (Fig. 4.7).

The principle of detailed balance (Eq. (4.64)) can be also derived more
formally. For this, let us write the intermediate scattering function via the
number density operator (see Eqs (4.53) and (4.50)):

F (q, t) = 1
N

〈
n(q, 0)n(−q, t)

〉
. (4.65)
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Now, using properties (H.11) and (H.10), we can write〈
n(q, 0)n(−q, t)

〉
=
〈
n(−q, t)n

(
q, iℏ
kBT

)〉
=
〈
n(−q, 0)n

(
q,−t+ iℏ

kBT

)〉
,

(4.66)
which means

F (q, t) = F
(

− q,−t+ iℏ
kBT

)
. (4.67)

This leads to the principle of detailed balance for the coherent dynamic
structure factor using Eq. (4.54):

Scoh(q, ω) = 1
2πℏ

∫
F (q, t)eiωtdt = 1

2πℏ

∫
F
(

− q,−t+ iℏ
kBT︸ ︷︷ ︸
t′

)
eiωtdt

= 1
2πℏ

∫
F (−q, t′)e−iωt′eiω·iℏ/kBT dt′ = e−ℏω/kBTScoh(−q,−ω).

(4.68)
The principle of detailed balance implies certain conditions on the cor-

relation function, since the structure factor and the correlation function
are connected via the Fourier transform (Eq. (4.59)). Many models use
the correlation functions G(r, t) which are even in coordinate and time, i.e.
G(−r, t) = G(r, t) and G(r,−t) = G(r, t). It is easy to check, that the
dynamic structure factor obtained from such an even correlation function
will violate the principle of detailed balance, since in this case, the it will be
also an even function, i.e. Scoh(−q,−ω) = Scoh(q, ω). Peter Schofield sug-
gested [44] that a better approximation can be obtained by using a modified
correlation function

GSchofield(r, t) = G
(
r, t− iℏ

2kBT

)
. (4.69)

The dynamic structure factor obtained from the Schofield approximation of
the correlation function (Eq. (4.69)) satisfies the principle of detailed balance
(Eq. (4.64)).

4.3.4 Implications of the general formalism and special cases

Eqs. (4.59) and (4.60) show that the dynamic structure factor is proportional
to the Fourier transfrom of the van Hove correlation function (in space and
time domains). This fact can be simplified in the following formula, where
we omit the prefactors and do not distinguish the coherent and incoherent
scattering:

S(q, ω) ∼
∫
G(r, t)e−i(qr−ωt)drdt. (4.70)

Correlation Structure factor
G(r, t) S(q, ω)
G(r, t = 0)

∫
S(q, ω)dω

G(r = 0, t)
∫
S(q, ω)dq

G(r = 0, t = 0)
∫∫

S(q, ω)dqdω∫
G(r, t)dt S(q, ω = 0)∫
G(r, t)dr S(q = 0, ω)

Table 5: Relation between the correlation
functions in real space and the structure factor
in reciprocal space

This simplified notation allows us to distinguish "modes of the experi-
ment". For instance, for purely elastic scattering (ω = 0) we obtain

∫
G(r, t)dt

which means we measure the time-averaged structure. Another instructive
special case is that of a harmonic oscillation with frequency ω0 (such as, e.g.,
a phonon) in the structure. If G(r, t) thus features this frequency ω0, the
scattering signal S(q, ω) will exhibit a peak at ω = ω0, which corresponds to
the spectroscopy of phonons. The connection between different experimen-
tal consitions of the scattering experiment and the corresponding correlation
function are shown in Table 5.

4.3.5 Example: diffusion of atoms

To illustrate the relation between the van Hove correlation function and
the scattering structure factor, let us consider random motion of particles.
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If the particles do not interact with each other, they move independently.
This means, that the positions of two different particles Rm(t) and Rn(t)
(m ̸= n) are not correlated at any moment of time, so that the distinct
correlation function Gd(r, t) is zero (Eq. (4.47)). Therefore, to calculate the
self-correlation function Gs(r, t) (Eq. (4.46)), we only need to consider an
average motion of a single particle, because all other particles in the system
will on average behave in a similar way.

Let us chose the origin of the coordinates in such a way, that ar t = 0
the particle is in the origin r = 0. Its motion is described by Fick’s second
law of diffusion:

D∇2n(r, t) = ∂

∂t
n(r, t), (4.71)

where D is the diffusion coefficient and n(r, t) is the concentration, which is
proportional to the probability to find the particle in the vicinity of point r
at the moment of time t. For the boundary condition n(r, t)|t=0 = δ(r), the
solution of the diffusion equation (4.71) is well-known18:

n(r, t) = 1
(4πDt)3/2 exp

[
− r2

4Dt

]
. (4.72)

It is easy to check, that for this solution, the average displacement of the
particle from the origin is zero, ⟨r⟩ = 0 and the mean squared displacement
is proportional to the diffusion time, ⟨r2⟩ = Dt, as it should be for the
Brownian motion.

The self-correlation function Gs(r, t) (see definition given by Eq. (4.46))
satisfies the same differential equation as the concentration, therefore it can
also be written as

Gs(r, t) = 1
(4πD|t|)3/2 exp

[
− r2

4D|t|

]
. (4.73)

Here we extended it for the negative times, by substituting t with |t|.

Fig. 4.8: (a) Sketch of the self-correlation func-
tion Gs(r, t) at three different moment of time
(Eq. (4.73)). (b) Sketch of the incoherent scat-
tering structure factor Sinc(q, ω) at three dif-
ferent q-values (Eq. (4.74)). (c) Determination
of the diffusion coefficient D from the width of
the peak of Sinc(q, ω) at different q-values.

Combining Eqs. (4.73) and (4.60), we can evaluate the incoherent scat-
tering structure factor, using the spherical system of coordinates:

Sinc(q, ω) = 1
2πℏ

∫
Gs(r, t)e−iqr+iωtdrdt

= 1
2πℏ · 1

(4πDt)3/2

∫ +∞

−∞
dteiωt

∫
e− r2

4D|t| e−iqrdr

= 1
2πℏ · 1

(4πDt)3/2

∫ +∞

−∞
dteiωt · 4π

q3 ·
√
π

4 (4Dt)3/2 · e−D|t|q2

= 1
2πℏ · 1

q3

∫ +∞

−∞
e−D|t|q2

eiωtdt = 1
2πℏ · 1

q3
2Dq2

(Dq2)2 + ω2

= 1
πℏ

Dq2

(Dq2)2 + ω2 .

(4.74)
By fitting the experimentally measured Sinc(q, ω) with Eq. (4.74) for

different scattering vectors q, one can determine the diffusion coefficient of
the particles in the system (see Fig. 4.8).

18It is easy to check that Eq. (4.72) satisfies the differential equation Eq. (4.71, where

∇2 = ∆ =
1
r2

∂

∂r

(
f2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2

in spherical coordinates.

68



4.3.6 Experimental realization

There are various technical realizations of energy-resolved neutron scatter-
ing (see Table 6). They provide different energy resolution (and dynamical
ranges) for different dynamical processes, from lattice dynamics (phonons)
in triple-axis spectrometry (TAS) to macromolecular dynamics (neutron
backscattering (NBS) and neutron spin-echo (NSE)). For details we refer
to M. Grimaldo et al. [45] and references therein.

Technique Energy
resolution

Triple-axis
spectrometry ∆E ≲ 1 meV

(TAS)
Time-of-flight
spectrometry ∆E ≲ 100 µeV

(TOF)
Neutron

backscattering ∆E ≲ 1 µeV
(NBS)
Netron

spin-echo ∆E ∼ 1 neV
(NSE)

Table 6: Various inelastic neutron scattering
techniques and coarse estimate of the corre-
sponding energy resolution (all values depend
on experimental condition).
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5 Scattering from crystals
In this section, we will consider a scattering from crystals - 3D periodic
arrays of atoms. Scattering from crystals is a very important case, which
has been covered in many excellent books dedicated to this subject. On
top of that, almost every book on condensed matter considers scattering of
X-rays or neutrons to a certain extend. Therefore, we will not go into too
many details here and just provide a short overview of this broad field.

5.1 Translation symmetry of crystals

5.1.1 Crystal structure
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Fig. 5.1: (a)A 3D unit cell determined by three
unit cell vectors a1, a2 and a3 with angles α,
β and γ between them.
(b) Crystal lattice formed by translation of the
unit cell.

The main property of crystal structure is a periodic arrangement of atoms. It
means, that the infinite 3D crystal can be constructed by periodic translation
of an elementary unit cell over all vectors given by

Rn = n1a1 + n2a2 + n3a3, (5.1)

where n1, n2 and n3 are integer numbers and a1, a2 and a3 are three non-
collinear vectors. These three vectors form an affine system of coordinates,
in which the axes may be not orthogonal to each other. The choice of an
elementary unit cell is not unique - it is easy to imagine that any combination
of several adjacent to unit cells can be used to build up a periodic crystals
with different (larger) translation vectors.

One of the possible ways to select a unit cell is to build a 3D parallelop-
iped on the translation vectors a1, a2 and a3 (Fig. 5.1a). In this case, the
full translational symmetry of the crystal lattice is defined by three unit cell
parameters a1, a2 and a3 and three angles between them α, β, γ.

(a)

(b)

Fig. 5.2: (a)A 3D unit cell with a basis con-
sisting of two atoms of different kind. The
atom with ρ1 = 0 is located in the origin of
the unit cell (filled circle), and the atom with
ρ2 = 0.5 · a1 + 0.5 · a2 + 0.5 · a3 is located in
the center of the unit cell (open circle).
(b) Crystal structure formed by translation of
the unit cell.

The unit cell and the corresponding crystal lattice is just a mathematical
construct. In order to describe the real crystal structure we have to indicate
the position of atoms within the unit cell - the basis. Since only a finite
number of atoms can be within a unit cell (this number can be quite large,
especially for the molecular crystals), the basis is just a set of vectors ρj . It
is common to express the basis vectors ρj through the unit cell vectors:

ρj = xja1 + yja2 + zja3, (5.2)

where {xj , yj , zj} are fractional coordinates between 0 and 1, since the atoms
are located inside the unit cell. An example of a unit cell with a basis of two
atoms is shown in Fig. 5.2a, and the corresponding crystal structure built
from this unit cell - in Fig. 5.2b.

The position of each atom in the crystal can be given by

rn,j = Rn + ρj = n1a1 + n2a2 + n3a3︸ ︷︷ ︸
crystal lattice

+ ρj︸︷︷︸
basis

. (5.3)

Therefore, the position of all atoms in a crystal, i.e. the crystal structure, is
defined by the crystal lattice and the basis.

Usually the smallest possible unit cell is selected, in this case it is called
a primitive unit cell. Sometimes, the arrangement of the atoms within a
unit cell gives rise to a certain point symmetry of the crystal, i.e. the mirror
planes, rotational axes etc.19 In this case, a larger unit cell, which contains
all point symmetry of the crystal is selected. Such unit cells is called a
conventional unit cell.

19A typical example of such situation is the hexagonal lattice with a1 = a2 ̸= a3,
α = β = 90◦ and γ = 120◦. The presence of a sixfold rotational symmetry around a3
axis is not apparent from the primitive unit cell, as shown in Fig. 5.1a.
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In the following, we will use a concept of crystal planes. Crystal plane
is defined as a plane passing through three sites of the crystal lattice Rn
that are not lying on the same line. Each crystal plane passes through the
infinite number of lattice points. The crystal lattice can be split into a series
of parallel crystal planes in such a way, that each lattice cite belongs to one
of the planes in this series.20 This is illustrated in Fig. 5.3.
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Fig. 5.3: (a) Crystal plane with Miller indices
(hkl) passing through three lattice points on
the main crystal axes.
(b) A family of parallel crystal planes (hkl),
(c) Side view of the same (hkl) crystal planes
family.

Each family of parallel crystal planes can be uniquely characterized by
three integer numbers (hkl) called Miller indices. To find these indices, one
has to consider the intersections of the plane with the main crystal axis in
the units of the lattice cell parameters. In the example shown in Fig. 5.3a,
these intersections are U = 2, V = 2, W = 4. The equation of this plane in
the system of coordinates defined by the unit cell vectors a1, a2 and a3 is

x

U
+ y

V
+ z

W
= 1. (5.4)

The Miller indices (hkl) are defined as h = K/U , k = K/V and l = K/W ,
where the integer number K is selected in such a way, that (hkl) are the
smallest possible integers (relative primes). In the case shown in Fig. 5.3a,
K = 4 and (hkl) = K · ( 1

U
1
V

1
W ) = K · ( 1

2
1
2

1
4 ) = (221) If the plain is parallel

to one of the axis, the intersection can be formally set to be at the infinite
distance. This means, that the corresponding Miller index equals to zero
(formally, 1

∞ = 0). Miller indices can also be negative.
Any crystal plane belonging to the (hkl) family can be described with

an equation
hx+ ky + lz = D, (5.5)

where D is some constant. For example, the plane passing through the origin
of coordinates has D = 0.

5.1.2 Reciprocal lattice

The translational symmetry of a periodic crystal lattice has a deep impact
on all processes happening in crystals. To illustrate this, let us consider
any function ψ(r), which has the same translation symmetry as the crystal
lattice, i.e.

ψ(r + Rn) = ψ(r). (5.6)

For example, ψ(r) can be local concentration of electrons in a crystal. Any
periodic function can be expanded into a Fourier series21

ψ(r) =
∑
G
CGe

iGr, (5.7)

where complex-valued coefficients CG do not depend on r.
Similarly to 1D case, the Fourier series (Eq. (5.7)) contains infinite but

countable number of terms. The translation symmetry of a periodic crystal
20Note that crystal planes go thought the sites of the crystal lattice, not the atoms.

The atoms in the crystal structure can lie between the crystal planes.
21This is just a generalization of a well-known Fourier expansion a function with period

L in 1D case:

f(x) =
+∞∑

n=−∞

Cne
i 2π

L
nx,

where

Cn =
1
L

∫ L
2

− L
2

f(x)e−i 2π
L

nxdx,
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allows only terms with certain vectors G to be present in the sum. From
Eq. (5.7), we obtain

ψ(r + Rn) =
∑
G
CGe

iG(r+Rn) =
∑
G

(CGe
iGRn)eiGr. (5.8)

Fourier series given by Eqs. (5.7) and (5.8) should be equal, therefore the
values of the Fourier coefficients should be equal as well. It means, that only
vectors G which satisfy the condition

eiGRn = 1 or GRn = 2π ·m for any Rn = n1a1 +n2a2 +n3a3 (5.9)

can be present in the Fourier expansion of a periodic function ψ(r). All
vectors G which satisfy the condition (5.9) form reciprocal lattice.22
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Fig. 5.4: (a) Unit cell in real space with volume
Ω. (b) Corresponding unit cell in reciprocal
space with volume 2π/Ω.

Let us define an explicit expression for the reciprocal lattice vectors G.
For this let us first find three non-collinear vectors b1, b2 and b3 that satisfy
the condition 5.9. These three vectors are called the reciprocal unit vectors.
Their choice is not unique, but one of the possible (and the most practical)
solutions is

b1 = 2π
Ω [a2 × a3] ,

b2 = 2π
Ω [a3 × a1] ,

b3 = 2π
Ω [a1 × a2] ,

(5.10)

where Ω = a1 · [a2 × a3] is the volume of the unit cell in real space (Fig. 5.4).
By direct calculations, it is easy to show that the unit cell vectors ai (i =
1, 2, 3) and reciprocal unit vectors bj (j = 1, 2, 3) fulfill the following condi-
tion:

ai · bj = 2πδi,j . (5.11)

It is also easy to check, that any linear combination of the reciprocal unit
vectors with integer coefficients h, k and l also satisfies the condition 5.9:

Ghkl = hb1 + kb2 + lb3, (5.12)

Ghkl ·Rn = (hb1 +kb2 + lb3) ·(n1a1 +n2a2 +n3a3) = 2π ·(hn1 +kn2 + ln3).
(5.13)

Moreover, Eq. (5.12) defines all possible reciprocal space vectors G. In-
deed, let us assume that there is any other vector G, which cannot be repre-
sented as in Eq. (5.12). It can anyway be represented as a liner combination
of three non-collinear reciprocal unit vectors, but at least one coefficient,
h, k or l is non-integer. Let us assume that h s non-integer. In this case,
G · a1 = 2π · h ̸= 2π ·m, which contradicts definition (5.9), which should be
true for any Rn, including Rn = a1.
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Fig. 5.5: (a) Orthorhombic unit cell in real
space (α = β = γ = 90◦). (b) Corresponding
unit cell in reciprocal space. The reciprocal
unit cell vectors b1 = 2π/a1, b2 = 2π/a2 and
b3 = 2π/a3 are orthogonal to each other.

Therefore, we obtained that all possible vectors of reciprocal lattice can
be written as a linear combination of three reciprocal unit vectors with
integer coefficients, called Miller indices. It means that reciprocal vectors
form a periodic lattice in reciprocal space, similar to the crystal lattice in
real space defined by Eq. (5.1). Using Eqs. (5.10), it can be shown that
the volume of the reciprocal unit cell is 2π/Ω (volume of the parallelopiped
formed by vectors b1, b2 and b3). Moreover, if all angles between the unit
cell vectors are straight (α = β = γ = 90◦), the reciprocal unit vectors
b1, b2 and b3 are parallel to a1, a2 and a3, and have lengths b1 = 2π/a1,

22The reciprocal lattice is reciprocal to the corresponding real lattice defined by
Eq. (5.1).
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b2 = 2π/a2 and b3 = 2π/a3 (Fig. 5.5). In the general case of an oblique-
angled unit cell, the relation between the real and reciprocal unit cell vectors
is more complex.

Eq. (5.12) defines all possible wave vectors of the plane waves eiGhklr with
the periodicity of the lattice, i.e. which are invariant to the translation over
any vector in Eq. (5.1). Let us now prove another geometrical interpretation
of the reciprocal lattice vectors, namely, their connection to crystal planes.
Indeed, for any constant D, equation

Ghklr = D (5.14)

defines a plane oriented perpendicular to the vector Ghkl. From all collinear
vectors Ghkl, let us consider Gmin

hkl with the minimal length. The plane
defined above has Miller indices (hkl), which can be proved by substituting
r = xa1 + ya2 + za3 into Eq. (5.14) and obtaining Eq. (5.5).
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Fig. 5.6: Two adjacent (hkl) crystal planes de-
fined by Eqs. (5.15).

Due to condition Gmin
hkl Rn = 2πm in Eq. (5.9), every lattice point Rn

will belong to one of such planes. Let us consider two neighboring parallel
lattice planes, which are characterized by two consecutive integer numbers
m and m+ 1:

Gmin
hkl Rn = 2π ·m,

Gmin
hkl R

′
n = 2π · (m+ 1).

(5.15)

From Fig. 5.6, the distance between these two adjacent crystal planes is

dhkl =
(
R′
n − Rn

)
· Gmin

hkl∣∣Gmin
hkl

∣∣ = 2π∣∣Gmin
hkl

∣∣ . (5.16)

Thus, we proved that each reciprocal vector Ghkl corresponds to a family
of parallel lattice planes (hkl), and the distance between these planes can
be calculating using Eq. (5.16).

Often the fact that the crystal planes should always go though the crystal
lattice points is neglected. This relaxation of the crystal plane definition
usually does not lead to misunderstanding, because the real atoms are also
not always placed at the sites of the crystal lattice. In this case, the distance
between such planes is dhkl = 2π/|Ghkl|.

For orthorhombic crystal lattice (a1 ̸= a2 ̸= a3 and α = β = γ = 90◦),
this gives for the distance between (hkl) planes:

dhkl = 1√(
h
a1

)2
+
(
k
a2

)2
+
(
l
a3

)2
(orthorhombic), (5.17)

which simplifies even further for the cubic lattice (a1 = a2 = a3 = a and
α = β = γ = 90◦):

dhkl = a√
h2 + k2 + l2

(cubic). (5.18)

For the lattices with non-orthogonal unit cell vectors a1, a2 and a3, the
equation for calculation of the interplane distance dhkl becomes more com-
plex.

5.2 Scattering from a single crystal

5.2.1 Bragg’s law

The easiest way to interpret diffraction from a crystal is to split the crystal
lattice into a family of parallel crystal planes and consider the interference
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of the waves scattered from different crystal planes. This is analogous to
the scattering from multilayer (section 2.4), but even easier, because the
scattering angles are typically large, so we can neglect the total external
reflection and effects of multiple scattering.23

The wave is scattered by a crystal plane in such a way, that the angle
of incidence equals to the outcoming angle (this follows from the symmetry
considerations, because the projection of the wave vector onto the crystal
plane should be conserved in a scattering process). From Fig. 5.7, the path
difference for the waves scattered from two adjacent crystal planes is 2dhkl ·
sin θ. A constructive interference is observed when the path difference is a
multiple of the wavelength

2dhkl · sin θ = m · λ. (5.19)

This condition is known as Bragg’s law. The integer number m is a diffrac-
tion order. The maxima of the scattered intensity, observed for the experi-
mental conditions given by Eq. (5.19) are called Bragg peaks.
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Fig. 5.7: (a) Scattering of a wave from crys-
tal lattice place. (b) Increased view of the
scattering from two adjacent crystal planes for
derivation of Eq. (5.19). The path difference
is marked with red.

In practice, it is always possible to set m = 1 and by considering the
scattering by the planes with higher values of the Miller indices (hkl), as
shown in Fig. 5.8. In this case, the Bragg law can be written as

2dhkl · sin θ = λ, (5.20)

where dhkl are defined via the corresponding vector of reciprocal lattice as

dhkl = 2π
|Ghkl|

. (5.21)

Eqs. (5.20-5.21) give a connection between the unit cell parameters (which
are needed to calculate Ghkl) and the scattering angles.

Bragg’s law provides a pictorial connection between the scattering angles
and a certain set of lattice planes. This is why it is often used for the
analysis of the diffraction patterns from crystals. At the same time, it doesn’t
provide any information about the intensity of the scattered waves. The
intensities can be calculated only when the positions or real atoms are taken
into account, which will be done in the following section.
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Fig. 5.8: (a) First (m = 1) and second (m = 2)
diffraction order by scattering from parallel
crystal planes (hkl). (b) Alternative represen-
tation of the same scattering process, where
the second diffraction order is considered as
the first diffraction order from the planes with
twice smaller distance (or twice higher Miller
indices (2h 2k 2l)).

5.2.2 Laue condition

Let us consider scattering in the same manner as it was done in section 3.2.1.
To be specific, we will focus on X-ray scattering, however the same derivation
can be done for neutrons or any other wave.

Neglecting the constants, such as intensity of the incoming beam, and
the polarization factor, the magnitude of the scattered wave is

E ∝
∑
n,j

fj(q)e−iqrn,j , (5.22)

where fj(q) is the scattering form factor of the atom "j". Substituting the
positions of the atoms from Eq. (5.3), we can regroup the sum over all atoms
in the crystal into the sum over a single unit cell (internal sum) and the sum
over all unit cells in the crystal (external sum):

E ∝
∑

n
e−iqRn

︸ ︷︷ ︸
lattice sum

·
∑
j

fj(q)e−iqρj

︸ ︷︷ ︸
structure fator

. (5.23)

23One has to take into account the effects of multiple scattering when crystals are large.
This is considered in dynamical theory of scattering
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In order to observe the non-zero scattered intensity, both factors in Eq. (5.23)
should be non-zero. Let us focus first on the lattice sum, and the crystal
structure factor will be considered in section 5.2.5.

The maximum of the scattered intensity is achieved when all complex
exponentials in Eq. (5.23) have the same phase. Since for the term with
Rn = 0 the complex phase is zero, it means that it should be also zero (or
2π · m) for all other terms. Thus, we can expect the maximum intensity of
the scattered waves for such values of the scattering vector q, which fulfill
the condition e−iqRn for all vectors Rn. This is identical to condition (5.9),
meaning that the maxima of the scattered intensity (Bragg peaks) when

q = Ghkl. (5.24)

This equation is called Laue condition. More detailed analysis of the lattice
sum will be done in section 5.2.3. It can be shown [46, 6, 47, 42], that the
Laue condition in reciprocal space (5.24) and the Bragg condition in real
space (5.19) are equivalent.

5.2.3 Influence of crystal size (Scherrer’s broadening)

Using the periodic arrangement of the unit cells in the crystal given by
Eq. (5.1), we can write the lattice sum in Eq. (5.23) as

∑
n
e−iqRn =

N1∑
n1

e−iqa1n1 ·
N2∑
n2

e−iqa2n2 ·
N3∑
n3

e−iqa3n3 , (5.25)

where N1, N2 and N3 are the size of the crystal in three dimensions.
Each factor in Eq. (5.25) can be calculated using the formula for the sum

of the geometric series:

N∑
n=1

(
e−iqa)n = e−iqa ·

1 −
(
e−iqa)N

1 − e−iqa = e−iqa(N−1)/2 ·
sin
(

qaN
2

)
sin
(qa

2
) . (5.26)

The complex exponent e−iqa(N−1)/2 does not enter the final result for the
intensity of the scattered wave, since I ∝ |E|2. Finally, for the intensity of
the scattered wave from a 3D crystal we can write:
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Fig. 5.9: Intensity of the scattered wave ob-
tained from Eq. (5.27) in 1D case for different
values of N .

I ∝

∣∣∣∣∣∣
sin
(

qa1N1
2

)
sin
(qa1

2
)
∣∣∣∣∣∣
2

·

∣∣∣∣∣∣
sin
(

qa2N2
2

)
sin
(qa2

2
)
∣∣∣∣∣∣
2

·

∣∣∣∣∣∣
sin
(

qa3N3
2

)
sin
(qa3

2
)
∣∣∣∣∣∣
2

. (5.27)

The scattered intensity reaches maximum when the denominators in
Eq. (5.27) are close to zero, i.e. at the points

qa1 = 2πh
qa2 = 2πk ⇔ q = Ghkl.

qa3 = 2πl
(5.28)

This is equivalent to Bragg peaks from an infinite crystal. The value in the
maximum can be obtained from the L’Hôpital rule:

Imax ∝ (N1N2N3)2. (5.29)

The width of the peaks ∆q can be estimated as a distance between two
points around the Bragg peak when the nominator equals to zero:

∆q = 2π
aN

. (5.30)
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The width of the peak can be different in three different directions of the
reciprocal space vectors b1, b2 and b3.

Dependence of the scattered intensity given by Eq. (5.27) is shown in
Fig. 5.9 for a 1D case. It follows that the Bragg peaks are narrow for the
large crystals (N ≫ 1), while for the smaller crystals the Bragg peaks get
broader. This effect is called Scherrer’s broadening. By measuring the width
of the Bragg peaks, one can estimate the size of the crystals L ≈ aN (or
crystalline domains). This is often written as the Scherrer equation:

L = Kλ

∆(2θ) cos θ . (5.31)

Here K ∼ 1 is a dimensionless constant which depends on the shape of
the crystal, θ = arcsin

(
qλ
4π

)
is the scattering angle of the Bragg peak, and

∆(2θ) = 2∆qλ
4π cos θ is the width of the Bragg peak (in the units of the scattering

angle) Eqs. (5.30) written in reciprocal space and (5.31) written in real space
are equivalent to each other.

5.2.4 Ewald’s sphere and scans across the reciprocal space
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Fig. 5.10: (a) Scheme of the scattering in real
space (detector scan). (b) 2D scheme of the
construction of Ewald’s sphere in reciprocal
space. The sphere passes through the origin
q = 0. Blue points indicate the vectors Ghkl of
the reciprocal lattice. According to Eq. (5.24),
a Bragg peak occurs only if q = Ghkl, i.e. only
if the Ewald sphere intersects with one of the
sites of the reciprocal lattice.

In most practical cases, X-ray scattering can be considered to be elastic.
This means that the wave vectors of the incoming and scattered photons
have the same length, |kin| = |kout| = k = 2π/λ. From this it follows that
the end of the scattering vector q = kout − kin in reciprocal space lies on
a sphere with radius k = 2π/λ, called Ewalds’ sphere. The construction of
Ewald’s sphere is shown in Fig. 5.10. From this scheme one can see, that by
placing the detector at different positions, i.e. by scanning scattering angle
2θ, one always probes the points of reciprocal space lying on the Ewald
sphere.

Ewald’s sphere is extremely useful when a scan of a reciprocal space of
a crystalline sample is performed [48]. Three most common type of scans
with a point detector (1D detector) are detector scans, specular scans and
rocking scans. Let us discuss the in more detail.

• Detector scan (2θ scan): the sample is fixed, the incoming beam is
also fixed, the 1D detector is moving around the sample, so that the
scattering angle 2θ is changing. This situation is essentially illustrated
by Fig. 5.10. In this type of scan, one probes reciprocal space along
the curved Ewald sphere.

𝑘!" 𝑘#$%𝜃𝜃
𝜃

𝑞 =
4𝜋
𝜆 sin 𝜃

𝑘!" 𝑘#$%
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𝜃 + ∆𝜃

𝑞 =
4𝜋
𝜆
sin 𝜃 + ∆𝜃 

Fig. 5.11: Scheme of a specular (θ − 2θ) scan,
during which the incoming beam and the de-
tector are rotated simultaneously by the same
angle ∆Θ. In this case, the scattering vector
q changes its length, but not the direction.

In the case of a 2D detector, the image recorded by the detector is
therefore a cross-section of the reciprocal space by the curved Ewald
sphere.

• Specular scan (θ−2θ scan): the sample is fixed, the incoming beam
and the 1D detector are rotated simultaneously by the same angle ∆Θ,
so that the scattering vector q changes its length but not the direction.
In a laboratory setup, this is most commonly done by rotating the X-
ray tube and the detector simultaneously around the fixed sample,
as illustrated in Fig. 5.11. The same scan can be also performed if
the incoming beam is fixed, and the sample is rotated by an angle θ
while the detector is simultaneously rotated by twice the angle 2θ. In
this type of scan, one probes reciprocal space along a straight line in
reciprocal space, usually normal to the sample’s surface.
Illustration of the probed reciprocal space in the case of a 2D detector
is shown in Fig. 5.13
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• Rocking scan (ω scan): the sample is being rotated (rocked), while
the incoming beam and the detector are fixed. This type of scan is
illustrated in Fig. 5.12. The same effect can be achieved on a fixed
sample, when the incoming beam and the detector are rotated around
the angle over the same angle ω but in opposite directions. In this
scan, the length of the scattering vector q remains constant, but its
direction changes during the scan. In a way, this gives one a cross-
section of the reciprocal space in the direction perpendicular to the
direction of a specular scan.
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Fig. 5.12: (a) Scheme of a rocking (ω) scan
when the sample is rocked by an angle ω, while
the incoming beam and the detector remain
still. (b) The same scan in the geometry when
the sample is fixed, and the X-ray source and
the detector are rotated by the angle ω but in
opposite directions.

Illustration of the probed reciprocal space for the rocking scan in the
case of a 2D detector is shown in Fig. 5.13

5.2.5 Crystal structure factor (forbidden reflections)

Let us turn back to Eq. (5.23), and consider the intensity of a Bragg reflec-
tion:

I ∝
∣∣∣∑

n
e−iqRn

︸ ︷︷ ︸
lattice sum

∣∣∣2 ·
∣∣∣∑
j

fj(q)e−iqρj

︸ ︷︷ ︸
structure fator

∣∣∣2 ∝ N2 · |Fhkl|2. (5.32)

We have already shown that the diffraction pattern from an ideal crystal
consists of sharp Bragg peaks observed when q = Ghkl (Eq (5.24)), i.e.
when the scattering from all unit cells happens in phase. The magnitude of
the scattered wave is therefore proportional to the number of unit cells N ,
and intensity is proportional to N2.

The second factor which determines the intensity of a Bragg reflection
- the structure factor Fhkl - represents the scattering from a single unit
cell. Here we should not that for an ideal crystal it only makes sense to
consider the structure factor only at the positions of the Bragg peaks, i.e.
for q = Ghkl, because otherwise the scattering intensity is zero regardless
the structure factor.

For these given values q = Ghkl, the structure factor can be directly
calculated, because it consists of a finite number of terms, which is equal to
the amount of atoms within a unit cell.

For a simple unit cell, which contains only a single atom with an atomic
scattering factor f(q), the structure factor equals to fe−iqρ. By selecting
the origin of the unit cell at the point where the atom is, we can set ρ = 0,
which results in Fhkl = f .

For a body-centered structure, such as represented in Fig. 5.2, the basis
ρj consists of two atoms:

ρj =
{

0, for j = 1,
1
2 (a1 + a2 + a3), for j = 2.

(5.33)

Using ai · bj = 2πδi,j (Eq. (5.11), the structure factor can be easily calcu-
lated:

Fhkl =
2∑
j=1

fj exp
[

− i(hb1 + kb2 + lb3)ρj
]

=f1 exp
[

− i(hb1 + kb2 + lb3) · 0
]

+f1 exp
[

− i(hb1 + kb2 + lb3) · 1
2(a1 + a2 + a3)

]
=f1 + f2 exp

[
− π(h+ k + l)

]
.

(5.34)
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Since the Miller indices are integer numbers, the exponential in Eq. (5.34)
can take only two values: +1 if (h+k+l) is an even number or -1 if (h+k+l)
is an odd number. The intensity of the corresponding Bragg reflections is
therefore proportional to (f1 + f2)2 or (f1 − f2)2. If the two atoms in the
body-centered unit cell are the same (i.e. f1 = f2), the intensity of some
Bragg peaks will be zero. Such peaks, for which there is a destructive in-
terference of the waves scattered by different atoms within a crystal unit
cell, are called forbidden reflections. These reflection are allowed by the
Bragg law, but their intensity is zero because of the structure factor. Devia-
tions of the atoms from their position may break the interference condition,
and the forbidden reflections will have small but non-zero intensity. Exper-
imentally it is sometimes easier to detect the change in the intensity of a
forbidden reflection due to a structural phase transition (intensity is zero
for one structure and small but non-zero for another structure), while the
intensity of bright allowed reflections may change only insignificantly.

The same calculations, as performed in Eq. (5.34), can be done for other
crystal structures, but the conditions for the allowed and forbidden peaks
will depend on the structure. A short summary is given below:

• simple: all reflections are allowed.

• body-centered: reflections with (h + k + l) is an even number -
allowed, reflections with (h+ k + l) is an odd number - forbidden.

• face-centered: reflections for which h, k, l have the same oddity -
allowed (for example, (2, 0, 4̄)), reflections for which h, k, l are mixed -
forbidden (for example, (3, 0, 0)).
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Fig. 5.13: (a) 3D scheme of the scattering ex-
periment with a 2D detector in real space. (b)
Cross-sections of the reciprocal space which
are recordered by the 2D detector during a
specular scan and a rocking scan. The coor-
dinate system is in the reference frame of the
sample. Note that each detector image cor-
responds to a cross-section of the reciprocal
space by a curved sphere.

5.3 Powder diffraction

Most of materials exist in a polycrystalline form. It means that they do not
crystallize in single crystal but consist of small crystal grain which can be
oriented in any direction. The same description can be applied to powders,
in which each particle is a small single crystal with a random orientation.
Large single crystals, as were considered in the previous chapter, are rather
exception. Let us consider diffraction from a polycrystalline or powder sam-
ple.

The reciprocal lattice of each small crystal grain looks as it is shown in
Fig. 5.10b, and the diffraction pattern from it is determined by the cross-
section of the reciprocal lattice with the Ewald sphere. To take into account
the random orientation of the grain, we have to average the reciprocal lattice
over all possible orientations. For each new orientation of the grain, the
reciprocal lattice is rotated in 3D space around its origin at q = 0. It means,
that if all orientations are equally possible, each Bragg peak at q = Ghkl will
be "smeared" over a sphere of radius |Ghkl| with a center at q = 0. Such a
sphere always intersects with the Ewald sphere, and the intersection is always
a ring around the direction kin, as can be seen from Fig. 5.10b. For such a
ring, the scattering angle 2θ is fixed by the Bragg law (i.e. it is determined
by the crystal lattice parameters), but due to a random orientation of the
crystal grain, the scattering can happen in any direction with respect to the
incoming beam kin.

This produces cones of scattering, in which the scattering is possible.
On a detector, one can see not single Bragg peaks (as in the case of a single
crystal), but rings around the direction of an incoming beam kin. These
rings are called Debye-Scherrer powder diffraction rings, and their origin
from individual Bragg peaks is illustrated in Fig. 5.14. If the crystal grains

78



have some preferred orientation, the Debye-Scherrer rings may not have a
uniform intensity, or they can split into the arcs.
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Fig. 5.14: (a) Scheme of the scattering from
a singe crystal. Several sharp Bragg reflec-
tions are visible a detector. (b) Scatter-
ing from a polycrystalline sample, where the
grains have some preferred orientation. The
Bragg peaks are "smeared" in the angular di-
rection due some "randomness" in the orienta-
tion of individual crystal grains. (c) Scatter-
ing from a powder sample, where the grains
gave a random orientation. The Bragg peaks
are smeared so much, that they from uniform
Debye-Scherrer rings.
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Appendices
A Fourier transform and its properties

The Fourier transform of the electron density naturally appears when con-
sidering diffraction of a plane monochromatic wave (see Eqs. (1.28-1.29)).
The same is true for neutron diffraction (Eq. (1.48)). This is a result of two
main assumptions that hold true for many scattering experiments (but not
all):

• approximation of weak interaction of a plane monochromatic wave (X-
rays or neutrons) with matter, which allows one to neglect absorption
and multiple scattering. This approximation is called kinematic scat-
tering. Including absorption and multiple scattering into the diffrac-
tion theory is subject of the dynamical theory.

• approximation of far field diffraction (Fraunhofer diffraction), which
allows one to consider the scattered wave as plane waves. This ap-
proximation is valid when D2/(Rλ) ≪ 1, where D is the size of the
scattering system and R is the distance from the system to the ob-
server.

Therefore, the Fourier transform appears multiple times in this text.
Below we give a list of some identities related to the Fourier transform.

• Definition of the Fourier transform:24

F (q) =
∫ ∞

−∞
f(x)e−iqxdx (direct Fourier transform) (A.1)

f(x) = 1
2π

∫ ∞

−∞
F (q)eiqxdq (inverse Fourier transform) (A.2)

• Properties of the Fourier transform:

f(x) = ag(x) + bh(x) ⇐⇒ F (q) = aG(q) + bH(q) (linearity) (A.3)

h(x) = f(x− x0) ⇐⇒ H(q) = F (q)eix0q (shifting) (A.4)

h(x) = f(ax) ⇐⇒ H(k) = 1
|a|
F (q/a) (scaling) (A.5)

f(x) F−→ F (q) ⇐⇒ F (q) F−→ 2πf(−x) (duality) (A.6)

F (0) =
∫ ∞

−∞
f(x)dx (normalization) (A.7)

• Definition of the convolution:

f(x) ⊗ g(x) ≡ (f ⊗ g)(x) =
∫ ∞

−∞
f(x′)g(x− x′)dx′ (A.8)

• Convolution theorem:

f(x) = g(x) ⊗ h(x) ⇐⇒ F (q) = G(q) ×H(q) (A.9)

f(x) = g(x) × h(x) ⇐⇒ F (q) = 1
2πG(q) ⊗H(q) (A.10)

24Other definitions are also common in literature. They may differ from the given one
by the prefactor and the exponential under the integral (e−i2πqx instead of e−iqx).
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• Fourier transform of a derivative:

f(x) = dg

dx
⇐⇒ F (q) = iqG(q) (A.11)

• Fourier transform of the Gaussian function

g(x) = 1√
2πσ2

e− x2
2σ2

G(q) = 1√
2πσ2

∫ ∞

−∞
e− x2

2σ2 e−iqxdx = e
q2σ2

2

(A.12)

• Fourier transform of the Lorentzian function

l(x) = a

π(a2 + x2)

L(q) =a

π

∫ ∞

−∞

1
x2 + a2 e

−iqxdx = e−a|q|
(A.13)

• Integral representation of the Dirac delta function∫ ∞

−∞
e−iqxdx = 2πδ(q) (A.14)

• Fourier transform of the Heaviside step function

h(x) =
{

1, if x ≤ 0
0, if x > 0

H(q) =
∫ ∞

−∞
h(x)e−iqxdx = 1

iq
+ πδ(q)

(A.15)

• Fourier transform of the rectangular function

r(x) =
{

1, if |x| ≤ a/2
0, if |x| > a/2

R(q) =
∫ ∞

−∞
r(x)e−iqxdx = a

sin qa
2

qa
2

= a · sinc
(qa

2

) (A.16)

B Incoherent X-ray scattering from a many-electron atom

Let us consider coherent and incoherent (i.e. elastic and inelastic) X-ray
scattering from an atom with Z electrons. As it was discussed in section
1.1.7, a coherent X-ray scattering (elastic) is related to the scattering pro-
cess in which electrons of the atom remain in their ground function. More
specifically, the coherent X-ray scattering cross-section can be written as( ∂σ

∂Ω

)
coh

=
( ∂σ
∂Ω

)
e

· |M00|2, (B.17)

where
(
∂σ
∂Ω
)
e

is the Thomson scattering cross-section for a single electron
given by Eq. (1.18) and M00 = ⟨0| V̂ |0⟩ is the corresponding matrix element.
Let us denote by ψ0 a many-electron wave function of the ground state, which
depends on coordinates of all electrons r1, r2, ..., rZ . Let us also denote
by V̂ =

∑Z
n=1 e

−iqrn the operator which in the first order approximation
describes the interaction of each electron with the electromagnetic field of
the X-ray wave.
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Then the matrix element M00 can be explicitly written as

M00 =
Z∑
n=1

∫
ψ∗

0(r1, ..., rZ)e−iqrnψ0(r1, ..., rZ)dr1...drZ . (B.18)

The integration over all coordinates of the electrons, except of rn, can be
performed. In result, one obtains the absolute squared value of a single-
electron wave function |ϕn(rn)|2, which determines the probability of the
nth electron to be found at the point rn. The total electron density can be
calculated as a sum of all |ϕn(r)|2:

ρel(r) =
Z∑
n=1

|ϕn(r)|2 (B.19)

We can then write

M00 =
Z∑
n=1

∫
|ϕn(rn)|2e−iqrndrn =

∫
ρel(r)e−iqrdr ≡ f(q). (B.20)

This result matches with the X-ray scattering form factor of an atom f(q)
derived in Eq. (1.29). Finally, the coherent X-ray scattering cross-section
can be written via the atomic scattering form factor as( ∂σ

∂Ω

)
coh

=
( ∂σ
∂Ω

)
e

· |f(q)|2. (B.21)

This result has the same structure as Eq. (1.38) for an atom with a single
electron.

Calculating the incoherent scattering function s(q), introduced in Eq. (1.32)
is a more difficult problem. As it was discussed in section 1.1.7, an inco-
herent X-ray scattering (inelastic) involves transition of the electrons to the
excited state ν. To calculate the incoherent scattering cross-section, one has
to sum over all possible excited states (compare with Eq. (B.17))( ∂σ

∂Ω

)
inc

=
( ∂σ
∂Ω

)
e

·
∑
ν>0

|M0ν |2︸ ︷︷ ︸
s(q)

=
( ∂σ
∂Ω

)
e

· s(q), (B.22)

where

M0ν = ⟨ν| V̂ |0⟩ =
Z∑
n=1

⟨ν| e−iqrn |0⟩

=
Z∑
n=1

∫
ψ∗
ν(r1, ..., rZ)e−iqrnψ0(r1, ..., rZ)dr1...drZ .

(B.23)

Here ψν(r1, ..., rZ) denotes the many-electron wave function in the excited
state ν > 0. The function s(q) =

∑
ν>0 |M0ν |2 is called incoherent scattering

function.
Now we can do the same trick as in Eq. (1.37), i.e. add and subtract

|M00|2 and use the closure relation (see footnote 3 on page 8)∑
ν>0

|M0ν |2 =
∑
ν≥0

|M0ν |2 − |M00|2 =
∑
ν≥0

⟨0| V̂ ∗ |ν⟩ ⟨ν| V̂ |0⟩ − |f(q)|2

= ⟨0| V̂ ∗ · V̂ |0⟩ − |f(q)|2.
(B.24)
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Here, however, in contrast to Eq. (1.37),

V̂ ∗ · V̂ =
Z∑

m=1
eiqrm ·

Z∑
n=1

e−iqrn =
Z∑

n,m=1
e−iq(rn−rm) = Z +

Z∑
n,m=1
n ̸=m

e−iq(rn−rm),

(B.25)
where we separated Z diagonal terms for which n = m. Finally, the inco-
herent scattering cross-section can be written as

( ∂σ
∂Ω

)
inc

=
( ∂σ
∂Ω

)
e

·
[
Z − |f(q)|2 + ⟨0|

Z∑
n,m=1
n ̸=m

e−iq(rn−rm) |0⟩
]

︸ ︷︷ ︸
s(q) - incoherent scattering function

. (B.26)

In the case of an atom with a single electron (Z = 1), this result matches
with Eq. (1.38).

Evaluation of the last term in Eq. (B.26) can be generally performed un-
der certain approximation. For example, let us assume that the ground
many-electron wave function can be factorized, i.e. ψ0(r1, r2, ..., rZ) ≈
ϕ1(r1) · ϕ2(r2)...ϕZ(rZ), where ϕn is a single-electron wave function of the
nth electron. In this case,

⟨0| e−iq(rn−rm) |0⟩ =
∫
ϕ∗
n(rn)ϕ∗

m(rm) · e−iq(rn−rm) · ϕn(rn)ϕm(rm)drndrm

= fn(q) · f∗
m(q),

(B.27)
where

fn(q) =
∫
ϕ∗
n(r)e−iqrϕn(r)dr (B.28)

is the scattering form factor of the nth electron.
The total scattering form factor of an atom is the sum scattering form

factors of all electrons f(q) =
∑
n fn(q) (see Eq. (B.20)). Thus, the term

|f(q)|2 in Eq. (B.26) can be evaluated as

|f(q)|2 =
∣∣ Z∑
n=1

fn(q)
∣∣2 =

Z∑
n=1

fn(q) ·
Z∑

m=1
f∗
m(q) =

Z∑
n,m=1

fn(q)f∗
m(q). (B.29)

Finally, inserting results of Eqs. (B.27) and (B.29) into the formula (B.26)
for the incoherent scattering cross-section, we can see that the off-diagonal
elements with n ̸= m cancel out, which leads to the final result:

( ∂σ
∂Ω

)
inc

=
( ∂σ
∂Ω

)
e

·
[
Z −

Z∑
n,m=1

fn(q)f∗
m(q) +

Z∑
n,m=1
n ̸=m

fn(q)f∗
m(q)

]

=
( ∂σ
∂Ω

)
e

·
[
Z −

Z∑
n=1

|fn(q)|2
]

︸ ︷︷ ︸
s(q)

.

(B.30)

From the definition of the scattering form factor of the nth electron
(Eq. (B.28)), one can obtain the asymptotic behavior for small and large
q-values:

fn(q → 0) = 1,
fn(q → ∞) = 0.

(B.31)

83



Therefore, one obtains the following asymptotic behavior for the atomic
scattering form factor:

f(q → 0) =
Z∑
n=1

fn(0) = Z,

f(q → ∞) =
Z∑
n=1

fn(∞) = 0,

(B.32)

which matches with Eq. (1.30). For the incoherent scattering function s(q),
using Eqs. (B.26-B.28), we obtain

s(q → 0) = Z − |f(0)|2︸ ︷︷ ︸
=Z2

+
Z∑

n,m=1
n ̸=m

fn(0)f∗
m(0)

︸ ︷︷ ︸
=Z2−Z

= 0,

s(q → ∞) = Z − |f(∞)|2︸ ︷︷ ︸
=0

+
Z∑

n,m=1
n ̸=m

fn(∞)f∗
m(∞)

︸ ︷︷ ︸
=0

= Z.

(B.33)

Eqs. (B.21) and (B.32) mean that the coherent X-ray scattering from
an atom scales with the number of electrons as ∝ Z2, and it is large at
small values of q. Eqs. (B.22) and (B.33) mean that the incoherent X-ray
scattering scales as ∝ Z, and it is large for the large values of q. Therefore,
the incoherent X-ray scattering becomes significant (not much smaller than
the coherent X-ray scattering) for large scattering angles and light elements.
This is illustrated in Fig. 1.15 and, for example, in [8].

C The Ostrogradsky-Gauss theorem 𝑉
𝑆 𝐹⃗

Fig. C1: Volume V with a boundary S and the
vector field F.

The Ostrogradsky-Gauss theorem states that the volume integral of the di-
vergence divF equals the surface integral of F over the boundary S:∫

V

divFdr =
∮
S

FdS, (C.34)

where F a smooth vector field, V is a compact volume in 3D with a piecewise
smooth boundary S (Fig. C1).

Let us calculate the left hand side of Eq. (C.34) for the vector field

F = − iA
qAeiqr, (C.35)

where A is an arbitrary vector. The divergence of F is

divF = ∂F
∂r = − iA

qA · (iq)eiqr = eiqr. (C.36)

Substituting Eqs. (C.35) and (C.36) in (C.34), we obtain∫
V
eiqrdr = − i

qA

∮
S
eiqr(AdS). (C.37)

Multiplying Eq. (C.37) with its complex conjugation, we arrive to the inte-
gral from Eq. (2.58):∫∫

V
e−iq(r−r′)drdr′ =

∮
S

∮
S′

e−iq(r−r′)

(qA)2 (AdS)(AdS′). (C.38)
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D The Helmholtz equation for X-rays

Taking the curl of the both sides of the Faraday equation

rotE = −1
c

∂B
∂t
, (D.1)

we obtain
rot rotE = −1

c

∂

∂t
rotB. (D.2)

Then we can use Ampère’s circuital law

rotB = 4π
c

j + εµ

c

∂E
∂t

= n2

c

∂E
∂t
, (D.3)

where we assumed a non-magnetic insulator (µ = 1 and j = 0) with the
index of refraction n2 = µε = ε.

Substituting Eq. (D.3) into Eq. (D.2), we obtain

rot rotE = −n2

c2
∂2E
∂t2

= n2k2E, (D.4)

where the time derivative was calculated assuming the monochromatic elec-
tric field E ∝ eiωt with the dispersion ω = k · c. Using the identity

rot rotE = grad divE − ∇2E, (D.5)

and the absence of free electrical charges

divE = 0, (D.6)

we can rewrite Eq. (D.4) as

−∇2E = n2k2E, (D.7)

which is the Helmholtz equation (2.77) for the electromagnetic wave.

E Scattering reversibility

Let us consider the exact equation (2.89) for the scattering amplitude

f(k1,k2) = − 1
4π ⟨eik2r|V |ψk1(r)⟩ . (E.1)

The inversion of time does not change the probabilities, i.e. f(k1,k2) =
f(−k2,−k1) (Fig. E1). Writing explicitly

𝑘!
𝑉(𝑟)

𝑘"

−𝑘!
𝑉(𝑟)

−𝑘"

time 
inversion

Fig. E1: Illustration of the time inversion in a
scattering process.

f(k1,k2) = − 1
4π

∫
e−ik2rV (r)ψk1(r)dr = − 1

4π ⟨eik2r|V |ψk1(r)⟩

f(−k2,−k1) = − 1
4π

∫
eik1rV (r)ψ−k2(r)dr = − 1

4π ⟨ψ∗
−k2

(r)|V |eik1r⟩ ,

(E.2)

we immediately arrive to the identity

⟨eik2r|V |ψk1(r)⟩ = ⟨ψ∗
−k2

(r)|V |eik1r⟩ . (E.3)
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F Isothermal compressibility

Let us find the relation between the averaged square fluctuations of the
volume ⟨∆V 2⟩ and the isotermal compressibility of the system

χT = − 1
V

(∂V
∂P

)
T
. (F.1)

In order to do this, we need to calculate the work W which must be
supplied to compress our system from the volume V0 to V0−∆V (see Fig. F1).
During the compression of the system, its pressure will increase from P0 to
P = P0 + ∆P . In the linear approximation, we can write that the pressure
in the system will be

P (V ) = P0 +
(∂P
∂V

)
T

(V − V0). (F.2)

Thus, the work needed to compress the system is

Fig. F1: To compress the system with a piston
from the volume V0 to V0 − ∆V one has to
supply the work W . During the compression,
the pressure of the system will increase from
P0 to P0 + ∆P .

W = −
∫ V0−∆V

V0

(P − P0)dV

= −
∫ V0−∆V

V0

(∂P
∂V

)
T

(V − V0)dV v=V0−V= −
∫ ∆V

0

(∂P
∂V

)
T

(−v)d(−v)

= −
(∂P
∂V

)
T

· 1
2∆V 2 = 1

χTV
· 1

2∆V 2.

(F.3)

Therefore, fluctuation of the system volume ∆V has the "energy cost"
of W = −

(
∂P
∂V

)
· 1

2 ∆V 2. The equipartition theorem states that the average
energy related to this fluctuation (vibrational degree of freedom) equals to
kBT/2, so

⟨W ⟩ = 1
χTV

· 1
2 ⟨∆V 2⟩ = kBT

2 . (F.4)

Therefore,
⟨∆V 2⟩ = kBTχTV. (F.5)

G Exponential of a Hamiltonian operator

If |ν⟩ and Eν are the eigenfunction and eigenvalue of a system with a Hamil-
tonian Ĥ, then it satisfies a stationary Schrödinger equation

Ĥ |ν⟩ = Eν |ν⟩ . (G.1)

Applying the Hamiltonian operator Ĥ to the both sides of Eq. (G.1), we
obtain

ĤĤ |ν⟩ = EνĤ |ν⟩ = E2
ν |ν⟩ , (G.2)

which can be easily generalized to

Ĥ...Ĥ︸ ︷︷ ︸
n times

|ν⟩ = Ĥn |ν⟩ = Enν |ν⟩ . (G.3)

The exponential of the operator Â is defined by formally applying Taylor
expansion

eÂ =
∞∑
n=0

1
n! Â

n. (G.4)
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Thus, using Eq. (G.3), we can define e−i Ĥt
ℏ and show that

e−i Ĥt
ℏ |ν⟩ =

∞∑
n=0

1
n!

(−iĤt
ℏ

)n
|ν⟩ =

∞∑
n=0

1
n!

(−iEνt
ℏ

)n
|ν⟩ = e−iEν t

ℏ |ν⟩ .

(G.5)
Since e−iEν t

ℏ is just a number (not an operator), we can change the order
in the last expression in Eq. (G.5) and write

|ν⟩ · e−iEν t
ℏ = e−i Ĥt

ℏ |ν⟩ , (G.6)

and analogously, for ⟨ν|,

e−iEν t
ℏ · ⟨ν| = ⟨ν| ei Ĥt

ℏ . (G.7)

Combining Eqs. (G.6) and (G.7), we obtain Eq. (4.19) in the main text:

e−i
E

ν′ t

ℏ · ⟨ν′| Â |ν⟩ · e−iEν t
ℏ = ⟨ν′| ei Ĥt

ℏ · Â · e−i Ĥt
ℏ |ν⟩ , (G.8)

where Â = e−iqRn .

H Heisenberg picture

There are several approaches to the time-evolution in quantum mechanics.
The most common approach, so-called Schrödinger picture, states that the
wave function ψ of a system depends on time according to the Schrödinger
equation:

iℏ
∂ψ(x, t)
∂t

= Ĥψ(x, t), (H.1)

where we denoted as x all the arguments of the wave function ψ, except of
the time t. In Schrödinger picture, the experimentally measurable average
value of any operator Â is

Ā(t) =
∫
ψ∗(x, t)Âψ(x, t)dx = ⟨ψ(x, t)| Â |ψ(x, t)⟩ . (H.2)

There is an alternative approach, when one treats time-evolution as some
operator T̂ (t) acting on the wave function ψ(x, t = 0). One can formally
write

T̂ (t)ψ(x, 0) = ψ(x, t). (H.3)

If the Hamiltonian of the system does not explicitly depend on time
(i.e. the system is conservative), one can find the solution of the partial
differential equation (H.1). It is easy to check that

ψ(x, t) = e−i Ĥ
ℏ tψ(x, 0) (H.4)

fulfills the Schrödinger equation (H.1). Therefore, for the conservative sys-
tem, the time-evolution operator T̂ is

T̂ (t) = e−i Ĥ
ℏ t. (H.5)

In Dirac notation, we can write

|ψ(x, t)⟩ = T̂ (t) |ψ(x, 0)⟩ = e−i Ĥ
ℏ t |ψ(x, 0)⟩ ,

⟨ψ(x, t)| = ⟨ψ(x, 0)| T̂+(t) = ⟨ψ(x, 0)| ei Ĥ
ℏ t.

(H.6)
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This gives us the following expression for the average value of the operator
Â:

Ā(t) = ⟨ψ(x, 0)| ei Ĥ
ℏ t︸ ︷︷ ︸

⟨ψ(x,t)|

Â e−i Ĥ
ℏ t |ψ(x, 0)⟩︸ ︷︷ ︸
|ψ(x,t)⟩

= ⟨ψ(x, 0)| ÂH(t) |ψ(x, 0)⟩ , (H.7)

where
ÂH(t) = T̂+(t) · Â · T̂ (t) = ei

Ĥ
ℏ tÂe−i Ĥ

ℏ t (H.8)

is called Heisenberg representation of the operator Â.
In Schrödinger picture (Eq. (H.2)) we assumed time-independent opera-

tor Â, and all information about the evolution in time was "recorder" in the
time-dependent wave function ψ(x, t). In Heisenberg picture (Eq. (H.7)) we
transferred the time-dependence into the operator ÂH(t) defined in Eq. (H.8),
while the wave-function ψ(x, 0) is now time-independent. This is schemati-
cally illustrated in Fig. H1.

𝜓(
𝑡)

Schrödinger	picture

𝜓(
0)

Heisenberg	picture

Fig. H1: Red arrow represents a wave function
ψ of a system. Three black axis schematically
shows different eigenfunctions of the operator
Â. The projection of the wave function ψ onto
a certain eigenfunction gives the probability to
measure a certain value of the physical quan-
tity A. In Schrödinger picture, time evolution
is considered as time dependence of the wave
function (its time evolution is schematically
shown by a blue trajectory in upper panel).
In Heisenberg picture, the wave function is
considered to be constant, while the operator
ÂH(t) depends on time, which means that the
eigenfunctions also depend on time (schemati-
cally shown by blue trajectories in lower pan-
nel).

By definition, the Heisenberg operator ÂH(t) determines the value of the
quantity A at the moment of time t (Eq. (H.7)). At time t = 0 the Heisenberg
and Schrödinger operators coincide, as it can be seen from Eq. (H.8):

ÂH(0) = ei
Ĥ
ℏ 0Âe−i Ĥ

ℏ 0 = Â. (H.9)

To illustrate, how one works with the Heisenberg operators, it is instruc-
tive to show some calculations. For example, let us show that if ÂH(t1) and
B̂H(t2) are two Heisenberg operators, the matrix element ⟨ν| ÂH(t1)B̂H(t2) |ν⟩
can only depend on the difference t2 − t1. Indeed,

⟨ν| ÂH(t1)B̂H(t2) |ν⟩ = ⟨ν| ei Ĥ
ℏ t1Âe−i Ĥ

ℏ t1ei
Ĥ
ℏ t2B̂e−i Ĥ

ℏ t2 |ν⟩

=e−iEν
ℏ t1 ⟨ν| Âe−i Ĥ

ℏ (t1−t2)B̂e−i Ĥ
ℏ t2 |ν⟩

= ⟨ν| Âe−i Ĥ
ℏ (t1−t2)B̂e−i Ĥ

ℏ t2e−i Ĥ
ℏ t1 |ν⟩

= ⟨ν| Âei Ĥ
ℏ (t2−t1)B̂e−i Ĥ

ℏ (t2−t1) |ν⟩
= ⟨ν| ÂH(0)B̂H(t2 − t1) |ν⟩

, (H.10)

where we used Eqs. (G.6), (G.7) and (H.8).
Let us also prove the following identity:

⟨A(0)B(t)⟩ =
〈
B(t)A

( iℏ
kBT

)〉
, (H.11)

where angular brakets denote ensemble averaging (as it was introduced in
section 4.1.3)

⟨C⟩ = 1
Z

∑
ν

ρν ⟨ν| Ĉ |ν⟩ . (H.12)

Assuming classical Boltzman statistics, we can write:

⟨A(0)B(t)⟩ = 1
Z

∑
ν

e−Eν/kBT ⟨ν| ÂH(0)B̂H(t) |ν⟩ . (H.13)

Using definition of the Heisenberg operator (H.8) and the property ( G.6),
we can modify the expression (H.13) as following:

⟨A(0)B(t)⟩ = 1
Z

∑
ν

⟨ν| Â · T̂+B̂T̂ · e−Ĥ/kBT |ν⟩ . (H.14)
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Using the closure relation,25 one can exchange the order of operators:

⟨A(0)B(t)⟩ = 1
Z

∑
ν

⟨ν| T̂+B̂T̂ · e−Ĥ/kBT · Â |ν⟩ . (H.15)

Now we can replace ⟨ν| with e−Eν/kBT ⟨ν| · eĤ/kBT :

⟨A(0)B(t)⟩ = 1
Z

∑
ν

e−Eν/kBT ⟨ν| eĤ/kBT · T̂+B̂T̂ · e−Ĥ/kBT︸ ︷︷ ︸
B̂H (t−iℏ/kBT )

Â |ν⟩ , (H.16)

where we used

eĤ/kBT ei
Ĥ
ℏ tB̂e−i Ĥ

ℏ te−Ĥ/kBT = B̂H

(
t− iℏ

kBT

)
. (H.17)

Thus, Eq. (H.16) can be simplified to

⟨A(0)B(t)⟩ = 1
Z

∑
ν

e−Eν/kBT ⟨ν| B̂H
(
t− iℏ

kBT

)
ÂH(0) |ν⟩ . (H.18)

Using the fact, that the value of the matrix element in Eq. (H.18) can depend
only on difference between the arguments (see Eq. (H.10)), we can finally
write

⟨A(0)B(t)⟩ = 1
Z

∑
ν

e−Eν/kBT ⟨ν| B̂H(t)ÂH
( iℏ
kBT

)
|ν⟩ =

〈
B(t)A

( iℏ
kBT

)〉
,

(H.19)
which proves Eq. (H.11).

25for any operators Â and B̂ and complete orthonormal sets of eigenfunctions ν and ν′:∑
ν

⟨ν| ÂB̂ |ν⟩ =
∑
ν,ν′

⟨ν| Â |ν′⟩ ⟨ν′| B̂ |ν⟩ =
∑
ν,ν′

⟨ν′| B̂ |ν⟩ ⟨ν| Â |ν′⟩ =
∑

ν′

⟨ν′| B̂Â |ν′⟩
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