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ABSTRACT
The ionactivated patchy particle model is an important theoretical framework to investigate the phase behavior of globular proteins in the
presence of multivalent ions. In this study, we examine and highlight the influence of patch heterogeneity on the extension, appearance,
and disappearance of the liquid–liquid coexistence region of the phase diagram. We demonstrate that within this model the binding energy
between salt ions and patches of different types is a key factor in determining the phase behavior. Specifically, we show under which conditions
liquid–liquid phase separation (LLPS) in these systems can appear or disappear for varying binding energy and ionmediated attraction energy
between ionoccupied and unoccupied patches. In particular, we address the influence of the patch type dependence of these energies on the
(dis)appearance of LLPS. These results rationalize our new results on iondependent liquid–liquid phase separation in solutions of bovine
serum albumin with trivalent cations. In comparison with models with nonactivated patches, where the gas–liquid transition disappears
when the number of patches approaches two, we find the complementary mechanism that ions may shift the attractions from stronger to
weaker patches (with an accompanying disappearance of the transition) if their binding energy to the patches changes. The results have
implications for the understanding of chargedriven LLPS in biological systems and its suppression.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0312039

I. INTRODUCTION

Suspensions of structured colloidal particles,1–6 globular
proteins,7–12 and related systems are often effectively modeled as
patchy particles.9,13–17 These systems exhibit a rich phase behavior
due to their directional interactions and have been studied exten
sively, both for their theoretical interest and practical relevance. In
particular, patchy particle models, in which their charged or chem
ically distinct surface regions act as interaction patches,18–26 have
proven useful in describing protein phase behavior, including crys
tallization and phase separation, in particular liquid–liquid phase
separation (LLPS), the latter being intensely debated as a mechanism
for molecular organization in biological cells.27–29

Experimentally, LLPS in solutions of globular proteins in
the presence of trivalent salts (proteins–Me3+systems) has been
observed for a range of systems.30 The binodal of the LLPS can
be determined by partitioning of both salt and protein into two

coexisting phases,31–39 and the sodetermined coexistence region
is bounded by a closedloop in the salt–protein concentration
plane.31,33,37 The employed proteins were bovine serum albumin
(BSA), human serum albumin (HSA), betalactoglobulin (BLG), and
ovalbumin (OVA), and the Me3+ ions included Y3+, La3+, Ho3+,
Gd3+, Ce3+, and Yb3+ with strong differences in the degree of LLPS
between different combinations of proteins and ions. For exam
ple, visual inspection and turbidity measurements show that in BSA
solutions with HoCl3 and GdCl3, there is strong phase separation,
while with LaCl3, a phase transition is absent at room temperature.40
The effective protein–protein interactions characterized using SAXS
indicate a dominant shortranged attraction that accounts for the
metastability of LLPS with respect to crystallization.31,33,35,36 Studies
of protein crystallization in the presence of multivalent metal ions
suggest that the metal ions are not only used to induce crystallization
but are an integral part of the crystal lattice.41 Structural analy
sis demonstrates specific binding of metal ions to surfaceexposed
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glutamate and aspartate side chains contributed by different pro
tein molecules in the crystal lattice.41 By bridging molecules in this
manner, contacts between molecules are formed that enable the
formation of a stable crystal lattice. Based on this bridging effect,
an ionactivated patchy particle model was proposed to rationalize
the phase behavior observed experimentally.18 Within this analyti
cal approach, proteins are modeled as particles with a finite number
of patches per particle. Multivalent cations are modeled as bridging
or linker particles, which can bind to these patches and thereby acti
vate them. Without cationmediated protein–protein bridging, the
interaction between proteins is modeled as hardsphere repulsion.
However, when an occupied patch interacts with an unoccupied
one, an ion bridge forms and links the participating proteins with
an attractive squarewell attraction.

Importantly, previous investigations18,42 of the ionactivated
patchy particle model assumed particles with equivalent patches—an
assumption that oversimplifies the inherently heterogeneous nature
of many biological and synthetic systems. Here, we present an exten
sion of the model in an analytically tractable manner that aims to
elucidate the effects of patch heterogeneity on the phase diagram.
We generalize the interaction energy by taking into account dif
ferent kinds of patches with different binding probabilities, which
is a more realistic model for proteins with their inherent inhomo
geneities and low symmetry. The influence of the model parameters
on the shape and location of the binodal is discussed for the case
of equivalent patches and for the inequivalent case with two patch
types.

In the case of equivalent patches, the size of the binodal
loop is controlled by the patchpatch interaction energy, and the
binding specificity of the binders (salt ions) with the patches
determines the binodal location. Experimentally, we demonstrate
changes in the binodal region by measurements on BSA systems
with YCl3 vs HoCl3, and we find that these changes can only be
described with a finetuned variation of the patch–patch interac
tion energy. In contrast, already for the case of two patch types,
we find that the extension and location of the binodal region
can be tuned mainly by the binding specificity. When ions bind
differently to the different patch types, attractions between occu
pied and unoccupied patches may shift between dominant and
weak combinations of attractive patches, and the binodal region
consequently changes size and location (and may also disappear
completely).

This paper is organized as follows. In Sec. II, we explain
the theoretical background and how our specific model and its
extensions are set up, including the connection to Wertheim the
ory, which provides a theoretical framework for predicting the
thermodynamic properties of patchy particle systems. Section III
briefly describes the experimental procedure for obtaining phase
diagrams in BSA solutions with YCl3 vs HoCl3. Section IV is devoted
to the results of our model, including a detailed analysis of the
appearance/disappearance of the LLPS as a function of the model
parameters and presents and rationalizes the experimental phase
diagrams. We conclude with a summary and a discussion of the
implications for the phase behavior of protein–salt systems, specifi
cally the existence of LLPS in biology, which is currently a subject of
intense debate.27–29

II. THEORY AND MODEL SETUP
We treat proteins as spherical colloidal particles (hard spheres)

that possess specific binding sites for bridging ions (see Fig. 1 for an
illustration). The model setup is not specific to the ion valency, but
experimentally, ionbridging is observed for trivalent ions, whereas
for divalent ions, with their typically weaker interactions, it is less
common, and it is absent for monovalent ions. The number of these
binding sites (patches) is M. Since the protein surface is heteroge
neous, patches can have different binding properties and will be
distinguished by Greek indices α, β, . . .. The number of patches of
type α is given by mα. The trivalent ions (labeled by a Latin index i)
are assumed to generate an effective attraction between the proteins
if they bind with patches of two different proteins; e.g., they act as
linker particles between the colloidal particles.

A typical patchy particle model setup consists of a mixture of
a colloidal species with M patches (of possibly different types) with
a linker species having two patches, which is able to bind two col
loidal particles. The behavior of such a system is mainly governed
by a patchion attraction depending on ion species i and patch
type α. Such particlelinker models have been investigated in the
literature.43–45 With regard to phase behavior, we note that, e.g.,
Ref. 43 finds liquid–liquid binodals in the form of closed loops in the
particle density–linker density plane, which is similar to the closed
loops in the BSA–Me3+ system.

We employ a further approximation to the particlelinker pic
ture by treating the average ionbinding occupancy of a single patch
by the statistics of a twostate system in the grand canonical ensem
ble, as introduced in Ref. 18. The relative occupation θiα of a patch α
by an ion i is given by a Fermilike distribution,

θiα = 1
1 + exp βεi,αb − μs,i , (1)

where β = 1/kBT is the inverse temperature and εi,αb is the binding
energy between a salt ion of type i and a patch α. The thermodynamic
control variable for the occupation is the ion chemical potential μs,i,
which for dilute systems can be approximated with that of an ideal
gas with a reservoir concentration cresi = c0 exp βμs,i, where c0 is a
reference concentration. The effective binding of two particles with
the ion as a linker occurs through an attractive binding energy only
between an ionoccupied (o) patch and an unoccupied (u) patch,
εαβuo,i ≜ 0, which depends on the type of patches involved. It appears
that the elimination of ions as separate linker species has resulted in a

FIG. 1. (a) Metal ions are bound to patches of type α, β, . . . with probability
θα, θβ, . . .. (b) Occupied patches (of any type α) interact attractively with unoccu
pied patches (of any type β). Averaging (see text) gives an effective patch–patch
interaction energy εpp between occupied and unoccupied patches.
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multicomponent model of particles with 0 . . . M occupied patches
(of possibly different types), which would complicate the determina
tion of phase diagrams. However, following Ref. 18, we employ the
mapping to an effective model with only one type of patch with the
effective patch–patch (pp) interaction energy,

βεpp = ∑
αβ,i

2εαβuo,i θ
i
α1 − θiβ mαmβ

M2 , (2)

where we have set βεαβuu,i = βεαβoo,i = 0, i.e., interactions between pairs
of (un)occupied patches do not contribute to the attractions. For the
attractions, we assume independent association of occupied patches
(fraction θiα) with unoccupied patches (fraction 1 − θiβ), weighted
with the fractions mα/M and mβ/M of patches α and β on the
particle surface. With this, the central elements of the generalized
ionactivated patchy particle model are introduced; a schematic
sketch is shown in Fig. 1. At this point, we note that there is a cru
cial difference between the generalized ionactivated model and the
particlelinker models of Refs. 43–45. In those studies, the condition
of equal linker chemical potential for coexisting states is obtained via
Wertheim theory, whereas in the present case, the linker chemical
potential μs,i appears as a reservoir quantity in Eq. (1), and an addi
tional constitutive relation is needed to connect the linker chemical
potential to the linker concentration [see Eq. (3)]. In that respect, the
ionactivated model may be considered closer to the patchy particle
model with temperatureactivated patches investigated in Ref. 46.

In Appendix B, we investigate an extended, effective model
that does not rely on an averaged, effective patch–patch energy but
instead uses an effective mean, noninteger number of activated
patches. In our context, it is numerically more demanding but gives
a similar phenomenology. More generally, we have noted that the
extended model is equivalent to certain linkerreceptor models that
describe functionalized nanoparticle interactions with surfaces.47

In the following, we consider only systems with one type of salt
and, therefore, we can drop the explicit Latin index specifying the
ion type. Differences between systems with different salt ions are
nevertheless encoded in the parameters εαb and εαβuo.

The thermodynamics of this effective model with one type of
patch is treated with Wertheim theory48–50 and is briefly summa
rized in Appendix A. Wertheim theory allows us to calculate the
binodal (see Fig. 8 in Appendix A) and gives a critical temperature
(critical interaction strength), which we write in dimensionless form
as βεppc ≜ 0. If βεpp ≜ βεppc, the model shows phase separation:
the effective patch–patch attraction is stronger than the one needed
at the critical point, and the system shows liquid–liquid phase sep
aration. For given interaction parameters εαβuo, εpp is a function of
the occupancies θα and has a minimum εpp,min. For βεpp,min ≤ βεpp≤ βεppc, the coexisting colloid (protein) packing fractions η1 and
η2 are obtained from the Wertheim binodal. Equations (1) and (2)
can be solved for the ion chemical potential μs [or equivalently
the ion reservoir (salt reservoir) concentration cres]; η1 and η2 thus
depend on cres, and the curves η1cres and η2cres define a closed
loop for the binodal in the η–cres plane. To convert to physical salt
concentrations cs, it is assumed that the ideal ions and the colloids
form a mixture of the Asakura–Oosawa type,18

cs = ∑
α
mαθαρ + cresμs1 − η1 + Rs/R3. (3)

Here, R and Rs denote the radius of colloids and ions, respectively,
and the colloid density ρ and packing fraction η are connected by
η = ρ4πR3/3. The first term in Eq. (3) describes the ions bound
to the protein surface patches, and the second term gives the con
centration of mobile ions, which is smaller than cres, since the free
volume for ions is reduced due to the presence of the colloidal par
ticles (proteins). This free volume is given up to linear order in η. It
is seen that coexisting salt concentrations csη; cres = const. depend
linearly on η; therefore, the closed loop for the binodal in the η–cs
plane will be tilted and stretched compared to the loop in the η–cres
plane.

III. EXPERIMENT
Previous experiments on the effects of various salts in

BSA–Me3+ systems37,40 determined the onset of clouding and the
visual appearance of phase separation, along with an evaluation
of the reduced second virial coefficient B2/BHS

2 . A comparison of
binodal loops is still lacking, which we provide here with the
comparison of the BSAY3+ and the BSAHo3+ systems.

BSA (product No. A7906), HoCl3, and YCl3 were purchased
from Sigma Aldrich and used as received. For the stock solutions,
protein and salt were dissolved in degassed MilliQ H2O (18.2 MΩ
cm conductivity). No buffer was used to avoid the effects of other
coions. BSA has a molecular mass of 66.5 kDa and an isoelec
tric point of pI = 4.6. All experiments were performed at room
temperature (23 ± 2 ○C). Concentrations of protein stock solu
tions were determined by measuring the absorbance at 280 nm
using a Cary 50 UV–vis spectrophotometer (Varian Inc.) with the
software Cary WinUV. The extinction coefficient of BSA is E280= 0.667ml/mg ⋅ cm.51 For LLPS, a series of sample solutions with
a fixed protein concentration of cp = 120 mg/ml [corresponding to
a protein volume fraction ηiniexp ≈ 0.08 by using ηexp = cpvp/1 + cpvp
and the specific volume νp = 0.725 ml/g] and varying salt concentra
tions cinis was prepared. After phase separation, the volumes of the
dense and dilute phases were recorded. The protein concentration
in the dilute phase was determined using UV–visible spectroscopy,
whereas the protein concentration in the dense phase was calculated
using the lever rule.

IV. RESULTS
Sections IV A and IV B discuss the generic behavior in the ion

activated patchy particle model with one and two types of patches,
respectively. In Sec. IV C, the experimental phase diagram is pre
sented along with a rationalization based on the model with two
types of patches.

A. Single type of patch
It is instructive to study briefly the shape of binodals and their

parameter dependence in the simplest case of only a single type of
patch. For this case, a particular choice of reasonable model para
meters has been defined in Ref. 18 (see also Appendix A), and it
has been demonstrated that the binodal loop in the η–cs plane looks
very similar to the experimental loop in a HSAYCl3 system at room
temperature.
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For the single type of patch (and one type of salt), we can drop
all related indices, and Eqs. (1) and (2) become

θ = 1
1 + exp βεb − μs , εpp = 2εuo θ1 − θ, (4)

and the phase diagram is essentially a function of βεuo and βεb. The
effective patch–patch energy becomes minimal (most attractive) for
θ = 1/2.

In Fig. 2, the behavior of the binodal loop upon variation of βεuo
is shown both in the η–cres and in the η–cs plane. Upon lowering βεuo
(making the attraction between occupied and unoccupied patches
stronger), the binodal widens in both directions in an onionshell
manner, which is easily understood from the Wertheim solution for
the two coexisting packing fractions η1 and η2 and Eq. (4). With
stronger attraction, the maximal coexistence gap Δηmax = maxη2− η1 widens, as does the gap between the two critical occupations
θc,i, which are obtained as the solutions of βεppc = 2βεuo θ1 − θ.
This result also results in a widening gap between the critical reser
voir salt concentrations. This onionshell behavior of the binodal
loop is very similar to the experimentally observed behavior of the
binodal upon variation of the temperature.37,40

In Fig. 3, the change in the binodal under a variation of the
ionbinding energy εb is studied. Under such a change, the maximal
coexistence gap Δηmax and the critical occupations θc,i do not change
(since εpp remains constant). The corresponding critical reservoir
salt concentrations are given by

cresc = c0
θc

1 − θc
exp βεb, (5)

and are seen to be scaled by expβεb. Therefore, the coexis
tence loop will become squeezed in the vertical (salt concentration)
direction whenmaking εb less negative or stretched in the other case.

B. Two types of patches
With two types of patches in solutions with a single type of ion,

we define two distinct occupation probabilities, θα = θ1, θ2⟫, and
two distinct ionpatch binding energies, εαb = ε1b, ε2b⟫, with

θα = 1
1 + exp βεαb − μs α = 1, 2. (6)

This is a parametric equation for a curve in the θ1θ2 plane;
elimination of the parameter μs gives

θ2 = θ1
θ1 + 1 − θ1 exp −βΔε12b  , (7)

where Δε12b = ε2b − ε1b.
The effective patch–patch energy becomes

εpp = 2∑
α=1 aα θα1 − θα + b θ1 + θ2 − 2θ1θ2,
aα = 2εααuo

m2
α

M2 , b = 2ε12uo
m1m2

M2 .

(8)

FIG. 2. Change of binodal loop in the
singletypeofpatch model upon vari
ation of βεuo (“onionshell behavior”).
βεb = −5, c0 = 1M, R = 2.8 nm,
Rs = R/18, M = 4. (a) η–cres plane
(reservoir salt concentration, tie lines
horizontal). (b) η–cs plane (physical salt
concentration, tie lines tilted, as illus
trated in the inset).

FIG. 3. Change of binodal loop in the
singletypeofpatch model upon varia
tion of βεb (“squeeze/stretch behavior”).
βεuo = −14, c0 = 1M, Rp = 2.8 nm,
M = 4. (a) η–cres plane (reservoir salt
concentration). (b) η–cs plane (physical
salt concentration).
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One can distinguish two cases that differ in the conditions when εpp
is most attractive. Assuming ∣a1∣ ≥ ∣a2∣,

b2 ≜ a1a2 → θmin
1 , θmin

2  = {1
2
, 1
2
},

b2 ∈ a1a2 → θmin
1 , θmin

2  = {min(1
2
+ b
2a1

, 1), 0}. (9)

The first case corresponds to a dominance of attraction between
patches of the same type; here, the attraction is maximized if the
patches have an equal occupation probability of 1/2. In contrast,
the second case corresponds to a dominance of attraction between
patches of different types, and here the attraction is maximized if
one kind of patch is fully (or nearly fully) occupied by ions and the
other kind of patch is empty (or nearly empty). Using the function
θ2θ1 [see Eq. (7)], one sees under which conditions the attrac
tion can be maximized; see also Fig. 4 for characteristic examples of
θ2θ1. In the first case, the ion binding energies with the two patch
types need to be equal, which entails θ1 = θ2 and, therefore, the max
imal attraction at θ1 = θ2 = 1/2 can be realized. In the second case,
the ion binding energies need to be maximally different, such that
one type of patch can be fully occupied and the second patch type
empty, thus realizing maximal attraction between unequal patches.

The different behavior of the effective patch–patch attraction
to the difference in ion binding energy for the two cases also leads

FIG. 4. Upon variation of the salt chemical potential, the occupation probabilities
θα trace a curve in the θ1–θ2 plane, here shown for ion binding energies being
equal, ε1b = ε2b, and different with βΔε

12
b = −2 and 4.

to qualitatively different behavior of the binodals. For case 1 (like
patch dominance), Fig. 5(a) shows βεppcres and Fig. 5(b) the phase
diagram in the η–cres plane, all for fixed values of the patch–patch
interactions εαβuo but different Δε12b = ε2b − ε1b. The dashed line in
Fig. 5(a) denotes the critical attraction strength βεppc; phase sepa
ration only occurs if βεppcres is below the dashed line. For equal
binding energies Δε12b = 0, the minimum of βεpp is well belowβεppc, thus defining a large coexistence region. For increasingΔε12b ,
the minimum moves up and to a smaller cres, eventually not cross
ing the dashed line anymore. For the phase diagram in Fig. 5(b), this
implies that for decreasing ∣Δε12b ∣, the binodal loop becomes squeezed
in both η and cres, moves to smaller reservoir salt concentrations, and
finally disappears.

In case 2 (attraction between unlike patches dominates), the
behavior is different (see Fig. 6). The effective energy βεppcres has
the deepest minimum for the largest value of ∣Δε12b ∣ [Fig. 6(a)] since
the effective attraction is strongest if one kind of patch is occupied
and the other one is empty. The corresponding coexistence region is
large and located at small salt reservoir concentrations [Fig. 6(a)].
Lowering ∣Δε12b ∣, the difference between ion binding energies, the
minimum in the effective energy moves up toward βεppc and dis
appears for Δε12b = 0. The corresponding binodal loops move up in
cres and become noticeably squeezed in the ηvariable until they
disappear.

In contrast to the changes in phase behavior introduced by
varying the ionbinding energies, the opposite case of varying the
patch–patch energies with ionbinding energies held constant does
not introduce new effects. If the overall effective patch–patch energy
is changed (by scaling all εαβuo in the same way), the binodals change
in the onionshell manner seen in Fig. 2. However, even if one varies,
e.g., only ε12uo to induce a crossing from likepatch dominance to
unlikepatch dominance, the onionshell behavior is preserved.

C. Saltdependent demixing from experiment
Using the experimental procedure described in Sec. III phase

diagrams in the ηexp–c
ini
s plane have been determined where ηexp

is the experimental protein packing fraction (determined from its
specific volume and corresponding to a packing fraction of hard
spheres with radius 2.7 nm) and cinis is the initial salt concentra
tion (the salt concentration in the coexisting phases could not be

FIG. 5. Case of likepatch attraction
dominance; the interaction energy para
meters are βε11uo = −22, βε22uo = −12,
and βε12uo = −11. The number of patches
is M = 4, and m1 = m2 = 2. The differ
ence in ion binding energy Δε12b = ε2b− ε1b is varied βε2b = −1.5. (a) Effec
tive patch energy βεppcres as a func
tion of reservoir salt concentration cres.
The dashed line is the critical strength
for LLPS. (b) Binodal loops in the η–cres
plane.
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FIG. 6. Case of unlikepatch attrac
tion dominance; interaction energy para
meters are βε11uo = −11, βε22uo = −11, and
βε12uo = −14.45. The number of patches
is M = 4, and m1 = m2 = 2. The differ
ence in ion binding energy Δε12b = ε2b− ε1b is varied βε2b = −1.5. (a) Effec
tive patch energy βεppcres as a func
tion of reservoir salt concentration cres.
The dashed line is the critical strength
for LLPS. (b) Binodal loops in the η–cres
plane.

determined). The two phase diagrams (for HoCl3 and YCl3, respec
tively) are shown in Fig. 7. They are similar in shape to the theoretical
phase diagrams in the η–cres plane [see, e.g., Figs. 3(a) and 5(b)].
Compared to the broad loop in the HoCl3 case, the binodal for the
BSAYCl3 system is shifted downwards to lower salt concentrations
and shrunk in both salt concentration and protein packing fraction
directions. This suggests a theoretical description where the main
difference between the Ho3+ and Y3+ ions lies in their binding ener
gies to the patches on the BSA surface.We have evaluated such phase
diagrams (for two types of patches) in the η–cinis plane. To do that,
we have calculated coexistence values η1cres and η2cres for a fixed
c0 = 1M and given interaction parameters. The relative concentra
tion of phase 1 resp. phase 2 is set by the experimental value for
the initial protein volume fraction ηini = 0.08 and the lever rule. This
determines then the value for the initial salt concentration through
Eq. (3),

cinis = m1θ1 +m2θ2ρini + cresμis1 − ηini1 + Rs/R3, (10)

where R/Rs = 18, ηini = 0.08 [ρini = ηini/4πR3/3] is the experimen
tal initial protein volume fraction, and θ1[2] are the two patch occu
pation probabilities for coexisting points. The agreement between
the theoretical and experimental binodal was evaluated by visual
inspection upon variation of the interaction parameters. For the
model with a single type of patch, the two experimental binodals
can be fitted semiquantitatively by assuming a larger difference in
εb and a small, finetuned difference in εuo for the two ions. For the
model with two kinds of patches, the finetuned dependence on εuo
disappears, and the two binodal loops can be fitted almost quanti
tatively with the model having M = 4 patches (with m1 = m2 = 2),
patch–patch binding energies are βε11uo = −25 and βε22uo = βε12uo = −11.
The ionpatch binding energies are different for the two types of
patches in the case of YCl3 (βε1b = −5.1 and βε2b = −2.3); for HoCl3,
the binding energy is βεb = −3.5 for all patches. This is consistent
with a picture of a more polarizable ion such as Ho3+ (less spe
cific) and a more compact hard ion such as Y3+ (more specific). The
model parameters from the fit correspond to the case of likepatch
dominance; please also compare the binodals in Figs. 5(b) and 7.

FIG. 7. (a) Experimental phase diagram in the ηexp–c
ini
s plane for BSA in the presence of HoCl3 (light blue) and YCl3 (orange); open circles denote the coexisting dilute

phase, and open squares the coexisting dense phase. Filled points represent sample preparation conditions. (b) Theoretical phase diagram dominated by βε11uo (like patch)
interactions. The parameters are βε11uo = −25 and βε22uo = βε12uo = −11, with a total number of patches M = 4. Ion binding energies for the HoCl3 case (blue) are βε1b = βε2b= −3.5, while in the YCl3 case (orange), they are βε1b = −5.1 and βε2b = −2.3 with m1 = 2 and m2 = 2.
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Our findings align with previous observations on the effects of
various salts in BSA–Me3+ systems.37,40 There, the propensity for
phase separation was measured by evaluating the reduced second
virial coefficient B2/BHS

2 as a function of initial salt concentration for
a given initial protein concentration. Phase separation was linked
to B2/BHS

2 ≜ −1.5 (Noro–Frenkel criterion) and it turned out that
Ho3+ showed the largest salt concentration interval fulfilling this
criterion, Y3+ showed a smaller interval, and La3+ is the weakest
salt (inducing attractions, but with B2/BHS

2 ∈ −1.5), i.e., the system
does not undergo LLPS under the tested conditions.40 For a thor
ough discussion on applying this criterion to BSA solutions, see
Ref. 52.

V. SUMMARY AND CONCLUSION
In this study, we have extended the ionactivated patchy par

ticle model of Ref. 18 to account for multiple patch types, which
reflects the heterogeneity of a protein surface and, therefore, also the
varying strength of protein surface patches to bind ions. Generically,
the model gives rise to liquid–liquid phase separation described by
closed binodal loops in the plane spanned by the protein and salt
concentrations. Already for the case of two patch types, the vari
ation of the ionbinding energy leads to characteristic effects on
the binodal loop, where one may distinguish between two cases. If
the attraction between occupied and unoccupied patches is domi
nated by pairs of like patches, an increasing difference of ionbinding
energies between the two patch types leads to a shrinking and
eventually a disappearance of the binodal loop toward lower salt
concentrations. In the other case of dominant attraction between
unlike patches, the binodal loop has a large size if the ionbinding
energies are very different, and it shrinks and moves to higher salt
concentrations if the ionbinding energies get closer in magnitude.
The underlying mechanism in the model for this behavior is that
by varying the salt chemical potential, a line in the plane of the
occupation probabilities for ions on patches is described, which
may visit different spots in a landscape for an effective patch–patch
attraction energy. Upon an increase in ionbinding energy difference
between the patch types, the line moves away from the attractive
minimum (likepatch dominance) or closer to it (unlikepatch dom
inance). In comparison with models with nonactivated patches,
where the gas–liquid transition disappears when the number of
patches approaches two,53 we find the complementary mechanism
that ions may shift the attractions from stronger to weaker patches
and vice versa.

Experimentally, a phase diagram has been determined for a
solution of BSA proteins with HoCl3 and YCl3. In comparison with
the HoCl3 case, the binodal loop for the YCl3 case is shrunk and
shifted toward lower salt concentration. This corresponds to the
case of likepatch dominance, and both experimental phase dia
grams could be described very well by the model using reasonable
parameters.

In conclusion, we have obtained novel insight into possible
mechanisms of LLPS in protein solutions with trivalent salts that
arise from ionspecific effects, as seen in experiments and expressed
in the present model by different binding energies of the ions
(depending on the specific ion) toward patches on the protein sur
face. Although the model has simplified many atomistic details of
a protein solution with trivalent salt ions, we believe it provides

important clues that warrant further consideration. In the future, it
would be desirable to link the model parameters to more explicit
microscopic investigations, such as atomistic simulations; an exam
ple, e.g., is Ref. 54, which investigates cation–protein binding free
energy through simulations.
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APPENDIX A: WERTHEIM THEORY
FOR THE EFFECTIVE MODEL

In Wertheim’s theory,48–50 the free energy density is the sum
of the free energy density of the reference system and a perturbative
contribution from particle bonding. The hardsphere fluid with the
free energy density from the Carnahan–Starling equation of state55
is used as the reference system. The bonding contribution to the free
energy per volume is denoted as fbond,

β f bond = M η
νs
(ln X − X

2
+ 1
2
). (A1)

Here, the packing fraction η = 4/3πR3ρ = νsρ, where νs represents
the volume occupied by a single particle,M is the number of patches
per particle, and X is the probability that a patch has not formed a
bond. Note that X depends on the number density ρ, or equivalently,
η, and is determined by the massaction equation18

1 − X
X2 = M η

νs
Δ, (A2)

where Δ accounts for the spherically averaged interaction between
bonded patches of two particles. Following Refs. 18 and 56, we
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FIG. 8. Binodal fromWertheim’s theory, using the following parameters:M = 4 and
K = 0.002 376R3.

employ a squarewell potential between patches of depth εpp with a
short range. After performing the angular average, Δ can be written
as

Δ = 4πgHSσ, ηKF, (A3)

where gHSσ, η is the contact value of the radial distribution func
tion for the hardsphere reference system with diameter σ, K is the
bonding volume, and F = exp−βεpp − 1 comes from the angular
average of the Mayer f function for the patch–patch interaction. In
Ref. 18, K = 0.002 376R3 was employed, which is also the value we
use here.

ForM = 4, the binodal is obtained from the equality of chemical
potential and pressure for the coexisting states and is shown in Fig. 8.
The dimensional critical interaction strength is βεppc ≈ −6.38. In
the main text, the dimensionless occupationdependent effective
interaction strength βεpp is defined in Eq. (2), and it has a minimumβεppmin along the trajectory defined by the occupation probabil
ities θαi . If βεppmin ≜ βεppc, phase coexistence as defined by the
blue region occurs (see Fig. 8). In Ref. 18, a single type of patch was
considered with βεuo = −14, which leads to βεppmin = −7, and the
resulting width of the phase coexistence loop in the η variable was
shown to be in reasonable agreement with experimental results for a
HSAYCl3 system.

APPENDIX B: WERTHEIM’S THEORY FOR AN EXPLICIT
MODEL WITH OCCUPIED AND UNOCCUPIED
PATCHES TREATED AS TWO DIFFERENT BINDING
SITES

As explained in the beginning of Sec. II, we treated the
particlelinker system of proteins and ions with two approxima
tions: (i) the statistics of proteinion association was treated using
a twolevel system, and (ii) an effective patch–patch energy was
introduced [Eq. (2)], which averaged over all pairwise patch–patch
interactions (occupied and unoccupied). With regard to approx
imation (ii), one might be worried that this average (where the
energies enter linearly) is not adequate within Wertheim theory,
since the attractive patch–patch energies enter exponentially [see

Eq. (A3) and text below]. We check this by investigating a vari
ant of the model (extended ionactivated patchy particle) in which
particles possess mo = θM occupied and mu = 1 − θM unoccu
pied patches and only an attractive interaction between those is
considered (here not depending on any patch type). The number
of occupied and unoccupied patches (mo and mu) might be non
integer, but this poses no problem in applying Wertheim’s theory
for two patch types.56,57 The model has the following mass law
equations:

Xo = 1
1 +mu ρXu Δ

, (B1)

Xu = 1
1 +mo ρXo Δ

. (B2)

Here, Xo and Xu are the fractions of nonbonded occupied and
unoccupied patches,

Xu = ρΔmu −mo − 1 +√1 + ρΔmo −mu2 + 4mu ρΔ
2mu ρΔ

,

(B3)

Xo = 1 − mu

mo
+ mu

mo
Xu. (B4)

The resulting bonding free energy contains the contributions from
the bonded and the unbonded sites additively,

β f bond = ρmo (ln Xo − Xo

2
+ 1
2
) + ρmu (ln Xu − Xu

2
+ 1
2
). (B5)

Note that completely equivalent expressions have been obtained in
discussing the association problem of a nanoparticle with NL lig
ands that can bind to NR receptors on a surface such that only one
ligand may be bound to one receptor with a free energy weight
χ = exp−βG (where G is a bond Gibbs energy).47 With the iden
tification NL ≡ ρmu, NR ≡ ρmo, and χ ≡ Δ, the corresponding Eqs.
(13) and (14) in Ref. 47 are found.

As an example, we study numerically the case that two patch
types (with numbers m1 and m2) exist with regard to the ion
binding affinity, expressed by two distinct occupation probabilities,
θα = θ1, θ2⟫, and two distinct ionpatch binding energies,
εαb = ε1b, ε2b⟫. However, the patch–patch binding energy between
occupied and unoccupied patches does not distinguish between
different α, i.e., εαβuo = ε. In the abovementioned expressions, we
need to modify only mo → αmαθα and mo → αmα1 − θα. In
Fig. 9, we show phase diagrams in the η–cres plane for βε = −7.5 and
βε2b = −1.5 for different values of Δε12b = ε2b − ε1b. The behavior with
increasing Δε12b is very similar to the “squeeze/stretch behavior” of
the model with a single type of patch (see Fig. 3). With respect to the
patch–patch attractive energy, it is of a single type and, therefore, the
disappearance of the phase coexistence loop associated with either
the dominance of like patch attractions or of unlike patch attractions
is not seen. We note that in the extended model, a patch–patch
attractive energy only slightly below βεppc is needed, and that
the coexistence loop is more asymmetric with a shifted location of
the critical points as compared to the onepatch version of the ion
activated model of the main text. Otherwise, the qualitative behavior
agrees with it.
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FIG. 9. Effect of changing the relative binding energy Δβε12b for a system with
M = m1 + m2 = 4, with m1 = m2 = 2. Phase coexistence loops change similarly
to the “squeeze/stretch behavior” in Fig. 3 for a single patch type.
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