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A P P L I E D  P H Y S I C S

Fast and reliable probabilistic reflectometry inversion 
with prior- amortized neural posterior estimation
Vladimir Starostin1*, Maximilian Dax2†‡, Alexander Gerlach3, Alexander Hinderhofer3,  
Álvaro Tejero- Cantero1, Frank Schreiber3*

Reconstructing the structure of thin films and multilayers from measurements of scattered x- rays or neutrons is 
key to progress in physics, chemistry, and biology. However, finding all structures compatible with reflectometry 
data is computationally prohibitive for standard algorithms, which typically results in unreliable analysis with 
only a single potential solution identified. We address this lack of reliability with a probabilistic deep learning 
method that identifies all realistic structures in seconds, redefining standards in reflectometry. Our method, prior- 
amortized neural posterior estimation (PANPE), combines simulation- based inference with adaptive priors that 
inform the inference network about known structural properties and controllable experimental conditions. PANPE 
networks support key scenarios such as high- throughput sample characterization, real- time monitoring of evolving 
structures, or the corefinement of several experimental datasets and can be adapted to provide fast, reliable, and 
flexible inference across many other inverse problems.

INTRODUCTION
Scattering techniques enable the reconstruction of object structures 
through the analysis of scattered radiation (1, 2). At the nanoscale, 
this requires radiation with short wavelengths, such as x- rays and 
thermal neutrons. While for the reconstruction of images from vis-
ible scattered light there are more established tools including optical 
lenses, using these tools for x- rays and neutrons frequently poses 
substantial challenges, leading to the use of algorithms for the re-
construction process (3). These algorithms, however, receive incom-
plete information, as detectors capture intensities but not the phase 
information of the scattered waves. This gives rise to the phaseless 
inverse problem in scattering physics. While physical models can 
simulate scattered intensities from a given structure, reconstructing 
the structure from actual measurements is analytically intractable, 
and experimental data can be consistent with multiple physical 
structures (4). This ambiguity can be then resolved through comple-
mentary measurements or physical knowledge, but it is crucial to 
first acknowledge the existence of multiple solutions to avoid costly 
misinterpretations of the data. Together with advances in experi-
mental methods enabling time- resolved online experiments and 
high- throughput pipelines (5, 6), this creates a pressing need for 
algorithms that are fast, capable of reliably identifying all possible 
solutions, and flexible enough to integrate additional data and physics- 
informed constraints.

The need of fast and reliable algorithms is especially evident for 
neutron and x- ray reflectometry (XRR) (7–9). The reflected intensity 
R in specular geometry as a function of momentum transfer q (see 
Fig. 1A) can inform about the scattering length density (SLD) profile 
for a broad range of thin films and layered structures, ranging from 
solar cells (10) to biological membranes (11, 12). The SLD profile is 
typically modeled by parameters θ that include layer thicknesses dl, 

densities ρl, and interface roughnesses σl. Obtaining these parameters 
θ from a reflectivity curve R

(
q
)
 in a fast and reliable way is a long-

standing inverse problem (Fig. 1B) due to the phase loss, measure-
ment noise, and limited range and resolution of q. For a long time, a 
common approach was to search for the “best” single set of parame-
ters θ∗ maximizing the likelihood of the measured data. However, 
maximum likelihood estimation remains fundamentally unreliable 
as it overlooks other potential physical solutions arising from ambi-
guity in the inverse problem. To address ambiguity, we need to 
embark on a principled probabilistic approach and estimate the pos-
terior probability density of the parameters θ given the measured 
data R. In such a Bayesian posterior p(θ ∣R), different probable struc-
tures appear as distributional modes (Fig. 1C). In practice, the infer-
ence of a high- dimensional posterior is inherently challenging and 
particularly so in reflectometry where multiple narrow distributional 
modes are common. Conventional Bayesian likelihood- based tech-
niques such as Markov Chain Monte Carlo (MCMC) (13) are neither 
fast nor reliable, as they generally miss distributional modes.

Here, we present a machine learning solution for Bayesian reflec-
tometry analysis that provides fast, reliable, and accurate inference 
along with the flexibility that online experiments demand. Speed is 
achieved by pretraining a neural network across large amounts of 
representative data, an amortization procedure that then allows for 
real- time inference on new samples. Reliability stems from the use 
of recent simulation- based inference (SBI) which, in contrast to 
likelihood- based modes, provides comprehensive coverage of the 
search space. Accuracy in the identified solutions is achieved via a 
subsequent likelihood- based step, which refines machine learning–
based estimates. Fast likelihood evaluations are possible thanks to 
our PyTorch implementation of transfer- matrix simulator. Last, we 
enable great flexibility for a wide range of standard scenarios in ex-
perimental setups by extending neural posterior estimation (NPE) 
with prior amortization, which we term prior- amortized neural 
posterior estimation (PANPE). Our method PANPE can use dy-
namically set, adaptive prior distributions, allowing to track online 
expriments, leverages equivariance transformations to enable amor-
tization over different q ranges, and can combine evidence from 
multiple measurements for efficient inference. Below, we describe in 
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detail how PANPE works and benchmark its performance on real 
and synthetic reflectometry data.

RESULTS
Overview of PANPE
Bayesian framework for inverse problems
Reflectometry analysis aims to infer physical parameters θ from 
measured data R. Each parameter set θ describes a hypothetical SLD 
profile of the studied structure (SLD parameterization is discussed 
in Materials and Methods). For a given reflectometry measurement 
R, the Bayesian posterior distribution (14)

offers a probabilistic estimate of θ, characterized by the likelihood 
p(R ∣ θ) provided by scattering theory and a prior p(θ) provided by 
experimentalists.

The prior physical knowledge about the studied structure, formu-
lated as a prior distribution p(θ) over parameters θ in Bayesian 
framework, serves as a crucial tool for resolving ambiguity in reflec-
tometry and, more broadly, in scattering physics. It facilitates physics- 
informed analysis by integrating knowledge about the materials used 
and other properties of the system under study. What may be un-
physical SLD profiles in one context can be considered legitimate 
solutions in another, depending on the known properties of the sys-
tem being investigated.

With Bayes’s theorem, we can use likelihood and prior to calculate 
the (unnormalized) posterior density for any given parameter set θi. 
However, such density evaluation does not directly provide most 
practically relevant estimates, such as mean values or confidence in-
tervals. To compute them, we need to draw samples {θi}Ni=1 ∼ p(θ ∣R) 
from the posterior distribution, i.e., randomly selecting parameter 
sets θi in proportion to their posterior density p

(
θi ∣R

)
. The com-

plexity of this operation for high- dimensional parameters θ renders 
Bayesian inference a highly challenging task, traditionally limiting 
the applicability of the Bayesian approach to simple cases.
Coverage and refinement of NPE
To reliably sample from the Bayesian posterior, we adopt a recent 
NPE method (15, 16). It uses a normalizing flow architecture (17–
18) as the neural network–based density estimator. Normalizing 
flows can learn complex high- dimensional conditional distributions 
and have been used for Bayesian inference in multiple applications. 
Once trained on a broad range of simulated data, the flow- based 
model pNN(θ ∣R) can efficiently generate samples {θi}Ni=1 ∼ pNN(θ ∣R) 
and evaluate densities pi = pNN

(
θi ∣R

)
 for different measurements R.

A key property of normalizing flows is that the exact density 
evaluation enables training the model by minimizing the forward 
Kullback- Leibler (KL) divergence (see more details in Materials and 
Methods). This ensures the coverage property of NPE, i.e., it con-
tains the full support of the true unknown posterior p(θ ∣R) and 
does not miss distributional modes (19). The coverage is guaranteed 
when the model is sufficiently expressive and the training data cap-
ture all relevant modes, as ensured by sampling from the joint distri-
bution θi ,Ri ∼ p(θ,R).

Despite the coverage property, the “shape” of the NN- based den-
sity estimate might deviate from the target posterior. To address 
this, likelihood- based methods such as importance sampling (IS) 
and MCMC can refine the NPE results for more accurate estimates. 
Thus, NPE ensures the coverage property, while likelihood- based 
refinement enhances accuracy.

Our custom- made GPU- accelerated transfer- matrix reflectome-
try simulator (20) implemented using PyTorch (21) accelerates both 
the training and inference stages. This allows us to simulate new 
curves directly during the training process without reusing simula-
tions, thereby preventing overfitting. Furthermore, as we show be-
low, our reflectometry analysis with IS refinement—which requires 
likelihood evaluations—typically takes just seconds to less than a 
minute on a single graphics card, the NVIDIA RTX 2080 Ti.
Amortization across various experimental scenarios
Along with reliability due to the coverage property, NPE provides 
fast, amortized inference by shifting its computational cost to the 
training phase. However, the amortization also introduces a key 
practical limitation, as a trained model can only operate within 
some predefined training ranges of parameters. In the case of reflec-
tometry, this limitation includes not only the parameter ranges but 

p(θ ∣R) ∝ p(R ∣ θ)p(θ) (1)

Fig. 1. The ill- posed inverse problem in reflectometry analysis. (A) A schematic 
experimental setup for reflectometry measurements. the reflected intensity R(q) 
from a studied layered structure as a function of momentum transfer q contains infor-
mation about parameters θ of the studied sample. the momentum transfer is typi-
cally controlled by the geometry in XRR or by the energy in time- of- flight neutron 
measurements. (B) inverse problem in reflectometry: the forward simulations pro-
vided by the scattering theory should be inverted during inference, which is gener-
ally ambiguous. (C) inference methods commonly used for reflectometry analysis, as 
well as our proposed approach. the standard maximum likelihood estimation ap-
proach provides a single solution by design. McMc locally explores the parameter 
space and can overlook distributional modes. in contrast, (PA)nPe posterior estimate 
is guaranteed to cover all the solutions, with further refinement based on likelihood 
evaluation improving accuracy. Our prior amortization method, PAnPe, enables the 
analysis of multiple experimental scenarios using a single neural network.
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also experimental settings such as the discretization of the momentum 
transfer axis q or the measurement uncertainties, all of which may sub-
stantially affect the resulting posterior estimate. We address these limi-
tations by implementing intensive amortization, taking into account 
the diverse varying aspects of the experiment, such as q discretiza-
tion and range, measurement uncertainties, and prior information.

Measurements of the reflected intensity R
(
q
)
 are taken at differ-

ent discrete values of momentum transfer q (see Fig. 1A). Together, 
these measurements form an input dataset R = {qp,R

(
qp
)
, sp}

nq
p=1

 
consisting of nq measured points (here sp represents the uncertainty 
of each data point). Our approach accommodates experiments fea-
turing arbitrarily spaced q points and varying numbers of measure-
ments nq, by using an efficient embedding neural network equipped 
with trainable interpolation kernels (see more details in Materials 
and Methods).

However, in the context of reflectometry analysis, the most 
notable variable component is the prior information. Known 
constraints on physical properties vary substantially across different 
structures under study. Furthermore, in the online experiments dis-
cussed below, the experimentalists may modify the structure by 
changing control parameters—and accordingly, the respective pri-
ors. Adjustments to the priors are also necessary when combining 
multiple measurements in neutron reflectometry (NR), as discussed 
below. In these and other scenarios, the analysis must adapt to the 
changing prior distribution. Standard machine learning solutions 
like NPE, which typically assume a fixed prior distribution, fall short 
under these experimental conditions. To overcome this limitation, 
we introduce PANPE that accommodates a variety of prior distribu-
tions within a single model.
Prior- amortized neural posterior estimation
We incorporate dynamic prior information into a neural network by 
choosing a class of distributions p(θ ∣ϕ) parameterized by ϕ. The 
newly introduced parameters ϕ reflect prior information about the 
system. They are supplied as an additional input to the flow- based 
neural network pNN(θ ∣R,ϕ) alongside the measured data. This al-
lows us to train a single neural network and amortize inference 
across both measurements R and priors p(θ ∣ϕ)

In reflectometry analysis, it is typically sufficient to use uniform 
prior distributions p(θ) =

∏n

j=1
U
�
θmin
j

, θmax
j

�
, where n is the number 

of parameters θ. Thus, we define ϕ as a set of corresponding parameter 
ranges: ϕ = {θmin

j
, θmax

j
}n
j=1

. This results in 2n = 20 additional input 
values for a task with n = 10 parameters θ. In this manner, the model is 
trained to approximate posterior distribution for a continuous set p(ϕ) 
of (uniform) prior distributions p(θ ∣ϕ) within a larger parameter 
space. Our approach can be extended to other classes of distribu-
tions by providing suitable parameterization. We illustrate why the 
likelihood- based refinement (or rejection sampling in the case of uni-
form prior distribution) is not a practical alternative to the prior amor-
tization in our case on simulated data below. Our prior amortization 
approach is discussed in detail in Materials and Methods.

The inference pipeline is illustrated in fig. S1. Given the data R 
and the prior distribution characterized by parameters ϕ, we sample 
from the trained PANPE model and apply likelihood- based refine-
ment either using IS (19) (PANPE- IS) or MCMC (PANPE- MCMC) 
(see more details in Materials and Methods).

Parameter- conditioned posterior estimation
In certain cases, it is required to estimate parameter- conditioned pos-
terior estimation, where instead of providing narrow priors for a pa-
rameter, it is fixed. Here, we show one such case in the context of NR 
where parameter- conditioned posterior estimation is necessary for 
combining multiple measurements with partially shared parameters.

Another scenario relevant for future reflectometry applications 
considers choosing the appropriate physical model: By setting the 
thicknesses of a subset of layers to zero, one can effectively change the 
number of layers in the physical model. Consequently, several physi-
cal models represented by different numbers of free parameters can be 
compared via standard criteria such as the Bayes factor p(R∣ϕ1)

p(R∣ϕ2)
 using 

the same neural network.
Fixing some parameters changes the dimensionality of the re-

maining free parameters, which is not supported by standard imple-
mentations of the normalizing flow. To circumvent this limitation, 
we introduce a reparameterization procedure of the parameter space 
that enables us to sample from the parameter- conditioned posterior 
estimation by providing “zero- width” prior. We discuss this approach 
in Materials and Methods and use it to analyze NR data below.
Preserved equivariances in the density estimator
The reflectometry simulator features a number of simple deterministic 
functional relationships between the input {q, θ} and the simulated 
reflectivity curve R

(
q, θ

)
. We systematically review them in Materials 

and Methods. For instance, these include the unit scaling invariance: 
Rescaling the momentum transfer axis q→ u ⋅ q (u ∈ ℝ>0) together 
with a certain parameter rescaling transformation θ→ Tu(θ) does not 
alter the result: R

(
u ⋅q,Tu(θ)

)
= R(q, θ). Conventional reflectometry 

analysis does not need to consider these relationships, but they become 
critical in amortized machine learning solutions: The trained model 
must reflect these relationships, ensuring that specific changes in the 
input data to the density estimator result in corresponding changes in 
the posterior distribution. To enhance the performance of the model, 
we directly incorporate these relationships into the inference pipeline 
(see more details in Materials and Methods), rather than having the 
model learn them from data. We note that the prior amortization is 
generally required for this operation, since the considered transforma-
tions alter the prior distribution.
Related work
Sequential NPE (22–25) effectively applies data- informed prior up-
dates, but such methods require simulation and neural network 
training at inference time. The Simformer (26) framework enables 
prior updates by leveraging diffusion guidance. Equivariances be-
tween parameter and data spaces can be integrated with group- 
equivariant NPE (27, 28), but this method requires iterative inference 
and is thereby slower than NPE. The Dingo- BNS framework (29) for 
gravitational- wave inference combines adaptive priors with amor-
tized NPE to achieve improved data compression. A recent work (30) 
uses adaptive priors for sensitivity- aware amortized Bayesian infer-
ence. Our study builds on and extends upon these works, demon-
strating how adaptive SBI priors enable zooming into arbitrary parts 
of the parameter space in a high- profile science application.

Performance on simulated data
Multiple modes in the posterior
Figure 2 showcases the inference results obtained with PANPE- IS 
for a curve simulated from a two- layer structure. For reflectometry, 

pNN(θ ∣R,ϕ) ≈ p(θ ∣R,ϕ) ∝ p(R ∣ θ)p(θ ∣ϕ) (2)
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generated samples {θi}Ni=1 represent SLD profiles that could poten-
tially produce the measured data according to the neural network. 
Figure 2 (A and B) shows the reflectometry curve colored in blue 
on the left and N = 1000 colored SLD profiles obtained from our 
model on the right with a wide prior distribution. The colors indi-
cate seven distinct solutions (distributional modes) separated via 
DBSCAN clustering for better visualization. The blue SLD profile 
represents the “true” structure used to simulate the reflectometry 
curve. The forward reflectometry simulations enable immediate vi-
sual validation of the result. In Fig. 2A, the studied blue reflectom-
etry curve is superimposed with the colored curves simulated from 

the NN- produced SLD profiles. The colored reflectometry curves 
are mostly invisible since they overlap very well with the original 
curve and each other, despite a diverse variety of corresponding 
SLD profiles. Figure 2E provides an alternative visualization of 
samples and the estimated posterior on a corner plot. For visual 
purposes, only 4 of 10 parameters are shown here.
Efficiency gain from prior amortization
Figure 2 (C and D) shows the inference result for the same reflectiv-
ity curve but with narrower prior distribution, resulting in a single 
mode. In this case, the prior amortization allows excluding all the 
samples outside the domain of a more informative prior distribution.

The necessity for prior amortization might not be immediately 
obvious when likelihood evaluation is fast. A viable alternative 
could seem to be training a standard NPE model across a wide pa-
rameter range without prior amortization and refining results via 
likelihood- based methods later. For uniform priors, calculations of 
likelihood are not even required: Samples outside the prior domain 
can be simply rejected without the need of likelihood evaluation. 
However, the main issue with rejection sampling is its low accep-
tance rate. In practice, this quantity can be exceedingly small. In our 
case, an acceptance rate of less than one in a million applies to about 
70% of the synthetic test data. Consequently, to obtain a single sam-
ple within the prior domain, an immense number of samples would 
need to be generated through neural network evaluations, making 
this approach essentially inapplicable. We also illustrate this prob-
lem on an experimental XRR data below.
Sample efficiencies on the simulated dataset
We evaluate PANPE- IS on a set of 1000 simulated test samples. 
These samples are generated following the same procedure as out-
lined for the training data in Materials and Methods. Each curve has 
different q discretization and is accompanied by its own prior dis-
tribution p(θ ∣ϕ).

We assess the performance of the model on each test sample by 
evaluating its sample efficiency ϵeff

where wi are the importance weights. In practice, during inference, 
importance weights can be used for Monte Carlo estimates 
�θ∼p(θ∣R,ϕ)

�
f (θ)

�
≈
�∑N

i=1
f
�
θi
�
wi

�
∕
�∑N

i=1
wi

�
. The sample efficiency 

ϵeff effectively quantifies the efficient sample size (ESS) = N ⋅ ϵeff as a 
share of the total number of samples and, therefore, determines the 
time required for obtaining a desired ESS. By using our efficient re-
flectometry simulator, we are able to obtain ESS = 100 for ϵeff = 10−4 
for less than a minute, but the same ESS would take more than a 
month for ϵeff = 10−10. In practice, only solutions within high proba-
bility mass regions are typically relevant for analysis, so several hun-
dred efficient samples are generally sufficient to identify them.

Each test sample is characterized by its prior distribution, which 
results in different complexity of the inference task: Wider prior dis-
tributions that simulate the cases of higher uncertainty about the 
studied structure are generally more complex to analyze using con-
ventional methods. We quantify this complexity through the sample 
efficiency of the conventional IS method with prior acting as a pro-
posal distribution. In this case, it replaces the “neural” proposal dis-
tribution in Eq. 3, and the respective importance weights simply 

ϵeff =

(
wi

)2
(
w2
i

) , wi =
p
(
R ∣ θi

)
p
(
θi ∣ ϕ

)

pNN
(
θi ∣R,ϕ

) , θi ∼ pNN(θ ∣R,ϕ) (3)
Fig. 2. Multimodal posterior distribution obtained by PANPE- IS on a simulated 
reflectivity curve with 10 free parameters for a two- layer structure. the neural 
network produces results in accordance with the provided prior information, iden-
tifying (A) multiple solutions for a “wide” prior distribution and (C) a single distributional 
mode for a “narrow” prior (gray dashed lines). colors denote distinct distribu-
tional modes obtained by clustering samples. the corresponding reflectivity curves 
(B) and (D) enable real- time likelihood- based refinement, resulting in accurate pos-
terior estimation. the corner plot (E) shows the resulting marginalized 4d distribu-
tions obtained for both priors along with the colored samples related to the 
colored profiles in (A).
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equal to the likelihood wIS
i
= p

(
R ∣ θi

)
, where θi ∼ p(θ ∣ϕ). We 

discuss how we estimate low sample efficiencies for IS in Materials 
and Methods.

Figure 3 shows sample efficiency distribution of conventional IS on 
the left- hand side and our PANPE- IS on the right hand side, with lines 
in the middle connecting the same test samples and indicating the 
difference in sample efficiency between the two methods. Blue color 
corresponds to the synthetic test dataset (we discuss the experimental 
data in the next section). The axis on the right shows an average 
time required to obtain ESS = 100 for different sample efficiencies on 
a single graphics card, NVIDIA GeForce RTX 2080 Ti, with our GPU- 
accelerated reflectometry simulator. It shows that our PANPE model 
can perform inference in under a minute where the conventional IS 
approach would require days and even months of computation.

Adjustments to the prior distribution for the same data can influ-
ence sample efficiency of PANPE in certain scenarios. Preliminary 
tests indicate that modifying the width of the prior does not sub-
stantially affect efficiency as long as high- density regions of the pa-
rameter space remain included. However, narrowing the prior to 
focus on a single mode by excluding other high- density regions can 
enhance sample efficiency, as normalizing flows more effectively ap-
proximate unimodal distributions. This behavior reflects the mod-
el’s ability to efficiently learn parameter dependencies across a range 
of prior specifications, maintaining robustness and adaptability 
across different experimental setups.
Evaluating PANPE performance without refinement
In addition, we evaluate the performance of raw PANPE estimates 
without likelihood- based refinement. Specifically, we evaluate the 
quality of marginal distributions, i.e., one- dimensional distributions 
pNN

(
θj ∣R,ϕ

)
 for each jth parameter. For that, we perform standard 

Kolmogorov- Smirnov tests that use the true parameters θ used for 

simulating the test data (27). These tests determine whether the true 
parameters could realistically be sampled from PANPE- generated 
marginal distributions by checking if their percentile scores are uni-
formly distributed. Figure S1 shows the p- p plots, and the obtained 
P values demonstrate satisfactory performance on simulated data. 
These findings imply that one can rely on raw PANPE estimates de-
rived from marginal distributions like means and variances for anal-
ysis. However, in the context of reflectometry, we always apply 
likelihood- based refinement as it is cost- effective and enhances the 
accuracy of our estimates while also providing a means to evaluate 
their quality.

Performance on experimental XRR data
In this section, we evaluate the performance of PANPE- IS on the 
largest publicly available reflectometry dataset (31) that has been 
previously used for evaluating the performance of machine learn-
ing–based regression models (32–34).
Experimental data
As experimental XRR data, we use 208 curves, accompanied by a 
manual analysis using a conventional fitting procedure via maxi-
mum likelihood estimation. These data originate from three online 
in situ experiments conducted at different synchrotron facilities. 
Each experiment recorded in real time a process of growing an or-
ganic layer, specifically diindenoperylene (DIP), on a silicon sub-
strate. DIP, an organic semiconductor, has gained interest due to its 
prospective uses in the field of electronics and photovoltaics (35). 
Real- time XRR measurements can provide insights into growth pro-
cesses of such thin films. Furthermore, this type of experiment can 
benefit from rapid analysis. In this way, a machine learning–based 
solution was recently deployed for the first closed- loop XRR experi-
ment (36). However, the ambiguity problem presented limitations to 
the regression- based model, rendering our probabilistic method a 
potential successor in such closed- loop systems (see fig. S7).

For each experimental curve, we set uniform priors based on a 
physical understanding of the experiment, aligning with conven-
tional analysis. The parameters of the known silicon substrate and 
the oxide layer are essentially fixed by designating narrow ranges. 
In contrast, the parameters for the thickness d1, roughness σ1, and 
density ρ1 of the growing organic layer have broader prior ranges 
due to uncertainty. Furthermore, as the film thickness d1 increases, 
its ranges are set to increase linearly with time, in line with the an-
ticipated growth rate. Although the physical model contains 10 pa-
rameters, in this case, the physics- informed prior information 
about the structure allows us to effectively constrain most of the 
parameters. Nonetheless, prior amortization allows us to use the 
same PANPE model that was applied to simulated data featuring 
two- layer structures.

We also note that the datasets under consideration feature differ-
ent q ranges and resolutions. Nevertheless, a single model can pro-
cess them due to the prior amortization that exploits the scaling 
invariance of the reflectometry data, as well as due to the amortized 
discretization of our model.
Comparison with conventional data analysis
The defined prior distributions are narrow enough to enable con-
ventional IS for validation purposes. Figure 4 displays the time- 
dependent marginal distributions for three parameters obtained by 
both our PANPE- IS model (on the left) and the conventional IS 
method (on the right), showing equivalent solutions. Figure S3 
demonstrates a corner plot with posterior estimates obtained for an 

Fig. 3. Efficiency comparison between PANPE- IS and conventional IS. Sample 
efficiencies for conventional iS (left) and our PAnPe- iS model (right) on a test data-
set of 1000 simulated curves (blue) and a experimental dataset of 208 x- ray reflec-
tometry curves (orange). An additional axis on the right- hand side indicates the 
estimated time it takes to generate 100 effective samples (ESS) on our hardware 
with the efficient GPU- accelerated reflectometry simulator (see the main text). 
Both the simulated and experimental data consist of two- layered structures with 
10 parameters, but in the experimental data, only the top layer is unknown, as the 
parameters of the silicon substrate and the silicon oxide layer are largely con-
strained through their respective priors.
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experimental curve using PANPE, PANPE- IS, and PANPE- MCMC, 
where two refinement methods lead to equivalent distributions.

Despite the relative simplicity of the dataset due to a small num-
ber of free parameters, the resulting distributions feature two solu-
tion branches for the density parameter ρ1 visible in Fig. 4 (see also 
fig. S4). The upper branches vanish beyond a certain time for each 
dataset, suggesting that the correct solution corresponds to the low-
er branches. Conventional fits, indicated by purple dots in Fig. 4B, 
deviate from the maximum likelihood, underscoring the relevance 
of probabilistic methods even in such straightforward cases.

Figure 3 (orange color) demonstrates sample efficiencies on the 
experimental data for the conventional IS and our PANPE solution. 
Notably, in the case where most parameters are effectively known and 
constrained, conventional IS can be a practical solution, unless a real- 
time analysis is required. For most of the considered experimental 
data, our model performs the analysis in under a second, where IS 
may require tens of minutes per sample. Several curves where IS is 
almost as efficient as PANPE- IS correspond to the beginning of the 
growth process, when there is essentially still no organic layer, and the 
other parameters are known. Therefore, the axis for IS sample effi-
ciency in Fig. 3 can be approximately divided into ranges: ϵIS

eff
> 10−3 

for “zero- layer” structures, ϵIS
eff
∈
[
10−6, 10−3

]
 for “one- layer” struc-

tures that constitute the rest of the experimental curves, and ϵIS
eff
< 10−6 

for more complex, simulated two- layer structures. The respective esti-
mated inference time axis in Fig. 3 suggests that pure conventional 
likelihood- based methods become largely impractical for two- layer 
structures. On the other hand, PANPE- IS delivers accurate and reli-
able solutions in under a minute for most of these cases.
Beyond two- layered structures
Figure S6 displays the inference results for a simulated four- layer 
structure with 16 parameters, revealing a highly ambiguous outcome 
(the result is obtained via PANPE- IS using an additional model 
trained on four- layer structures). This example underscores the in-
creasing complexity and ambiguity in reflectometry analysis as the 
number of free parameters grows. To maintain the high sample 
efficiency of PANPE in these more challenging scenarios, it is necessary 

to enhance the capacity of the density estimator. This enhancement 
could be achieved not only by enlarging the size of the neural net-
work but also through the use of more sophisticated density estimators, 
such as continuous normalizing flows (37–39), without necessitating 
substantial changes to the overall framework presented in this paper. 
Improving performance for more complex scenarios may also in-
volve customizing the hyperprior distribution and other solution 
aspects, such as q discretization, to better suit the specific application 
and experimental conditions.
Role of physics- informed priors
Figure 5 illustrates the essential role of prior amortization in the 
analysis of the presented experimental data. Without providing the 
physics- informed prior distribution to the neural network, the re-
sulting samples span all possible solutions (represented by the red 
SLD profiles in Fig. 5A) within the expansive prior distribution that 
covers the complete training range. Yet, all of these solutions are 
unphysical, due to factors such as a too thick oxide layer. The phys-
ical solution, depicted by the blue SLD profiles, is practically unat-
tainable without prior amortization given that the share of samples 
within the corresponding narrow prior is less than 10−6. This sce-
nario emphasizes once more the essential role of incorporating ad-
ditional physical information into inverse scattering problems with 
missing phase.
Adaptive q discretization
The ability of our model to support arbitrary q discretization sub-
stantially broadens its applicability. In this way, the number of q 
points in the analyzed x- ray data ranges from 25 to 52, yet it is 
processed by the same model. We note that an alternative approach 
involving interpolation to conform to a fixed q axis can generally 
lead to missed solutions. For instance, if a model trained on 52 q 
points is subsequently tested on experimental data comprising 
only 25 q points, then interpolating these data to 52 points could 
create a falsely narrow distribution. This occurs because the inter-
polation process artificially adds “information” that the original 
experimental data does not have, compromising the guarantee of 
the coverage property.

Fig. 4. Consistent results between PANPE and conventional sampling on ex-
perimental data, contrasting with inconsistencies in previously reported man-
ual fits. Marginal distributions of the thickness d

1
, roughness σ

1
, and density ρ

1
 of the 

diP layer growing on a silicon substrate are shown for three in situ experimental XRR 
datasets. the distributions obtained by our model (A) are compared with those ob-
tained via conventional IS from prior distribution (B). the colors designate normal-
ized probability densities. Purple dots correspond to manual fits performed using 
differential evolution, as reported in (31). Figure S5 shows time- dependent sample 
efficiencies and log evidence estimations for both methods. arb. u., arbitrary units.

Fig. 5. Experimental XRR curve analyzed using both a wide prior distribution 
that encompasses the entire training range (red) and a narrow, physics- 
informed prior distribution (blue). (A) Sld profiles associated with the PAnPe- iS 
samples. Profiles with the highest likelihood are highlighted with bold lines. (B) the 
observed reflectivity curve (in gray) is compared with simulated curves that corre-
spond to the maximum likelihood from both the narrow and wide prior distributions. 
While both fits are satisfactory, the unphysical solution (in red) has a likelihood that is 
more than 106 times greater than its physical counterpart due to larger residuals 
(C). in this case, when trained solely with a wide prior distribution, the nPe network 
mainly samples unphysical solutions, which appear much more probable without 
the physics- informed prior. the use of prior amortization addresses this issue.
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Figure S7 demonstrates another relevant experimental scenario 
that requires adaptive q discretization: While performing an XRR 
measurement by sequentially measuring intensities at distinct 
points, one can use the model to analyze the data at any particular 
moment. This analysis can inform whether additional data are 
needed to reduce uncertainty and can even guide the selection of 
the next most informative q point to measure. Obtaining such 
points is straightforward using reflectometry curves simulated us-
ing parameters sampled via PANPE- IS.

Combination of multiple NR measurements
In this section, we demonstrate that PANPE can be successfully 
used for the simultaneous analysis of several combined NR datasets, 
which is an indispensable tool in the context of contrast variation 
[e.g., using different levels of deuteration (40, 41)].
Corefinement of neutron data
A common method to resolve ambiguity involves combining 
measurements taken under controlled variation of experimental 
conditions. In the context of reflectometry, such conditions can 
be determined by the different energies of the x- ray beam (i.e., 
anomalous scattering near an absorption edge), polarizations of 
neutrons for magnetic materials, or by using different contrasts 
via changing materials adjacent to the sample.

We demonstrate this corefinement procedure using publicly 
available neutron data (42). Specifically, we consider two NR mea-
surements of a polymer on a silicon substrate performed separate-
ly with H2O (ρ = −0.56 ⋅ 10−6 Å

−2) and D2O (ρ = 6.36 ⋅ 10−6 Å
−2) 

solvents. Neutron reflectometry differs from x- ray data in several 
aspects, such as instrumental resolution, high scattering back-
ground, and negative SLD. Therefore, we trained an additional 
PANPE model for neutron data that incorporates these fea-
tures and has 11 free parameters that now also include scatter-
ing background.
Constructing proposal distribution from  
several measurements
The likelihood for two measurements RH2O

 and RD2O
 is a product 

p
(
RH2O

∣ θ
)
p
(
RD2O

∣ θ
)
. The corresponding posterior distribution 

cannot be directly estimated by (PA)NPE model unless specifically 
trained on such combined measurements. However, using our 
model trained on single curves, one can combine two (or more) sets 
of samples generated independently for each measurement for con-
structing a proposal distribution 1

2

(
pNN

(
θ ∣RH2O

)
+pNN

(
θ ∣RD2O

))
. 

Such a proposal distribution exhibits the probability mass coverage 
property and can be further refined via likelihood- based methods 
for obtaining a reliable and accurate posterior distribution.

However, additional complications arise when only a subset of the 
estimated parameters—namely, the unchanged parameters of the stud-
ied sample, θshared—are shared among multiple measurements. Other 
parameters, θunique, such as background, misalignment, and different 
contrast densities, are unique to each measurement. Thus, the estimated 
parameters are expressed as θ =

[
θshared, θ

unique

H2O
, θ

unique

D2O

]
. As a result, a 

subset of parameters generated by the model for the first measurement, [
θshared, θ

unique

H2O

]
∼ p

(
θ ∣RH2O

)
, is incomplete as it lacks the subset of 

parameters unique to the second (other) measurement(s) θunique
D2O

 
and vise versa. The solution involves sampling the remaining pa-
rameters from the parameter-conditioned posterior distribution: 

θ
unique

D2O
∼ p

(
θ ∣RD2O

, θshared
)
. This conditional distribution is not pro-

vided by NPE and typically necessitates training additional models.
The reparameterization operation that we introduce as a part of 

our prior- amortized approach offers a means to approximate such 
conditional probability densities with the same model by setting 
very narrow priors, essentially fixing the required parameters. How-
ever, this approach provides only samples and not density evalua-
tion required for IS refinement (see more details in Materials and 
Methods). Therefore, we use PANPE- MCMC for likelihood refine-
ment of the combined posterior in this case.
Inference results for combined measurements
Figure 6 demonstrates the results of the PANPE- MCMC analysis of 
a single neutron reflectivity curve measured with H2O contrast (Fig. 
6, A and B), as well as the joint analysis of two measurements incor-
porating both H2O and D2O contrasts (Fig. 6, C and D). The single 
measurement yields two distinct solutions (Fig. 6A), one of which is 
(implicitly) ruled out when performing a corefinement of two mea-
surements (Fig. 6C), thereby resolving ambiguity in data interpreta-
tion. Nonzero ambient density is processed as discussed in Materials 
and Methods.

In the case of the neutron data analyzed in this work, the parame-
ters unique for each measurement θunique include scaling misalign-
ment, background, and densities of contrasts. The shared parameters 
correspond to the constant parameters (i.e., those that do not change 
in- between these measurements) of the system under study, such as 
thicknesses, roughnesses, and densities of Si and SiO2. Notably, follow-
ing the parameterization described in the refnx package, we account 
for the volume fraction vsolv ∈ (0, 1) of the solvent that modifies the 
SLD of the polymer layer according to ρ =

(
1−vsolv

)
ρpolymer + vsolvρsolv. 

We regard these densities ρ as parameters unique to each measure-
ment, using them to compute vsolv and ρpolymer. The mixture of solvent 
with polymer results in a small difference of polymer SLDs for mea-
surements with different contrasts in Fig. 6.

It is worth noting that in certain cases of application- specific pa-
rameterization on an SLD profile, it might be more practical to retrain 
the model using a more suitable parameterization, but it is not nec-
essary in this case. In general, the demonstrated approach can be 
equally well applied to other cases of parameter corefinement such as 
polarized NR, XRR measurements with different energies, or other 
similar applications that require combining several measurements.

DISCUSSION
In reconstructing physical systems from scattered intensities, the 
phase problem poses a fundamental challenge. This problem is en-
countered in numerous scattering techniques, including XRR and 
NR. The prevailing standard in reflectometry analysis is maximum 
likelihood estimation, which uses a differential evolution- based 
search over the parameter space. This method, by design, produces 
a single system reconstruction, even when multiple solutions exist 
due to phase loss, making it inherently unreliable. In contrast, 
Bayesian inference provides a foundational pathway to a more reli-
able analysis by inherently accounting for all possible solutions as 
a distribution over the considered physical parameters. However, 
despite its conceptual advantages, conventional likelihood- based 
Bayesian methods struggle with high- dimensional parameter spaces 
and multimodality, often falling short in real- world experimental 
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contexts. This underscores the pressing need for more efficient and 
reliable Bayesian methods in reflectometry analysis.

In this work, we present an approach that enables reliable, accu-
rate, and fast Bayesian reflectometry analysis. The high inference 
speed essential for various experimental contexts is achieved via 
neural network–based amortization. The training strategy reliably 
provides an approximate posterior distribution that fully covers the 
true posterior, while likelihood- based inference is subsequently 
used to obtain the accurate distribution.

Amortized inference proves to be a highly practical solution by 
allowing a model to be trained in advance, before any data are mea-
sured. A set of such models, once trained, can cover a broad range of 
applications, substantially accelerating analysis. This is particularly 
beneficial for experiments at large facilities. Given the high opera-
tional costs, experiments at neutron and synchrotron facilities re-
quire strict inference- time optimization to maintain cost- effectiveness. 
Furthermore, fast analysis enables more informed experiment design 
and opens possibilities for new data- driven experiments crucial for 
material discovery.

As the complexity of the task increases, such as with a higher 
number of layers in a multilayer structure and increased uncertain-
ty, traditional methods become less feasible, with estimated infer-
ence times reaching months or longer for even moderately complex 
two- layer structures. In contrast, our method achieves accurate in-
ference in under a minute for the same samples. This advancement 
allows fast and reliable analysis of such complex structures.

Our method enables reliable reflectometry experiments: It can 
guide experimentalists by indicating whether the remaining ambigu-
ity requires additional measurements, thereby directing the experi-
ment until the singular physical solution is determined. Furthermore, 
preparing experiments in advance by investigating ambiguities in 
simulated settings becomes possible.

Prior amortization crucially broadens the applicability of NPE 
to multiple experimental settings. In the context of reflectometry, 

constraining the parameter space based on individual characteris-
tics of a studied structure is essential to resolve ambiguity. As shown, 
prior amortization allows to infer a physical solution that can fea-
ture a million times smaller likelihood and filter out an unphysical 
solution that is yet legitimate in other experimental settings or for 
other systems. This, in particular, underscores the importance of 
prior amortization when applying SBI methods to scattering prob-
lems with phase loss. Complex parameterizations of prior distribu-
tions can be used and should be investigated in future research 
aiming at adapting PANPE to specific applications.

Real- world benchmarks are valuable for the developing field of 
SBI. In this context, reflectometry analysis offers a notable bench-
mark, characterized by challenging multimodal distributions and 
bolstered by an efficient simulator. It can be straightforwardly scaled 
up by increasing the number of layers in the physical model. SBI is 
often seen as advantageous for applications where likelihood is cost-
ly or intractable to evaluate. Reflectometry does not fit into this cat-
egory, and it exemplifies the broader utility of SBI methods beyond 
intractable likelihoods due to the coverage property and accelera-
tion of inference through amortization. Moreover, the combination 
of SBI with likelihood- based methods presents as the optimal way to 
both preserve the coverage and achieve high accuracy.

Prior amortization can be beneficial for multiple applications, 
especially in experimental science like scattering where various ex-
perimental scenarios require adaptive prior distributions. In this 
manner, our method is suitable for a wide range of scientific experi-
ments that permit SBI.

MATERIALS AND METHODS
Parameterization of the SLD profile
We consider the standard parameterization of the SLD profile 
of a layered structure with nl layers through parameters θ =
{d, ρ, σ,ΔR,Δq, log10

(
R0

)
}, and we primarily consider two- layer 

Fig. 6. Corefinement of two neutron reflectometry measurements of a polymer on a silicon substrate using H2O and D2O contrasts, conducted via PANPE- MCMC. 
(A and B) An analysis of a single measurement with H

2
O contrast (B) yields two distinct solutions and their corresponding Sld profiles (A). (C and D) corefinement of the 

measurements using H
2
O contrast (blue) and D

2
O contrast (orange) resolves ambiguity by eliminating one of the solutions. data and priors are sourced from the refnx 

package (42). the combination of several measurements is enabled in this case by the use of parameter- conditioned posterior estimation.
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structures nl = 2. Here, d = {d1, d2} are layer thicknesses in the top- 
bottom order, ρ = {ρ1, ρ2, ρsub} are densities of two layers and the 
substrate, and σ = {σ1, σ2, σsub} are roughnesses of three interfaces 
modeled via Névot- Croce factors. We exclude absorption in this 
work due to our focus on organic materials, but it can be straight-
forwardly included into our framework. In addition, we consider 
standard misalignment parameters: normalization misalignment 
ΔR and systematic misalignent of the q axis Δq. We only consider 
the parameter for scattering background log10

(
R0

)
 for neutron 

data, which results in 11 parameters. Consequently, the model for 
x- ray data has 10 free parameters.

Equivariant transformations in reflectometry
Reflectometry features several equivariant transformations that can 
be considered to improve the performance of an amortized machine 
learning solution. In this section, we discuss these transformations 
and how we incorporate them into our PANPE model.
Unit- based scaling equivariance
Reflectometry simulation R

(
q, θ

)
= R

(
q, d, σ, ρ

)
 features an invari-

ant scaling transformation that represents the change in used pa-
rameter units u

where

and u ∈ ℝ>0 is a positive value that defines the used units. The stan-
dard units are inverse angstroms (Å−1) for q values, angstroms (Å) 
for layer thicknesses d and roughnesses σ, and inverse squared ang-
stroms (Å−2) for (scattering length) densities ρ. If we set u = 1 for 
these standard units, for instance, then the transformation with u = 
10 would correspond to the change of units from angstroms to 
nanometers, which does not alter the resulting reflectivity curve. 
Similarly, u = 2 doubles the q range, halves thicknesses and rough-
nesses, and increases densities by a factor of u2 = 4, leaving the re-
flectivity curve unchanged.

This invariance of the reflectometry simulator leads to the equiv-
ariance of the density estimator under the joint unit transformation of 
input and parameters. Specifically, stretching or squeezing the q axis 
in the input data and adjusting the input prior parameters ϕ accord-
ingly should result in respective transformations of the parameters θ 
as per Eq. 4. We note that the transformation of prior distribution is 
commonly required to preserve equivariance in the density estimator. 
Applying this transformation requires prior amortization.

To incorporate this equivariance into our model, we can standard-
ize the “pose” of the data (28) (the terminology is adopted from com-
puter vision) to simplify the problem for the neural network. We do so 
by fixing the q range, on which our model is trained. During infer-
ence, we first preprocess the data by applying the transformation from 
Eq. 4 so that the measured q range matches the standard one. The 
corresponding scaling factor is the ratio of two ranges u = qmax ∕qexp. 
We use this scaling factor to apply the respective transformation on 
the prior parameters ϕ. After obtaining samples from the PANPE 
model, we rescale the parameters back using u−1. Respectively, the 
probability densities are corrected by a constant Jacobian determinant 
of the transformation, which equals u−2 in our case.

We note that this property should also be taken into account 
when considering parameter ranges for training. For instance, some 

unreasonably large parameter ranges that might seem unphysical, 
such as density values that do not correspond to any known materi-
als, can be practically justified since they correspond to smaller den-
sities when scaling the q axis. This relation is illustrated in fig. S9.
Density shifting equivariance
Reflectometry is sensitive to density contrasts rather than absolute 
density values. As a result, shifting all the densities ρ (SLDs) in the 
system, including the ambient and the substrate, is an invariant op-
eration that does not change the resulting reflectivity curve. In the 
context of the density estimator, this leads to the equivariant opera-
tion: Shifting the respective prior parameters ϕ should result in the 
shift of the parameters θ (specifically, layer densities ρ).

We use this property by defining a natural standard pose in a 
form of the zero ambient density, on which the model is trained. 
During inference, the data with nonzero ambient density are first 
preprocessed by shifting the densities (i.e., the respective prior pa-
rameters) so that the ambient density becomes zero. We apply this 
transformation for NR. The Jacobian determinant of this transfor-
mation is equal to 1.
Misalignment shifting equivariances
The misalignment parameter ΔR results from the incorrect normaliza-
tion when calculating reflected intensities as per R

(
q, θ

)
⋅ (1+ΔR), 

which effectively shifts the reflectometry curve in the “vertical” di-
rection in the log space, resulting in an equivariant shifting transfor-
mation. A natural “standard pose” in this case corresponds to ΔR = 0. 
We note that, in this case, the standard pose depends on the (un-
known) parameter ΔR rather than the data and cannot be per-
formed as a one- step preprocessing. This scenario is similar to the 
one considered previously (28), where an iterative inference scheme 
is proposed that allows converging to the standard pose. In our case, 
the range of the misalignment parameter is already very limited, 
making a direct application of the iterative scheme impractical. Our 
preliminary tests suggest that this does not lead to improved perfor-
mance, so we do not use this equivariance in our solution. The same 
applies to the other misalignment parameter Δq.

PANPE training
We amortize Bayesian inference for a class of prior distributions 
p(θ ∣ϕ), parameterized by ϕ. To specify the range of priors for which 
the model is trained, we introduce the hyperprior distribution—a 
distribution over prior parameters p(ϕ), which generally depends 
on the range of anticipated applications and can reflect various 
physical and practical parameter constraints. We set it to cover a 
broad range of practical scenarios where some of the parameters are 
known better (with lower uncertainty) than others.

The training process of the PANPE model involves adjusting the 
trainable parameters, denoted as w, of the neural network to mini-
mize a forward KL divergence between the true posterior distribu-
tion p(θ ∣ϕ) and the flow- based density estimator p

w(θ ∣ϕ)

The loss in Eq. 6 is approximated by the Monte Carlo estimation

Tu

(
R
(
q, d, σ, ρ

))
= R

(
q, d, σ, ρ

)
(4)

Tu

(
R
(
q, d, σ, ρ

)) ≡ R
(
q ⋅u, d∕u, σ∕u, ρ ⋅u2

)
(5)

L(w)=�p(ϕ)�p(θ∣ϕ)p(R∣θ)

�
log

�
p(θ ∣R,ϕ)

pw(θ ∣R,ϕ)

��

=�p(ϕ)

�
DKL

�
p(θ ∣R,ϕ)‖pw(θ ∣R,ϕ)

�� (6)

L(w) ≈

N∑

i

[
− log

(
pw

(
θi ∣Ri,ϕi

))]
+ const (7)
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where the constant does not depend on the model parameters w. 
Evaluating Eq. 7 requires evaluating log density log

(
pw

(
θi ∣Ri ,ϕi

))
 

and drawing samples {ϕi, θi,Ri}
N
i

 from the training distribu 
tion p(ϕ, θ,R) ∝ p(R ∣ θ)p(θ ∣ϕ)p(ϕ).

Exact density evaluation and consequently the utilization of the 
forward KL divergence are facilitated by normalizing flows, distin-
guishing them from many variational architectures. The forward KL 
divergence is a mass- covering loss, meaning that the optimized density 
density covers the whole support of the target distribution (otherwise 
the loss diverges), thereby ensuring no distributional modes are missed 
in the posterior estimation. Hence, although the training scheme of 
PANPE is independent of the specific architecture of the density esti-
mator, the selection of normalizing flows as the density estimator and 
the corresponding loss function is crucial for the method’s reliability. It 
is also noteworthy that some other recent density estimators exhibit 
the mass- covering property and can thus be integrated into the PANPE 
framework for future reflectometry applications.

Sampling from the training distribution can be performed in two 
principled ways. The first one is used in this paper and it goes as 
follows:

1) First, the prior parameters are sampled from the hyperprior 
distribution [ϕi ∼ p(ϕ)] defining the corresponding prior p

(
θ ∣ϕi

)
.

2) Then, the parameter θi is sampled from this specific prior dis-
tribution, θi ∼ p

(
θ ∣ϕi

)
.

3) Last, the corresponding reflectometry curve, Ri ∼ p
(
R ∣ θi

)
, is 

sampled from the likelihood.
We note that a similar training scheme, involving sampling from 

a hyperparameter distribution, has been previously used in group- 
equivariant neural posterior estimation (28).

The second possible way of sampling from the training distribu-
tion relies on the relation p(ϕ)p(θ ∣ϕ) = p(ϕ ∣ θ)p(θ). Therefore, in-
stead of first sampling prior parameters ϕ and then parameters θ, 
this order can be reversed to sample (potentially, multiple sets of) 
prior parameters ϕ that correspond to the same parameters θ, hence 
the same simulations. The gain in this case comes from the opportu-
nity to reuse the same simulations by coupling them with different 
priors and potentially reduce the required number of simulations, 
which is critical for certain applications. Since this is not applicable 
to reflectometry, we do not investigate this method any further. We 
only note that its implementation would involve additional Bayesian 
inference p(ϕ ∣ θ) ∝ p(ϕ)p(θ ∣ϕ), the complexity of which depends 
on the chosen prior parameterization p(θ ∣ϕ). For instance, in the 
case of the parameterization used in our work, the inference can 
even be performed analytically (via inverse transform sampling).

As an optional improvement of our method, we introduce a re-
parameterization transformation θ̃ = Tϕ(θ) of the parameters θ to 
effectively “rescale” the parameters according to the respective 
prior. The reparameterization is chosen to ensure that the prior for 
the rescaled parameters p

(
θ̃
)
 does not depend on the prior param-

eters ϕ. The flow- based model then is trained to perform inference 
on these rescaled parameters

This reparameterization effectively reframes the problem as a 
standard neural posterior estimation, only now the likelihood 

depends on both the parameters θ̃ and the prior parameters ϕ. By 
doing so, we can now apply narrow priors without running into nu-
merical issues. This approach accelerates the training process and 
decreases the number of samples generated outside the prior support.

When setting the prior width of some parameter θj to zero, we 
effectively fix it. The respective parameter θ̃j estimated by the model 
does not influence the likelihood and is essentially trained to match 
the reparameterized prior distribution (uniform in our case). Con-
sequently, the connection between the reparameterized space θ̃ and 
the parameter space θ becomes surjective. To sample from the 
lower- dimensional distribution conditioned on the fixed parameter 
θj, we need to marginalize over the parameter θ̃j in the reparameter-
ized space. It is not directly possible to evaluate density of a margin-
alized distribution in normalizing flows. We note that in the ideal 
scenario when the parameter θ̃j is uniformly distributed, density 
evaluation becomes straightforward. Our tests suggest that marginal 
distributions p

(
θ̃j
)
 can deviate from a uniform distribution in prac-

tice. However, sampling from a distribution marginalized over θ̃j is 
straightforward as it simply requires omitting the marginalized pa-
rameters. In this way, our reparameterization scheme enables us to 
sample from the parameter- conditioned posterior estimation.

Trained models and parameter ranges
Trained models
We present the main results for XRR and NR. Because of certain 
differences in the underlying physics and subsequent differences in 
the simulator, we have trained two PANPE models: one for XRR and 
another for NR. The results on the simulated data are presented for 
the XRR model. Most properties are shared between these models, 
except for the ranges of density parameters used (the SLD for neu-
trons can be negative), the instrumental resolution (more pro-
nounced in NR), and the presence of strong constant background 
scattering. Although we focus on these two models in the paper, we 
also show some examples from other models, such as those with 
four- layer structures.
Parameter ranges
The training parameters are constrained by the predefined 
ranges. Here, we use the following ranges shared by all the layers. 
Densities range within 

[
0, 60 ⋅10−6 Å

−2
]
 for the XRR model and 

ρ ∈
[
−20 ⋅10−6 Å

−2
, 60 ⋅10−6 Å

−2
]
 for the NR model. Thick-

nesses and roughnesses range within 
[
0, 500 Å

]
 and 

[
0, 50 Å

]
, 

respectively. In addition, we limit the maximum roughness of the 
interface by the half thickness of the thickest adjacent layer. For the 
misalignment parameters, the ranges are 

[
−2 ⋅10−3 Å

−1
, 2 ⋅10−3 Å

−1
]
 

for Δq and [−5%, 5%] for ΔI. In addition, for the NR model, we intro-
duce the (log) background parameter log10

(
R0

)
, R0 ∈

[
10−9, 10−4

]
, 

which is set to 10−10 for XRR.
We note that because of the applied equivariant transformations 

discussed above, during inference, the model can also operate outside 
these parameter ranges. This also means that one can set rather un-
physical training ranges, such as large roughness or density, to cover 
certain realistic scenarios at different q ranges and ambient densities.
Hyperprior distribution
During training, the parameters ϕ = {θmin

j
, θmax

j
}n
j=1

 are generated as 
follows. First, for each parameter θj, the width of the uniform prior 

pNN
(
θ̃ |R,ϕ

)
≈p

(
θ̃ |R,ϕ

)
∝p

(
R ∣ θ̃,ϕ

)
p
(
θ̃
)
,

pNN(θ ∣R,ϕ)=pNN
(
θ̃ |R,ϕ

)
| detJTϕ

| (8)

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversitaet T

uebingen on M
arch 17, 2025



Starostin et al., Sci. Adv. 11, eadr9668 (2025)     14 March 2025

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

11 of 14

Δθj = θmax
j

− θmin
j

 is sampled, which generally can range from 0 to 
the the total parameter ranges introduced above. Here, we use the 
weighted sum of the uniform and the truncated exponential distribu-
tion for sampling prior widths. The latter term is added to better rep-
resent narrow prior widths corresponding to higher certainty in the 
prior knowledge. Then, the “center” of a prior cj =

(
θmax
j

+θmin
j

)
∕2 

is sampled uniformly within the allowed range. The parameters ϕ 
are then calculated from Δθj and cj. Last, the upper bounds for inter-
face roughnesses are rescaled to not exceed half the maximum 
thickness of adjacent layers (34). This overall sampling scheme ef-
fectively defines the hyperprior distribution p(ϕ).

The test simulated data were produced using the same sampling 
procedure as the training data. However, some of the curves (less 
than 5%) were manually excluded from the test dataset since they 
exhibited pathological properties such as nearly zero contrast be-
tween the layers. This scenario essentially reduces the number of 
physical layers in the studied structure and results in exact linear 
correlation between thicknesses of these layers. The proper way to 
reduce the number of layers in PANPE would be by setting the 
thicknesses of redundant layers to zero.

Data simulations
During training, we simulate reflectometry data using the train-
ing parameters θi. Each reflectometry simulation Ri ∼ p

(
R ∣ θi

)
, 

R = {qp,R
(
qp
)
, sp}

nq
p=1

 is performed in several steps discussed below.
Q discretization
First, q values are sampled uniformly from the range qp ∼ U

(
0, qmax

)
 

to enable arbitrary discretization. As discussed above, the q range 
corresponding to the standard pose is set equal to qmax = 0.15 Å

−1. 
However, we can vary this during inference by exploiting the unit- 
scaling equivariant transformation. The number of points nq is also 
sampled uniformly nq ∼ U(20, 64). In practice, it is implemented by 
masking out some of the input data from the model during training.

Amortized discretization is generally necessary because the poste-
rior can be highly sensitive to it in reflectometry applications. Our tests 
show that by fixing the q discretization during training, we are able to 
considerably improve the model performance on the simulated data. 
However, different discretization of the experimental data necessitates 
an interpolation procedure, which can deteriorate the performance of 
the model and generally lifts the mass- probability coverage guarantees, 
especially for experimental data with the lower number of points.

Furthermore, amortized discretization is especially important in 
online XRR experiments, where time limitations constrain the num-
ber of measured q points. It in principle enables closed- loop AI- 
guided measurements that enable choosing the most informative q
point to measure given the current data to speed up the overall pro-
cess and be able to real- time phenomena with higher time resolution.

Nevertheless, fixing discretization might be beneficial for appli-
cations with more standardized experimental setup. Furthermore, 
we acknowledge possible ways to improve q simulations for neutron 
data to better reflect the physical nature of the process and possibly 
even tailor it for the use at certain neutron sources.
Measurement uncertainty
Next, we generate relative measurement uncertainties sp ∼
U(5 and 30%), independently for each q point. We treat these uncer-
tainties as error bars that correspond to SEs typically used in reflec-
tometry analysis. As a noise model, we use the normal distribution as 

a common approximation of Poisson counting statistics for a high 
number of counts. We note that, generally, the use of the Poisson like-
lihood should be preferred in the case of low counts, which are 
especially frequent in neutron reflectometry. However, that requires 
reporting raw intensities, which are typically not included in the pub-
lished data.
Reflectivity curves
Last, we simulate reflectivity curves, using the generated parameters 
θ = {d, σ, ρ,Δq,ΔR, log10

(
R0

)
}, q points, and measurement uncer-

tainties s. We simulate curves in mini- batches using our parallelized 
GPU- accelerated PyTorch implementation of Abelès transfer- 
matrix method (20)

where ep ∼ (
1, sp

)
. For neutron reflectometry, we apply constant 

instrumental resolution δq
q
= 5%.

Training data
The models are trained on 300,000 mini- batches sampled according 
to the introduced training scheme. Each mini- batch contains 8192 
reflectometry curves, resulting in N ≈ 2.5 ⋅ 109 training samples. 
Data generation is performed during the training for every batch 
without repetition. In this way, the model cannot overfit on a fixed 
training dataset, further increasing the reliability of the solution. 
The training process takes approximately 30 hours using a single 
NVIDIA V100 GPU.

Inference pipeline
During inference, the measured reflectometry data and the prior pa-
rameters are supplied to the PANPE model. Given the desired effec-
tive sample size ESS, the model provides the respective number of 
parameter samples {θi}Ni=1, refined by either providing importance 
weights ri (PANPE- IS) or by running MCMC (PANPE- MCMC). In 
the following, we discuss the pre-  and postprocessing stages of the 
inference, as well as the model architecture.
Input preprocessing
The input to the network is a measured reflectivity data R =

{qp,R
(
qp
)
, sp}

nq

p=1 and the set of prior parameters ϕ = {θmin
j

, θmax
j

}n
j=1

. 
The input data are therefore 3nq + 2n- dimensional, where nq is arbi-
trary. We first preprocess it as follows.

First, we apply the equivariant transformations discussed above 
to standardize the data before inference. That includes calculating 
the scaling coefficient u = qmax ∕qexp to rescale the q axis of the mea-
sured data to match the training q range. The input prior parameters 
are transformed accordingly. After transforming the prior parame-
ters and the q axis, both the reflectometry curve R

(
q
)
 and the mea-

surement uncertainties s
(
q
)
 are preprocessed using a logarithmic 

transformation 0.1 ⋅ log10
(
Rq+10−10

)
+ 0.5. Last, the prior param-

eters ϕscaled are normalized with respect to the absolute parame-
ter ranges.
Embedding network
We use an embedding network to convert the input data to a fixed- 
dimensional latent vector, which is then supplied to the normalizing 
flow model. We note that our embedding architecture should have 
an ability to handle input data of varying sizes. Our tests suggest that 
for a fixed discretization, convolutional neural networks (CNNs) 
provide the best performance on reflectometry data among different 

Rp =
(
R
(
q+Δq, d, σ, ρ

)
⋅ (1+ΔR)+R0

)
⋅ ep (9)
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architectures. To this end, for arbitrary discretization, we imple-
ment a trainable neural kernel, which acts as an intermediary 
step, adapting the data before it reaches the CNN. The kernel is 
a neural network K

(
qk , q,Rq, sq

)
 that “interpolates” reflectivity 

levels and the measurement uncertainties to a set of predefined 
points {qk}

nk
k=1

. We use three such kernels, featuring 16, 32, and 64 
equidistant points, respectively. The spacing between these points 
defines the kernel’s “window.” The kernel outputs are averaged for 
q points falling within this window. Each kernel is a multilayer 
perceptron with Gaussian Error Linear Unit (GELU) activation 
functions and four- channel input, a hidden layer with 32 chan-
nels, and a two- channel output layer. Each of three kernels is cou-
pled with a convolutional network discussed below. We note that 
this architecture is not supposed to be discretization invariant, as 
the posterior can be highly sensitive to the choice of q points in 
reflectometry.

Each CNN is a sequence of five blocks, each block containing a 
one- dimensional convolutional layer, followed by a batch normal-
ization layer and a GELU activation function. Convolutional layers 
feature a kernel of size 3, stride = 2, and padding = 1. Consequently, 
the dimension of the processed data is (approximately) halved after 
each layer. The number of channels is doubled in each block, start-
ing from 32 up to 512.

Outputs from three CNNs are concatenated with the prepro-
cessed parameters ϕ and provided to a multilayer perceptron. The 
final 256- dimensional latent representation of the input is supplied 
to the flow- based model.
Flow- based model
A normalizing flow (17) uses a series of reversible and differentia-
ble transformations on a simple, base distribution (in our case, the 
standard normal distribution). This approach generates a complex 
distribution from which samples can be efficiently drawn and eval-
uated. In this work, we use a series of 40 transformations, each 
transformation block being a composition of a coupling layer with 
monotonic rational- quadratic splines (18) and a batch normaliza-
tion layer (43). After each transformation block, the parameters are 
randomly permuted.
Refinement by likelihood- based methods
During the inference, we sample parameters θi ∼ pNN(θ ∣R) and 
generate parameters in batches with the corresponding log proba-
bilities. The obtained curves are used for calculating importance 
sampling weights (PANPE- IS) and streaming estimation of sample 
efficiency ϵeff. We continue this procedure until the effective sample 
size ESS = N ⋅ ϵeff reaches an adequate threshold which we set equal 
to 500. The same criterion is used for the traditional importance 
sampling, where the prior distribution p(θ ∣ϕ) is used as the pro-
posal distribution.

Alternatively, samples generated by PANPE are used as efficient 
initialization points for MCMC (PANPE- MCMC). In our work, we 
introduce GPU- accelerated PyTorch- based implementations of sev-
eral affine- invariant MCMC algorithms (44–46) enabling near real- 
time MCMC- based refinement operation.

Low sample efficiency estimation
We consider two approaches for estimating sample efficiency for the 
conventional importance sampling method with prior acting as a 
proposal distribution. The first approach is the use of importance 
sampling weights via direct sampling from the prior distribution p(θ)

where wIS
i
= p

(
R ∣ θi

)
, θi ∼ p(θ), and ⟨⋅⟩ is the average operation 

over all samples i.
An accurate estimation requires N = ESS∕ϵeff  samples, e.g., 

sample efficiency ϵeff = 10−12 requires more than 1012 samples, which 
is computationally unfeasible. An insufficient number of samples N 
only provide an upper bound ϵeff < 1∕N. Therefore, it can only be 
used in practice for sufficiently high sample efficiencies.

The alternative approach uses the analytical form (47)

In the case of the uniform prior distribution p(θ), the equation 
simplifies to

where the quantity v
(
p(x)

) ≡ (
�p(x)

[
p(x)

])−1 can be interpreted 
as an “efficient volume” of the distribution p(x). In this way, 
v
�
p(θ)

�
=

∏n

j=1

�
θmax
j

−θmin
j

�
= Θ is the volume of the prior distri-

bution, and

characterizes the efficient volume of the posterior distribution. 
For instance, in the case of d- dimensional standard normal dis-

tribution  (0, 1 ⋅σ), v
�
p
�
=
�
2
√
πσ

�d

. Naturally, the sample ef-

ficiency in our case is the ratio between the defined volume of 
the target distribution and the volume of the (uniform) proposal 
distribution.

We estimate ϵ∗
eff

 using samples from our PANPE- IS model {θi}Ni=1

where the importance weights and samples provided by PANPE- IS 
should not be confused with the weights and samples from prior 
distribution in Eq. 10.

In this way, we obtain ϵIS estimations in the case of low sample 
efficiency of the IS method. However, when the prior distribution 
is narrow enough, we can estimate ϵIS using both methods inde-
pendently. Figure S8 illustrates the consistency between these two 
approaches.

Supplementary Materials
This PDF file includes:
Figs. S1 to S9

ϵeff =
⟨wIS

i
⟩2

��
wIS
i

�2� (10)

ϵeff
a.s.
→ ϵ∗

eff
=

(
�θ∼p(θ∣R)

[
p(θ ∣R)

p(θ)

])−1

=
p(R)

�θ∼p(θ∣R)

[
p(R ∣ θ)

](11)

(
�θ∼p(θ∣R)

[
p(θ ∣R)

p(θ)

])−1

=
v
(
p(θ ∣R)

)

v
(
p(θ)

) (12)

v
(
p(θ ∣R)

)
=

(

∫Θp(θ ∣R)
2dθ

)−1

(13)

ϵ∗
eff
=

p(R)

�θ∼p(θ∣R)

[
p(R ∣ θ)

] ≈

(
N∑

i=1

wi

)2

N∑

i=1

wip
(
R ∣ θi

)
(14)
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