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Tracking perovskite crystallization via deep learning-based
feature detection on 2D X-ray scattering data
Vladimir Starostin 1✉, Valentin Munteanu1, Alessandro Greco 1, Ekaterina Kneschaurek1, Alina Pleli1, Florian Bertram2,
Alexander Gerlach1, Alexander Hinderhofer 1✉ and Frank Schreiber 1✉

Understanding the processes of perovskite crystallization is essential for improving the properties of organic solar cells. In situ real-
time grazing-incidence X-ray diffraction (GIXD) is a key technique for this task, but it produces large amounts of data, frequently
exceeding the capabilities of traditional data processing methods. We propose an automated pipeline for the analysis of GIXD
images, based on the Faster Region-based Convolutional Network architecture for object detection, modified to conform to the
specifics of the scattering data. The model exhibits high accuracy in detecting diffraction features on noisy patterns with various
experimental artifacts. We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization
and test it on two applications: 1. the automated phase identification and unit-cell determination of two coexisting phases of
Ruddlesden–Popper 2D perovskites, and 2. the fast tracking of MAPbI3 perovskite formation. By design, our approach is equally
suitable for other crystalline thin-film materials.
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INTRODUCTION
Perovskite materials have been heralded as the future of solar cell
technology, promising low cost and high efficiency1,2. In the last
decade, there has been an enormous interest in enabling the
commercial use of perovskite solar cells by optimizing their
structural and optoelectronic properties. To this end, a detailed
understanding of their crystallization pathways is essential.
Grazing-incidence X-ray diffraction (GIXD, which we here consider
equivalent to grazing-incidence wide-angle scattering, GIWAXS) is
a key technique for this task, enabling real-time, non-destructive
probing of perovskite crystal structures during their synthesis3–7.
Currently, thanks to advances in detector technology, the amount
of collected raw data from in situ GIXD experiments reaches
millions of images per measurement day, far exceeding the
capabilities of traditional data processing methods. As a result,
only a tiny portion of the collected data is analyzed, so that
important processes remain hidden and undiscovered. Therefore,
the full potential of the technique is not exploited, and novel, fast
technologies for data analysis are required8.
One of the solutions is to employ machine learning which has

already proven advantageous for the analysis of various kinds of
scattering data9–15. In particular, there is an increasing interest in
data-driven approaches for material science, such as automated
phase identification and unit-cell determination from one-
dimensional X-ray powder diffraction (XRD) measurements13–17.
However, there are no corresponding methods for GIXD analysis
yet. The existing machine learning solutions for two-dimensional
diffraction data are mainly focused on the preliminary classifica-
tion of the images18–20 and refining positions of stand-alone
peaks for semi-automated data processing21,22. The more
profound tasks, such as phase identification, determination of
preferred orientations and unit cell parameters, require careful
extraction of all diffraction feature positions. Once the peak
positions are established, one can perform a comprehensive
analysis of the diffraction patterns autonomously via existing

algorithms for peak indexing, matching, unit-cell determination.
Therefore, the peak detection procedure is the key bottleneck on
the way to automated GIXD analysis. Furthermore, peak
detection is also suitable for fast preliminary filtering of the
data during the experiment.
In this work, we implemented a modern two-stage deep

learning object detection approach for fast and accurate Debye-
Scherrer ring and segment location in GIXD images. As a model,
we chose the Faster Region-based Convolutional Network (R-CNN)
deep learning architecture23,24, for which we introduced several
essential modifications to conform to the specifics of GIXD
diffraction data and increase the performance. We trained the
model on simulated images via a simulation procedure aimed at
reproducing variate scattering backgrounds and experimental
artifacts. We note that the translation-invariant Faster R-CNN
algorithm detects each peak independently; thus, our approach is
material-agnostic by design, unlike in the case of a model trained
to extract material-related information from the measured data at
a single step.
As a demonstration of the possible applications of our method,

we performed an automated analysis on two in situ GIXD datasets
of organic-inorganic perovskite structures. However, we empha-
size that it is, in fact, generally applicable to essentially any
crystalline thin-film materials. First, we track the formation of
different phases in 2D halide perovskites. Our model detects
diffraction reflections, which are then used to identify the
perovskite phases and crystal orientations and track the evolution
of the lattice parameters over time, which is crucial for the
photovoltaic performance. Second, we demonstrate a fast analysis
of over a thousand diffraction images from in situ measurements
of the conversion of methylammonium lead iodide (MAPbI3) from
an intermediate phase during spin-coating and annealing. The
algorithm detects over 20,000 peaks on 1015 images and can
pinpoint the start of perovskite formation during the experiment.
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RESULTS
Data-driven model modifications
We implemented a deep learning object detection model based
on a two-stage Faster R-CNN framework23,24 to locate diffraction
rings and segments in GIXD images. Figure 1 illustrates the data
pipeline with the model architecture (see Methods IV B). State-of-
the-art object detection algorithms are mainly focused on
improving performance on objects in RGB photographs and
the corresponding benchmark datasets (PASCAL VOC, MS COCO,
Open Images, etc.)23,25–28. X-ray scattering patterns exhibit
particular features that require careful adjustments of the
existing general methods. To this end, we introduced an array
of modifications to the original architecture to conform to the
specifics of the scattering data and accelerate the calculations. In
the following, we briefly discuss the key features of the grazing-
incidence diffraction images that inform the design of the
detection algorithm.

Polar symmetry. X-ray scattering from crystalline grains results
in diffraction patterns showing either full rings or ring
segments in reciprocal space (depending on their orientation
distribution) (see Fig. 1b). However, most detection algorithms
are designed to detect an object by providing coordinates of a
rectangular bounding box around the object. The rectangular
shape is most suited for feature extractors that are based on
convolution operations with rectangular kernels, while detect-
ing objects with circular shapes would lead to nontrivial
complications. To overcome these issues and work with
rectangular object shapes, we converted the GIXD images to

the polar coordinates jQj ¼ ðQ2
z þ Q2

jjÞ
1
2 and ϕ ¼ arctanðQz=QjjÞ,

where Q is the scattering vector and Qjj ¼ ðQ2
x þ Q2

yÞ
1
2. We note

that some effects such as refraction may distort the polar
symmetry in grazing incidence geometry, but they can be
largely neglected here.

Simple features with complex experimental artifacts. In general,
Bragg peak profiles can be well approximated by a Voigt function
or similar profiles (Gaussian, Pearson VII, pseudo-Voigt, etc.29–31).
At the same time, Bragg peaks are typically influenced by various
experimental artifacts: incoherent scattering, scattering from
amorphous substrates and gases, counting statistics, the direct
beam, detector gaps, etc. In this light, we conclude that a deep
learning-based solution is required to filter out artifacts and
provide stable detection accuracy. However, in contrast to
detecting more complex objects in RGB photographs (e.g.,
humans, animals, cars), a less deep representation might be
sufficient for detecting Bragg reflections. Moreover, we can omit a
classifier from the detection algorithm, since there is no task to
classify peaks by their shape. These simplifications significantly
accelerate the model, which is desirable for on-the-fly analysis of
measurements with high acquisition rates (up to tens of kHz on
modern detectors32).

"Fractal” properties of the detected objects. In terms of detection,
diffraction rings exhibit properties unusual for objects in RGB
photographs. For example, it is possible that a segment of a ring is
detected with a higher confidence score than the whole ring. At
the same time, two separate but adjacent segments at the same
∣Q∣may be considered a whole ring on a compressed feature map.
This behavior causes corresponding detection errors and requires
certain adjustments to the training process that are discussed in
Methods IV B.

Asymmetric object shapes at different scales. Debye-Scherrer rings
are typically well-localized in the radial dimension (horizontal in
polar coordinates) (see Fig. 1c). However, their sizes along the
angular (vertical) axis may vary substantially depending on the
distribution of orientations of the crystalline grains. Modern deep
convolutional feature extractors are designed to decrease the
spatial resolution in exchange for richer feature maps that may
distinguish between different complex shapes. This strategy

Fig. 1 Image preprocessing pipeline and the model architecture. a The geometry of the measurements. After Lorentz-polarization
correction, measured diffraction patterns are sequentially converted from detector coordinates (a) to reciprocal space (b) and then to polar
coordinates (c). For the detection, the contrast is enhanced by CLAHE (all shown images are already contrast-enhanced for visualization).
d Feature extractor with asymmetric feature maps; feature shapes correspond to an input image size of 512 × 512 pixels. e The Region
Proposal Network kernels convolve with feature maps to extract RoI at different scales. f At the second detection stage, a RoIAlign layer
extracts features at corresponding positions from the largest feature map, from which the box coordinates and the score of confidence are
predicted for each box by a fully-connected network.
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would be ill-suited for our task as we would prefer to keep a
sufficient resolution along the horizontal ∣Q∣ axis while compres-
sing the features along the vertical axis. Therefore, we use
asymmetric convolutional operations to address the asymmetric
shapes of the detected object and to preserve a high resolution
along the ∣Q∣ axis. We also use several feature maps of different
shapes to identify peaks at various scales (see Methods IV B).

High dynamic range. Modern X-ray area detectors can register up
to billions of counts per pixel32 creating exceptionally large
dynamic ranges. In practice, such bright spots may correspond to
strong reflections from rare large crystalline grains or from the
direct beam profile. At the same time, other features may have
orders of magnitude less counts, especially at higher Q values. This
range in contrast makes it challenging for the neural network to
equally detect peaks of different brightness. Therefore, we chose
to contrast-enhance the experimental images as a preprocessing
step (see Methods IV A).

Performance on the simulated data
The model was trained (see Methods IV D) on a training set of
48,000 simulated images which emulate GIXD images in polar
space, encompassing a highly diverse configuration of Bragg
reflections, scattering backgrounds and experimental artifacts (see
Methods IV C and Supplementary Fig. 1). The performance of the
trained model was first evaluated on a test set of 10,000 simulated
images. Figure 2a, b show two examples of the simulated patterns.
The green lines correspond to the peaks detected by the model.
There were 175,344 peaks simulated for 10,000 images in total, of
which 99.22% (173,990) were detected correctly, 0.78% (1354)
were missed and 0.25% (439) of the detected peaks were false
positives. As a performance metric (Fig. 2c, d) we chose to simply
use the absolute peak center distance Δ∣Q∣= ∣∣Qdetected∣− ∣Qtruth∣∣
over the more commonly used metric Intersection over Union
(IoU)23,25–27. This was done because we deemed the accuracy of
the peak center to be more relevant to this task than the peak

overlap. Figure 2c shows the distribution of Δ∣Q∣ for 173,990 peaks
along with the cumulative curve; 95% of the peaks were detected
with a Δ∣Q∣ below 0.366 pixels. A stochastic nature of the
simulation process (see Methods IV C) unavoidably creates a small
fraction of peaks which are unrecognizable due to noise,
background, low intensity, etc. Figure 2d illustrates the distribu-
tions of falsely detected and missed peaks per image; only 4% of
images contained at least one falsely detected peak and 8.5% of
images had at least one missed peak. The number of false and
missed peaks per image determines the correctness of structure
determination. In our case, the vanishingly low numbers of false
positive detections per image (0.044 peaks on average) and
missed peaks per image (0.14 peaks on average) minimize the
corresponding errors in the further analysis of GIXD images.
We note that our neural network is lightweight (5.9 M

parameters) and fast (122 images per second), which is essential
for real-time GIXD data analysis. For comparison, the analogous
unmodified Faster R-CNN model24 is substantially larger (41 M
parameters) and slower (26 images per second), yet it misses 7%
of the peaks on the test set. This result illustrates that our model is
highly optimized for the task and outperforms much larger
standard architectures. Furthermore, to justify the choice of the
object detection algorithm and the importance of the second
detection stage, we provide performance comparisons with two
other types of object detection models: the one-stage detector
and the segmentation model U-Net33. The results are summarized
in Supplementary Fig. 2 (see Methods IV F for details). Both models
exhibit lower detection accuracy than our two-stage detector.
Compared to the one-stage detector, the second detection stage
is particularly relevant for filtering out false positive predictions
(the share of false positives for the one-stage detector is 5.6%).
The segmentation model is indeed simpler in terms of imple-
mentation; however, in addition to a higher number of false
positives (9.6%), it suffers from other systematic problems:
the overlapping peaks cannot be separated, and single peaks
can be detected as multiple peaks (see Supplementary Fig. 3); the

Fig. 2 Detection results on the simulated test set of 10,000 images. a and b Show two simulated patterns (left) and the corresponding

detection predictions (right) in the polar coordinates jQj ¼ ðQ2
z þ Q2

jjÞ
1
2 and ϕ ¼ arctanðQz=QjjÞ. c The absolute ∣Qdetected∣ error distribution with

cumulative curve; the error is below 0.366 pixels for 95% of the peaks. d Distribution of missed and falsely detected peaks per image.
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accuracy of peak ∣Q∣ determination is limited by pixel size; the
process of extracting peak positions from segmentation maps
increases the inference time to 30 images per second.
In the light of these results, it is important to note that, although

GIXD data is much harder for humans to interpret than the RGB
photographs from typical benchmark object detection datasets,
the presented model reached near-optimal performance on the
test set. The average precision exceeded 99%, a value which has
not yet been reached on datasets with RGB photographs with the
current state-of-the-art results being around 60%34. These results
provide evidence that the developed model architecture is well
suited for the current task. This success inspired us to apply our
strategy to specific scientific problems and automatize the
experimental data processing, as explained below.

Use case 1: 2D perovskite lattice parameter refinement
In the following, we apply the developed model to analyze
data from the in situ GIXD measurements of the formation
of a Ruddlesden–Popper 2D perovskite (butylammonium

methylammonium lead iodide (BA)2(MA)n−1PbnI3n+1
35–37) dur-

ing annealing (Supplementary Fig. 6).
The experiment was performed at the synchrotron radiation

source PETRA III, at beamline P0838. The X-ray beam energy was
E= 18 keV and the angle of incidence was αi= 0. 5°, which is
above the critical angle for the substrate αc= 0.16°. The
investigated thin-film sample was obtained by spin-coating a
solution of butylammonium iodide (BAI), methylammonium
iodide (MAI) and lead iodide (PbI2) dissolved in a dimethylforma-
mide and dimethyl sulfoxide mixture (DMF:DMSO= 1:4), on a
glass substrate coated with indium tin oxide (ITO) (Supplementary
Fig. 4). An IR lamp mounted at the top of the spin coating
chamber was used to anneal the sample (see Supplementary
Fig. 5). Sixty diffraction patterns with 1 s exposure time each were
analyzed, corresponding to 60 s of annealing.
Figure 3 a, b demonstrate the detection results of the neural

network on two diffraction patterns for t= 0 s and t= 60 s. The
lines on the right-hand images correspond to the locations
of the detected peaks. Our algorithm detected most of the visible
reflections - 1156 diffraction rings and segments from 60 time
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frames remained after the filtering stage (see Methods IV E). The
missed reflections typically have low intensities. Some detection
inaccuracies in determining peak angular sizes (in particular, lower
edges of detected boxes do not cover the whole peaks) may be
related to angular profile dissimilarities between the experimental
and simulated peaks.
To measure the accuracy of the obtained peak positions, we

extracted one-dimensional radial profiles of each peak based on
their predicted locations and fitted them with a Gaussian function
with linear background (Eq. 1) via the Levenberg–Marquardt
algorithm39:

IðjQjÞ ¼ I0 expð� ðjQj � QfitÞ2
2w2

Þ þ BjQj þ C (1)

Figure 3c shows the distribution of the absolute error of the
detected positions ∣Qdetected∣ with respect to Qfit obtained by
the fit; 95% of the errors are below 5.3 × 10−3Å−1. The colors of
the peaks in Fig. 3a, b denote the result of the indexing algorithm
used for the identification of the Bragg reflections (see the legend
on Fig. 3). We note that our detection algorithm can be coupled
with any standard indexing algorithm for diffraction patterns,
most (if not all) of which require careful peak position extraction.
In this case, it is sufficient to use a simple algorithm for phase
identification based on the share of simulated intensities
(structure factors) that appear within any of the detected boxes
(see Methods IV G for more details). We expect some of the
possible phases of (BA)2(MA)n−1PbnI3n+1 to emerge during
annealing, where n∈ [1, 7] defines the perovskite layer thick-
ness37. Supplementary Fig. 7 shows that two phases n= 2 and
n= 3 with (010) orientation are identified by our algorithm. The
algorithm also identified seven peaks from the ITO substrate and
one peak from the kapton window.
Once the phases are identified, each peak is automatically

indexed (one peak remains unidentified and likely belongs to a
side product of the annealing). Figure 3d shows radial peak
positions over time, from which we can obtain the moment when
both perovskite phases emerge (t ≈ 28 s). One peak was assigned
as belonging to both n= 2 and n= 3 phases and emerging earlier
at t= 17 s, however, it is in fact a weak reflection from the ITO
substrate at Q= 2.91Å−1.
Supplementary Fig. 8 demonstrates a systematic change of the

relative radial position of a perovskite peak over time that might
indicate changes in the lattice structure. To study these changes,
we performed the unit cell refinement procedure (see Methods IV
H) for both phases for each time frame. Figure 3e demonstrates

the behavior of the lattice parameter b of n= 2 phase that slowly
decreases over time from 40.5Å, which is about 1Å above the
previously reported value35 that was used as an initial value for
the fitting. The lattice length b of the n= 3 phase is constant (b ≈
52.5Å) and slightly above the initial value 51.96Å. This
discrepancy is most likely related to the increased temperature
during annealing resulting in asymmetric thermal expansion in
the direction corresponding to the spacer molecule. The other
parameters (see Supplementary Fig. 9) remain unchanged and are
in agreement with the initial values.
Note that while the demonstrated analysis can be easily

reviewed and adjusted by an expert at each step if necessary, in
general there is no need for a manual input. This way, our
detection model allows to automate the essential steps of GIXD
data analysis from phase identification and peak indexing to
refining the unit cell parameters. Performing the same analysis
with conventional tools would require a manual selection and
fitting of the peaks for each time frame, which is often so time-
consuming that in practice just a small fraction of the obtained
reflections is fitted for further analysis. In contrast, our approach
potentially allows a more comprehensive analysis already during
the experiment.

Use case 2: In situ tracking of MAPbI3 perovskite formation
As a second use case for our technique, we analyze 1015
diffraction images from an in situ spin-coating and annealing
experiment of the formation of 3D MAPbI3 perovskite. The
experimental setup was identical to the one described for use
case 1. The thin-film sample was obtained by spin-coating a
solution of MAI and PbI2 dissolved in a mixture of dimethylfor-
mamide and dimethyl sulfoxide (DMF:DMSO= 4:1), on a glass
substrate coated with ITO.
Figure 4 a illustrates the diffraction pattern at t= 700 s during

annealing (left image) and the corresponding detection results
(right image). The model detected all the visible peaks in the
pattern, which correspond to the reflections from MAPbI3, the ITO
substrate, PbI2, the intermediate structure (MA)2(DMSO)2Pb3I8,
and the kapton window. The indexing step was performed in the
same way as in the previous case II C. Figure 4b shows the ∣Q∣
positions of the detected peaks over time. In total, there were
20,756 peaks left after the filtering stage (see Methods IV E). This
fast preliminary analysis revealed conversion from the precursor
phase (MA)2(DMSO)2Pb3I8 to MAPbI3 perovskite that happens
from t ≈ 220 s to t ≈ 300 s.
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DISCUSSION
We demonstrated an automated deep learning approach for the
analysis of GIXD images. We showed how to optimize modern
object detection algorithms to address various properties of the
experimental data, such as the specific geometry, strong back-
ground, asymmetry of the diffraction features, etc. These
improvements enabled high performance on diverse experimen-
tal data with accurate detection of most of the reflections. The
small absolute error of the radial peak position determination and
high detection accuracy made it possible to perform an in-depth
analysis of in situ GIXD data. By processing the extracted feature
positions, we identified the formation of two coexisting phases of
2D organic-inorganic perovskite structure and traced the evolu-
tion of the lattice parameters in time for these phases. The
refinement procedure revealed a slight decrease in the unit cell
size for one of the identified phases. We note that such subtle
processes may often be overlooked during a manual analysis of
the data.
Currently, there is an increasing interest in automated analysis

of diffraction data13–15,17,20,40,41. An often proposed solution is a
single analysis step where the measured raw data is provided to
the machine learning algorithm which is supposed to learn which
parts of the data carry information, how to perform the desired
analysis and obtain material-related results. This approach needs
to be tailored as a whole to variations in materials or experimental
setups and does not allow to understand or control the process of
such an analysis. In contrast, the more flexible analysis approach
presented here consists of modular and transparent parts that are
simple to control and adjust for a concrete task.
In general, our solution allows to substantially accelerate the

analysis process of GIXD images, potentially boosting the speed of
scientific discoveries in material science and organic photovol-
taics. The other possible applications of the method include the
real-time adjustment of the experimental conditions based on the
obtained GIXD data and the high-throughput screening of
possible perovskite compositions for organic solar cells.

METHODS
Image preprocessing
Figure 1a–c demonstrate the individual steps of the preprocessing pipeline
applied to all the experimental data used in this work. The measured
pattern is first corrected by the Lorentz-polarization factor42, converted to
reciprocal space (Q∣∣,Qz) using the knowledge about the experimental
geometry and mapped to polar coordinates (jQj; arctanðQz=QjjÞ) with an
image resolution 512 × 1024 pixels. The image resolution can be extended
for larger area detectors without any adjustments to the method.
Finally, the images are contrast-enhanced via the contrast-limited adaptive
histogram equalization algorithm (CLAHE)43. The contrast-enhanced
images are only used for the detection stage, but not for any further
analysis.

Model architecture
For the detection, we chose a two-stage Faster R-CNN object detection
framework23,24,26 and modified it to meet the specifics of the data
discussed above. The general pipeline of the detection process is
illustrated by the scheme in Fig. 1. First, a convolutional neural network
(feature extractor) is applied to an image to convert it into several feature
maps with reduced spatial resolution that, in general, carry information
about the appearance of different objects on an image. During the first
detection stage, a Region Proposal Network (RPN) slides over the feature
maps via the convolution operation. For each pixel on each feature map, it
determines whether there is any object at any of the predefined scales
(anchors23) by providing objectness score and the box coordinates relative
to the anchors. The resulting regions of interest (RoI) with positive
objectness score are individually extracted from the feature maps,
reshaped and provided to a fully-connected network25 that classifies an
object and refines its box coordinates. For more details on the basic

implementation we refer to23,24, and below we focus on the key
differences determined by the specifics of the data.

Feature extractor. We design a feature extractor with asymmetric
convolutional layers to preserve resolution along the radial axis ∣Q∣. For
this purpose, we modify a small ResNet-18 model pretrained on ImageNet
dataset44 by using asymmetric stride= (2, 1) for the three last residual
blocks of the model. The use of the pretrained model allows speeding up
the training (see Supplementary Fig. 10). Thus, for an input image of 512 ×
512 pixels, the output feature maps from these three blocks would have
shapes of 64 × 128, 32 × 128 and 16 × 128, respectively. In this way, an
image size is mostly reduced in the vertical direction to allow the detection
of long narrow rings. At the same time, vertical size reduction from 512 to
16 pixels makes it impossible to resolve segments with small angular
(vertical) size. To circumvent this problem, we provide all the three feature
maps to RPN; each feature map is assigned to extracting objects within a
certain size range. As the semantic information is accumulated at the
deeper layers of a convolutional network, feature maps from the first
blocks provide a shallow representation of an image that in our case might
not be sufficient to filter out background and other complex artifacts. To
enrich these first feature maps with more complex representation while
preserving their resolution, we implement an architecture similar to the
Feature Pyramid Network24. First, three feature maps with sequentially
decreasing angular resolution are obtained from the residual blocks as
discussed above. After that, smaller and semantically stronger feature
maps are summed via upsampling and lateral connections with larger
feature maps. To ensure the same number of channels C= 64 among the
feature maps, the lateral connections are preceded by convolutional layers
with 1 × 1 kernels.
It is worth noting that the model can be applied on images of arbitrary

size; the shapes discussed above correspond to the simulated images with
fixed size 512 × 512 (see Section IV C), but for the experimental images the
resolution might be increased and it generally depends on the initial
resolution of the area detector used in the experiment.

Region proposal network. Our RPN architecture follows the one from25

with a reduced number of channels C= 64. It is applied to each of the
three feature maps with the corresponding anchors (see Supplemen-
tary Table 1).
Unlike for usual objects on RGB photographs, there are no well-

defined edges of a Gaussian peak; the radial size of a box is arbitrarily
defined as a Gaussian RMS width of a peak. However, the surrounding
background and overall profile is essential for correct identification of a
peak on an image. To address this issue, we extend the target object
boxes for RPN by applying padding wRPN = 1.1wsim + 1.5 pixels, so that
the box (therefore, the extracted region on the second detection stage)
contains the surrounding background.

Second detection stage. To extract a proposed RoI from a feature map, we
use RoIAlign layer introduced in26 that reshapes a RoI from a feature map
into a fixed-shape tensor via bilinear interpolation. Compared to the basic
implementation, we increase this resulting shape from 7 × 7 to 16 × 16 to
provide a better resolution and, therefore, a better box regression
accuracy. At the same time, we decrease the representation size (number
of channels) of a RoI from 102425 to 32.
Unlike usual objects in photographs with complex sharp shapes, several

distinct segments at the same ∣Q∣ position may be confused with one
pronounced segment, especially if a feature map size is drastically reduced
along the angular axis. To reduce the probability of this type of detection
errors, we only use the first largest feature map for the second detection
stage, i.e., RoiAlign layer extracts all the RPN proposals from the largest
feature map (see Fig. 1). In this way, the use of Feature Pyramid Network is
essential to provide maximum information for the second detection stage.
We reduce the classifier to two classes (object/background) and use

sigmoid loss function instead of cross-entropy loss just as in RPN classifier.
The resulting score of confidence is assigned to refine an objectness score
from RPN.

Simulated data for the training
Training the model on the experimental data would require enormous
efforts in annotating large amounts of the measured data manually. Even
then there would be a high risk of overfitting on some particular types of
data. We find that simulating the data via simple heuristics is sufficient to
achieve a very good performance on various types of experimental data.
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When designing the simulation process, we aim at training the model to
identify vertical lines with 2D-Gaussian profiles on the images super-
imposed by different experimental artifacts, levels of noise and back-
ground signals. An image size of a simulation is 512 × 512 pixels. Most of
the simulation stages described below are optional and are invoked with
some probability to cover various combinations of the artifacts and
features. Moreover, we define probability distributions for most of the
simulation parameters so that they differ for every new simulation. The
peak positions are stochastic and model-free; the neural network is trained
to detect each of the peaks regardless of the position of the other peaks. In
this way, the simulations are not limited to a subset of predefined crystal
systems; this approach allows to analyze various complex mixed systems
with the same neural network for peak detection.
Each peak profile is modeled by a two-dimensional Gaussian function.

To simulate angular profiles of the peaks, which depend on the orientation
distribution of the crystalline grains and may exhibit extremely variable
patterns, we multiply a simulated map of 2D-Gaussian peaks by Perlin
noise45. The simulated background consists of several optional compo-
nents: linear background, Perlin noise, broad Gaussian profiles. A weighted
sum of a background and peak profiles map is further modified by
applying Poisson noise to simulate counting statistics, adding detector
gaps and geometry-dependent dark areas, etc. The simulation process is
organized as a series of sequential image processing steps, and each step
adds a certain artifact with a defined probability, so in general each image
features multiple artifacts and types of background (see Supplementary
Fig. 1 and the code for the implementation details). Finally, simulated
images are processed in a similar way as the experimental ones by
applying histogram equalization followed by normalization to the range
I∈ [0. . 1]. Figure 2 shows several examples of the simulated images.

Training
The model was implemented in the Pytorch deep learning framework46.
We trained both RPN and Fast R-CNN together for 3000 iterations; on each
iteration, we simulated a batch of 16 grayscale images with size 512 × 512,
in total 48,000 images. We used the AdamW optimizer (Adam with
decoupled weight decay regularization47) and halved the learning rate
every 500th iteration starting from lr= 0.002. The loss function contains
four components [Eq. 2]:

L ¼ λ1L
RPN
reg þ λ2L

RPN
score þ λ3L

ROI
reg þ λ4L

ROI
score; (2)

where reg terms are regression losses for box coordinates calculated as
smooth L1 loss25, score terms are objectness losses calculated as a sigmoid
function, RPN and ROI denote the first and the second detection stages,
respectively, and λi are the weights used to balance these terms; we use
λ1= λ3= 10 and λ2= λ4= 1.
The training data is simulated on the fly during the training. In this way,

we did not train a model on a same image twice to eliminate possible
overfitting, increase variability of the data, and omit a validation set. The
whole training takes <25min on a single NVIDIA 2080Ti graphics card. It is
worth noting that, since our model is much lighter (i.e., contains much less
parameters) than the original Faster R-CNN implementation, it allows to
increase batch size from 2 to 16 images per batch and, therefore, unfreeze
and train Batch Normalization layers25,48.

Postprocessing
One disadvantage of the Faster R-CNN architecture is that a single object
can be detected several times with overlapping boxes. Thus, after
obtaining the box coordinates and scores of confidence, some of the
predictions have to be filtered in order to eliminate possible duplicates. In
this work, we use a standard non-maximum suppression operation49 which
removes all overlapping boxes except the one with the highest score of
confidence if the degree of overlap exceeds an IoU metric25 IoU= 0.1. The
value of IoU is set quite low to ensure minimal appearance of duplicates,
but it can be adjusted if many overlapping peaks are expected on a
diffraction pattern.
The other necessary filtering stage that was implemented is the removal

of predictions with low confidence score. In this work, we use the
threshold value 0.8, though most of the predicted peaks exhibit a
confidence score above 0.95. When detecting the peaks in in situ data, it is
desirable to identify and connect Bragg reflections that appear in
sequential time frames. This is achieved by calculating IoU between all
the detected peaks from adjacent time frames and connecting those pairs
of peaks with largest IoU if it is sufficient (we use an arbitrarily chosen value

IoU= 0.3; the results of the algorithm are not sensitive to this parameter).
As a result, we obtain a set of reflections with detected positions over time
and total duration of the presence of each peak. Based on this duration,
we are able to perform an additional filtering procedure by removing
those peaks with small duration as they are likely to be related to
experimental artifacts or noise.

Comparison to other object detection models
In addition to our two-stage detector, we trained the other three neural
networks and evaluated their performance on the simulated data (see
Supplementary Fig. 2).
Faster R-CNN model with ResNet-50 and Feature Pyramid Network24

with two object classes (peaks and background) is trained with four images
per batch due to memory limitations. Therefore, the training is extended to
12,000 iterations.
U-Net33 is modified by adding Batch Normalization layers and trained to

solve a segmentation task with a cross-entropy loss; the separate peak
positions are obtained from the segmentation map via the standard
algorithm50. The confidence score of each peak prediction is estimated by
the mean value of the segmentation map within the predicted box. Similar
to Faster R-CNN, we use four images per batch due to memory limitations
and 12,000 training iterations in total.
Our RPN (a one-stage detector) is trained separately; the training process

is equivalent to our two-stage detector.

Phase identification and indexing
For a given crystal structure and orientation, we calculate reflection
positions and structure factors for all the combinations of miller indices in a
wide range [−20, 20], filter them based on Qz, Q∣∣ ranges measured in
the experiment, and determine which reflections appear close enough to
the detected peaks based on the following conditions: jjQdetectedj �
jQsimjj=wdetected � 1 and jϕdetected � ϕsimj=adetected � 1 where wdetected,
adetected are radial and angular sizes of the detected peak, respectively, and
ϕ ¼ arctanðQz=QjjÞ. The fraction of the corresponding structure factors
gives a metric which is sufficient for finding the best match among a set of
phases and orientations (see Supplementary Fig. 4). Since some of the
reflections appear at Q∣∣= 0 (ϕ= 90∘) and their centers are hidden behind
a missing wedge, we automatically prolong those peaks that reach the
edge of a missing wedge to ϕ= 90∘ to be matched correctly.
The minimal number of detected peaks required to identify the structure

correctly depends on the choice of an indexing algorithm. In general, the
employed matching algorithm might require substantially more detected
peaks to robustly identify the correct structure compared to standard
indexing algorithms that may only require three peaks per structure.
Nevertheless, the number of peaks detected by the model on the
experimental datasets is sufficient to determine every presented structure
with the matching algorithm correctly.
When there are both reflections from crystalline grains with preferred

orientations (short segments in angular dimension) and long rings from
random orientations, it is beneficial to separate the predictions to these
two groups and index separately. We do so for the analysis of 2D
perovskite data by clustering predicted peaks into two groups based on
the relative angular size of peaks adetected/H(Qdetected), where H(Qdetected) is
the maximum possible angular size at a given ∣Q∣ position. In this case, the
reflections from ITO and kapton are separated from the reflections from 2D
perovskites and they are indexed separately.
The indexing stage is rather trivial and it is performed by assigning the

closest simulated reflection to each detected peak given the reflection is
close enough (see the conditions above) for each of the phases. Thus, one
peak may correspond to several overlapping reflections from different
phases (see Fig. 3).

Unit cell refinement
Lattice parameters of the identified n= 2 and n= 3 phases of the
(BA)2(MA)n−1PbnI3n+1 2D perovskite are refined based on the positions of
the detected and indexed Bragg reflections. We achieve this by minimizing
the mean squared distance between the detected and simulated peak
positions with respect to the lattice parameters. Some of the reflections
from n= 2 and n= 3 phases overlap and are detected as single peaks.
Indeed, the corresponding detected peak positions are, in general, biased.
To achieve a better accuracy of the lattice parameters determination, we
only use those N peaks that do not overlap with peaks from another phase.
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The refined lattice parameters are obtained by minimizing [Eq. 3]

χ2N�3ða; b; cÞ ¼
XN

i¼1

Qi
detected � Qi

simða; b; c; hi ; ki ; liÞ
σidetected

� �2

(3)

with respect to the lattice parameters a, b, c for an orthorhombic unit cell
(angles α= β= γ= π/2) for each time frame via L-BFGS-B algorithm51; the
Miller indices {hi, ki, li} of an ith peak are known from the indexing results.
The initial values a= 8.947Å, b= 39.347Å, c= 8.8589Å for n= 2 and a=
8.928Å, b= 51.959Å, c= 8.878Å for n= 3 are taken from the previously
reported structures36. The standard errors are calculated using inverse
Hessian matrices; detection errors are majorized by σidetected = 0.01Å−1.

DATA AVAILABILITY
The GIXD datasets are available from the corresponding author upon reasonable
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