

Erratum

Erratum to: "On the structure and evolution of the buried S/Au interface in self-assembled monolayers: X-ray standing wave results" [Surf. Sci. 412/413 (1998) 213–235]^{1,2}

P. Fenter ^{a,*}, F. Schreiber ^b, L. Berman ^c, G. Scoles ^d, P. Eisenberger ^e, M.J. Bedzyk ^{a,f}

^a Argonne National Laboratory, Argonne, IL 60439, USA
 ^b Max Planck Institut für Metallforschung, 70569, Stuttgart, Germany
 ^c National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
 ^d Princeton Materials Institute, Princeton University, Princeton, NJ 08542, USA
 ^e Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10027, USA
 ^f Department of Material Science, Northwestern University, Evanston, IL 60208, USA

Received 28 December 1998; accepted for publication 28 December 1998

A number of typesetting errors have been found in the published manuscript (omissions are shown in italics).

- Section 4.2, page 224: The correct text reads "the Au XSW spectrum reveals that the coherent position is $P_{111}(Au) = -0.01 \pm 0.01$ and the coherent fraction is $F_{111}(Au) = 0.84 \pm 0.01$ which reflects ..."
- Section 4.2, page 224: The correct text reads "The fit to the sulfur XSW spectrum reveals a coherent position of $P_{111} = 1.10 \pm 0.01$ and a coherent fraction of $f_{111} = 0.41 \pm 0.01$ ".
- Section 5.2, page 227: The correct text reads "(i.e., $\Delta \le 0.43 \text{ Å}$)", (i.e., not $\Delta \ge 0.43 \text{ Å}$).
- Section 5.2, page 227: The correct text reads "because for a given measured $f_H = CD_H a_H$, $a_H \ge f_H$ for $CD_H \le 1$ " (i.e., not $a_H \le f_H$)

There were also a number of typesetting errors in the tables. The corrected tables are shown below:

Table 1 Measured XSW results for the $C(4 \times 2)$ phase at saturation coverage $(\Theta = 1)$

	P_{111}	F_{111}	P ₁₁₋₁	F_{11-1}
S(1s) Au(3d _{5/2})	$1.10 \pm 0.01 \\ -0.01 \pm 0.01$	$0.41 \pm 0.01 \\ 0.84 \pm 0.01$	$\begin{array}{c} 0.25 \pm 0.01 \\ -0.02 \pm 0.01 \end{array}$	$0.46 \pm 0.01 \\ 0.89 \pm 0.01$

^{*} Corresponding author. Present address: Argonne National Laboratory, Environmental Research Division, Bldg 203, 9700 South Cass Avenue, Argonne, IL 60439, USA.

0039-6028/99/\$-see front matter Published by Elsevier Science B.V.

PII: S0039-6028(99)00194-6

¹ PII number of original article: S0039-6028(98)00428-2.

² The submitted manuscript has been authored by a contractor of the US Government under contract No. W-31-109-ENG-38. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

Table 2 Measured XSW results as a function of coverage, Θ

Θ (ML)	S(1s)		$\mathrm{Au}(3\mathrm{d}_{5/2})$	
	$\overline{P_{111}}$	F ₁₁₁	$\overline{P_{111}}$	F_{111}
0.29 0.42	1.09 ± 0.01 $1.09 + 0.01$	0.41 ± 0.01 0.60 + 0.02	-0.01 ± 0.01 -0.03 + 0.01	0.84 ± 0.01 $0.78 + 0.01$
1.0	1.10 ± 0.01	0.41 ± 0.01	-0.03 ± 0.01 -0.01 ± 0.01	0.84 ± 0.01