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SAXS 

 

Small-Angle Scattering and Data Analysis 

1. Introduction  

Small-angle scattering (SAS) is a powerful technique to study structure and interactions 

of systems with the size on the order of 10 to 1000 Å. SAS includes light scattering (due 

to the large wavelength), small angle X-ray and Neutron scattering (Lindner and Zemb 

2002). In each of these techniques radiation is elastically scattered by a sample and the 

analysis on the resulting scattering pattern provide the information about size, shape and 

correlations of the sample. Unless stated otherwise, we will focus on SAXS, SANS 

shares the same basic principle as SAXS, whereas some fundamental differences will be 

addressed. Since most of the structures in soft matter systems, such as proteins, colloid, 

polymers and micelles formed by amphiphilic molecules located in this order, SAS is 

widely used in soft condensed matter physics (FIG. 1). The systems studied by SAS can 

be a dispersed particulate system, nonparticulate mixtures, periodic system and so on. In 

this project, we are interested in a dispersed particulated system, i. e. particles (gold 

colloid, proteins) dispersed in a uniform matrix of a solvent, where SAS provides 

information (a) on the size and (b) on their correlations and thus on their interactions.  

 

 

 

FIG. 1, the length scales of typical soft 

matter systems and corresponding 

techniques used in each length scale. 
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Scattering length and scattering length density: the local interaction of 

radiations with materials is characterized by a scattering length bi, and its 

density �= ii brr )()( ρρ , with ρi(r) being the local density of scatterers of 

type i. For X-rays, the photons interact with every electron in the sample, and 

the scattering length is the Thomson scattering length b=0.282*10-14m. For 

light scattering, the photon energy is much lower than X-rays, the photos are 

scattered only by the outer part of the electronic cloud of an atom and the 

scattering length density is proportional to the polarizability of the materials. 

In neutron scattering, the interaction is nuclear and the scattering length 

depends on the nature of the nuclei of atoms. 

SAS has been widely used to study the particulate suspension system, where particles of 

one material are dispersed in a uniform matrix of a second material. When the 

concentration of the particles is low, e.g. in a dilute solution, there are no correlations 

between positions or orientations of particles. Under this condition, the waves scattered 

from different particles are incoherent among them, and the observed intensity simply 

becomes a sum of the individual scattering. In a dilute particulate system the matrix is 

assumed to be devoid of any internal structure and simply presents a uniform, 

homogenous background. In a real system, whether liquid or solid, there is always a 

fluctuation, but as long as such inhomogeneity is of a size scale much smaller than 1/q, 

the effect does not manifest itself in the q range of interest here.  

Radius of Gyration: Before we calculate the scattering intensity for the single particles, 

we introduce an important parameter for describing the size of the particles, i.e. the radius 

of gyration, Rg. The radius of gyration is one of the most important parameters in the 

field of small-angle scattering. It is defined as: 

�
�

∆

∆
=

ii

ii

g
dVr

dVrr
R

)(

)( 2
12

ρ

ρ
                                              (1) 

As examples of the radius of gyration of particles, we have for solid sphere of radius R, 

RRg 5
3=                                                               (2.1) 
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For a solid ellipsoid of half axes a, b, and c 
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For a solid rod with length of L and circular cross section of radius R, 
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 2. Form factor and the shape of proteins 

The form factor P(q) describes the scattering from a single particle, which strongly 

depends on its size and shape. As shown in FIG 2, homogeneous particles with electron 

density ρP and volume VP, dispersed in a homogeneous matrix with electron density of ρ0. 

The scattering intensity I(q) from a single particle at a scattering angle 2θ as a function of 

the scattering vector q, q = 4πsinθ/λ can be expressed by: 
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where ρ(r) is the electron density, V is the illuminated volume. The scattered intensity I(q) 

is proportional to the square of the Fourier transformation of electron density. For 

identical particles, ρ(r) is a constant and the total scattering intensity can be further 

expressed by: 
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ρ(r) = ρP-ρ0 is the difference of electron density between particle and matrix, it is 

normally called “scattering contrast”. The form factor P(q) is defined as: 
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FIG. 2 Schematic drawing for “dilute” particles suspended in a homogeneous matrix. 

 

The simplest example of form factor is sphere, which has a form factor of eq. (6) and the 

plot of scattering intensity as a function of qR is shown in FIG. 3. Some interesting and 

useful features from the plot are worth noting: first, the slope of the plot in the high qR 

range is equal to -4, and qRg <1 defines the Guinier region.  
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FIG 3 form factor of an ideal sphere with R=20nm. 
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More examples for the form factor of other shapes: 

(a) The form factor of a monodisperse spherical particle with a core-shell structure is 

described in the following equation. 
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Where 2
1 /)cos(sin)( xxxxxj −= ; trr cs +=  and 3)3/4( ii rV π=  
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FIG 4 form factor of core-shell sphere with rc = 60 Å, t = 10 Å 

(b) Monodisperse Rigid Cylinders (a simple model for DNA) 
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 FIG 5 form factor of cylinder with R = 20 Å and L = 400 Å 

Guinier Law: 

The Guinier law (Guinier, 1955) is widely used to determine the basic molecular 

parameters, such as radius of gyration, and molecular weight. Scattering function for 

monodispersed dilute solution of Eq. (3) can be expanded to Eq. (7) in the low q range 

(qRg <1) with the assumption that the orientation of the particles is spatially averaged and 

the solution is isotropic. 

( ) ��

�
��

� +−=
Ω
�

� �
222

3
1

1)(
1)(

gV
Rqdrr

Vd
qd ρ                                                     (7) 

The integration of the right part of the formula corresponds to the forward scattering 

intensity I(q=0), and the other part in the bracket can be written in exponential form, 

therefore the above formula is written by the Guinier form; 
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In practice, the Guinier plot, i.e. the lnI(q) vs q2 is widely used to determine the radius of 

gyration, Rg.  

FIG.6 gives an example for protein BSA dilute solution in Guinier plot, from the slope, 

the Rg of BSA is determined as 27 Å. 
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FIG 6 Guinier plot for BSA dilute solution with 0.1M NaCl. 

Another important parameter which can be determined from the Guinier plot for dilute 

systems is the molecular weight. If the scattering intensity has been calibrated in absolute 

intensity, the forward intensity I(q=0) corresponds to the total number of electrons in the 

scattered volume. I(0) can be expressed as follow: 
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Further, if we use the particle concentration of c (mg/mL)= 
vV

NVP , and the particle 

molecular weight 
v
NV

M AP
w = , where NA is Avogadro’s number, v is the specific 



 8 

volume of the particle, V the illuminated volume or scattering volume, and VP the 

volume of the particle, we have the following expression: 
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With all other parameters available in practice, the molecular weight can be calculated. 

Porod law: 

The Porod law (Porod, 1951) describes that the slope of the plot (lnI(q) vs lnq) represents 

the interface and fractal dimension of the scattering objects. At high q, a slope of -2 is a 

signature of Gaussian chain in a dilute solution, whereas a slope of -1 points to rigid rods. 

A slope of -4 represents a smooth interface between domains in a multiphase system 

(Figure 3). Slopes between -3 and -4 characterize rough interface of fractal dimension D 

(Schmidt, 1988). Scattering from such a rough interface drops as 1/q6-D. In the case of 

smooth interfaces, the scattered intensity at high q gives the following expression: 
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Where b is the contrast factor, φ is the volume fraction of one of the component, S/V is 

the surface to volume ratio. This is a general result independent of the actual shape of the 

scattering particles. This result can be derived from the pair correlation function. 

3. Structure factors derived from interaction potential 

The above considerations are for dilute solution, where the interactions between the 

suspended particles are negligible. Upon further increasing the particle concentration, 

step by step, the particle will “feel” the existence of their neighbors as illustrated in FIG. 

7. The scattered intensity from a collection of discrete particles can be written as: 
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where ri and rj are the centers of mass of particles k and j respectively. The scattering 

amplitude is a Fourier integral of the distribution of scattering length density within each 
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cell. For the special case of monodisperse spherical particles, )()()( qFqFqF jk == ∗ , and 

Equation 12 can be factored into the form: 
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FIG.7 Schematic illustration of particle-particle interaction (correlation) in solution. 

The first term on the right-hand side of Eq. (13) corresponds to the form factor of the 

particle, P(q), and the second term in the bracket presents the distribution of the particles 

in the space, this distribution is of course determined by the their interactions, this term is 

often called structure factor and denoted by S(q). So, the Eq. (13) can be rewritten in: 
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where np is the number density of particles.   

The structure factor contains all of the information about the spatial arrangement of the 

particles relative to an arbitrary origin, i.e. the correlations.  In an ideal solution, where 

the protein molecules are well-separated from each other, i.e. there is no position or 

orientation correlation between them, S(q) =1, and the total scattering is only has 

Rj 

Rk 

Rk-Rj 
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contributions from the form factor P(q). With increasing protein concentration, the 

interference effect between proteins cannot be neglected, and the structure factor 

becomes important in the total scattering intensity. S(q) in the low q range strongly 

depends on the interaction potential between protein molecules. The structure factor at 

the origin S(q=0) is equal to the normalized osmotic compressibility. With repulsive 

interactions, the protein molecules are uniformly distributed and S(0) is lower than unity, 

while with attractive interactions, fluctuations dominate the particle distribution and S(0) 

is larger than unity (Tardieu, et al 1999). Therefore, a detailed analysis of the S(q) can 

provide information on the nature of interaction potentials. For the case of an isotropic 

solution, the average can be calculated around a centrally located sphere. The 

orientational average can be calculated as: 
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The pair correlation function, g(r), can be calculated using liquid state theory by solving 

the Orstein-Zernike (OZ) equation, and thus the structure factor can be calculated 

(Hansen and McDonald 2006).  The pair correlation function can be related to 

thermodynamic properties of the fluid such as pressure or compressibility. To obtain 

information from systems of interacting colloids, it is necessary to model the scattered 

intensity by calculating the form and structure factors. This is easily done for 

monodisperse, spherical particles. For a homogeneous, isotropic fluid of spheres, the 

Ornstein-Zernike equation is: 
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The physical meaning of OZ equation is: the “total” correlation, h(r), between two 

particles is due in part to the “direct” correlation, c(r), between them but also to the 

“indirect” correlation propagated via increasingly large numbers of intermediate particles. 

With this physical picture in mind it is plausible to suppose that the range of c(r) is 

comparable with that of the pair potential u(r), and the h(r) is generally much longer 

ranged than u(r) due to the effects of indirect correlation. The structure factor S(q) 

depends directly on c(r) (compare Equations 15 and 16).  Unfortunately, c(r) and h(r) are 
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both unknown functions, and the Ornstein-Zernicke equation can only be solved if there 

is an additional relation between them. This additional equation is an approximation, 

called a closure relation, which relates h(r) and c(r). A deeper understanding of the 

meaning of c(r), can be obtained by diagrammatic and density functional derivative 

methods (Hansen and McDonald 2006).  

The most popular closure relation is the Percus-Yevick closure (Percus and Yevick 1958): 

]1)[()( )(ruergrc β−=                                                                              (17) 

which provides a good description of fluids with very short ranged interactions.   

To introduce the PY closure, the OZ equation (16) is reformulated as: 
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���ρ                            (17a) 

The term in brackets, gind(r), describes the indirect part of the pair correlations. It is 

known that )](exp[)( rwrg β−= , w(r) is the so-called potential of mean force. The 

function w(r) is generally a more complicated object than the mere pair potential u(r), 

since it involves the effects of indirect interactions from other particles. But in the limit 

0→ρ  follows that )()( rurw → (Nägele, 1996). Thus, one can approximate gind(r) by 

)]()([)( rurw
ind erg −−≈ β

                                                                           (17b) 

Substitute (17b) to (17a), the PY closure is obtained. 

As model potentials, the following ones have been considered: 

(a) For the simplest case of hard sphere interactions: 
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c(r) is identically zero for σ>r , where σ is the diameter of the particles. In this case an 

analytic solution for the structure factor is obtained as following (Pedersen, 1997): 
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In this equation, f(x) is further defined as follow: 
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(b) Short ranged attractive interactions combined with the PY closure also yield 

analytical solutions for the structure factor. For example, the square well (SW) potential: 
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The range of the square well is given by δ and is typically less than 1.5.  

(c) If the attractive interactions are shorter - ranged, then the sticky hard sphere potential 

(SHS) can be used.  
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This is a perturbation solution of the PY closure for the case of a narrow square well of 

width ∆ and depth U0. The perturbation parameter is )/( ∆+∆= σε , and must be less 

than 0.1. The SHS potential has the advantage that the phase diagram can be determined 

analytically. 

(d) The screened Coulomb interaction is widely used to describe the interactions of 

macroions and charged colloids in solutions: 
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Some examples: 

See our recent publication: Zhang et al. J. Phys. Chem. B. 2007, 111, 250.  
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