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Abstract: We present the synthesis and characteriza-
tion of halide-terminated colloidal Ge nanoparticles 
of 2-10 nm with a narrow size distribution, synthesized 
via a novel reaction route. The nanoparticles are pre-
pared by the disproportionation reaction of metastable 
Ge(I)X solutions and are obtained in a maximum yield 
of 79%. Control of the nanoparticle size is achieved by 
varying the aging time and/or temperature. The halide 
termination of the nanoparticles is a perfect prerequi-
site for further surface functionalization but also leads 
to a high sensitivity of the germanium nanoparticles to 
water and air.
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1  Introduction
Different chemical methods have been introduced for 
the synthesis of a variety of nanomaterials, whereby 
the control of the physical properties of the synthesized 
nanomaterial is a key issue for actual applications 
(Goesmann and Feldmann, 2010). The properties of 
nanoparticles and of nanomaterials have agitated 
scientists and engineers due to their huge potential 
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applications in different fields (Campelo et al., 2009; 
Freund et al., 2018; Grzelczak et al., 2019; Lin, 2015; 
Loza et al., 2020; Stratakis and Garcia, 2012). Recently, 
a review about the transfer of knowledge to industrial 
applications was published by Modena et al. (2019). 
Within the field of nanoparticles, semiconducting ones 
have received considerable attention (Scheele et al., 2015; 
Weller, 1993) and for the last two decades, germanium 
nanoparticles have been of interest for a wide range 
of scientific initiatives. Colloidal Ge-nanoparticles are 
thus an attractive class of nano-sized building blocks 
from which it is possible to create complex materials 
with unique properties for a variety of applications in 
areas that include optoelectronic, (Ruddy et al., 2010; 
Talapin et al., 2010) energy conversion (Wu et al., 
2016), and biological applications (Bhattacharjee et al., 
2013; Fan and Chu, 2010). For example, germanium 
nanoparticles can be used as non-toxic luminescent 
nanoparticles (Carolan and Doyle, 2014; Shirahata 
et al., 2013). An important aspect during the synthesis 
and application of semiconductor nanoparticles is the 
stability of the colloidal suspension (McVey et al., 2017; 
Rogach et al., 2007). 

Germanium nanoparticles are difficult to synthesize 
due to the high crystallization temperature of the material 
and strong covalent bonding between the atoms. In early 
reports about colloidal germanium nanoparticles, strong 
reducing agents like LiAlH4, or NaBH4 were typically used 
under harsh reaction conditions (reaction temperatures 
up to 300°C) to react with Ge(II) and Ge(IV) species like 
germanium oxide or germanium halide salts, such as GeX2 
or GeX4 (X = Cl, Br, I). The synthesis via the solid-state 
disproportionation of Ge(II)-precursors like a GeOx glass 
was reported by Panthani (Wang et al., 2019). Kauzlarich 
described the synthesis and characterization of Ge 
nanoparticles in a mixed solvent system, which affects the 
size and crystallinity of the nanoparticles formed (Bernard 
et al., 2018). Some methods are based on microwave-
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assisted reduction in solution (Smock et al., 2020). Boyle 
have studied methods which are based on a thermal 
disproportionation of Ge(II) precursors at 300°C (Gerung 
et al., 2005; Lambert et al., 2007). The surfactant-assisted 
solution reduction was reported by Chiu and Huang (2009). 
In a recent publication Delpech and Madec describe the 
synthesis and characterization of symmetric and non-
symmetric bis-amidinato-germylene Fe(CO)3 complexes, 
and the symmetric bis-germylene Fe(CO)3 complex, which 
have been applied successfully in the synthesis of iron 
germanide (Fe2Ge2) nanoparticles in a crystalline core/
amorphous shell structure (Sodreau et al., 2019).

A major challenge for colloidal nanoparticles remains 
the ability to control shape, size and uniformity. In 
the following, we describe a completely new synthetic 
procedure to synthesize well defined and soluble 
germanium nanoparticles (GeNP). The GeNP are thereby 
synthesized by the disproportionation reaction of 
metastable Ge(I)Br solutions, which are available via a 
preparative co-condensation technique (Schnepf and 
Köppe, 2002; Schnepf, 2005). These nanoparticles are 
readily dispersed and colloidally stable in tetrahydrofuran 
(THF). The control of the nanoparticle size is studied 
and adjusted by variation of the reaction parameters 
temperature and time.

2  Results and discussion
The here described method for the mild synthesis of 
germanium nanoparticles is based on the metastable 
character of Ge(I)Br solutions (solvent: mixture of toluene 
or THF and PnBu3 as a donor component) obtained via a 
co-condensation technique. These metastable solutions 
which can be stored at −78°C without decomposition 
undergo a disproportionation reaction already at low 
temperature (e.g., 2GeBr → GeBr2 + Ge) due to the 
instability of the oxidation state +I of the germanium 
atoms (Figure 1). Hence, the synthesis can be done under 
mild reaction conditions, which is a significant advance in 
comparison to hitherto known synthetic methods where 
harsher reaction conditions and additional reducing 
agents are necessary.

The disproportionation reaction especially gives 
access to small germanium nanoparticles within the 
size range up to 100 Å (Figure S3a,b in Supplementary 
material). The colloidal germanium nanoparticles are 
thus prepared by warming a metastable Ge(I)Br solution 
from −78°C to room temperature in ten hours, resulting in 
an orange solution (Figure S3a). After this process, small 
nanoparticles of hydrodynamic diameter around 20 Å 
with a narrow size distribution can be isolated, washed 

Figure 1: (a) Scheme of the GeNP size development (D = donor (PnBu3)). (b) Time dependence of the size evolution of the GeNP during the 
disproportionation reaction at three different temperatures of the reaction solution (35°C, 45°C, and 55°C), measured by dynamic light 
scattering (DLS).
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and dispersed in THF as shown in Figure 2 and the 
experimental section. The size of the nanoparticles can be 
adjusted by varying the temperature and heating time for 
the altering of the metastable Ge(I)Br solution, resulting in 
deep red solutions (Figure S3b) of well-defined GeNP with 
a narrow size distribution. The hydrodynamic diameter 
of the particles is thereby measured by dynamic light 
scattering (DLS).

The main temperature limitation of this synthetic 
procedure is the boiling point of the solvent. Hence, 
toluene was tested as the solvent as well due to its high 
boiling point, allowing a broader temperature range 
for the synthesis of GeNP. However, the GeNP started to 
precipitate at 79°C which might be due to a bad solubility 
within toluene. The maximum hydrodynamic diameter 
of the nanoparticles before precipitating was thereby 
around 70 Å. When THF was used instead, the resulting 
GeNP with hydrodynamic diameters of up to 100 Å give 
stable colloidal solutions for months. The so obtained 
germanium nanoparticles are afterwards isolated via the 
procedure outlined in Figure 2. The solutions and the 
dried GeNP are still very sensitive against moisture and 
air and must be handled under inert conditions, which 
might be due to accessible Ge-Br units at the surface 
(Figure 1a). Nevertheless, under an inert atmosphere the 
nanoparticles are long-term stable in pure form as well as 
in solution.

The overall composition of the GeNP was determined 
by energy-dispersive X-ray spectroscopy (EDX) (Tables 
S1 and S2 in Supplementary material) and elemental 
analysis (Table S3), leading to an overall formula of 
[(PnBu3)0.3Ge1.8Br]n. During the work-up procedure 
outlined in Figure 2, a small amount of non-dispersible 
nanoparticles was observed, having the same composition 
as the dispersible ones. Hence, from the elemental analysis 
it is obvious that beside bromide substituents some part of 
the PnBu3 donor is left on the surface of the nanoparticles 

and continues to act as a surfactant, as also schematically 
shown in Figure 1. 

After evaporation of the solvents, powder X-ray 
diffraction (PXRD) was used to verify the crystallinity of 
the nanoparticles, indicating that no crystalline core of, 
for example, α-germanium is present (Figure 3). However, 
the width of the strongest peak (marked with a star in 
Figure 3) in the powder pattern indicates particle-particle 
correlations. In terms of sensitivity of the nanoparticles, 
the surface layer is partially oxidized to form mixed 
germanium-halide-oxide derivatives, resulting in 
increased intensity of impurity peaks (Johnson and Weller, 
1999). Hence, after a prolonged measurement time, small 
peaks corresponding to the GeO2 diffraction pattern are 
observed (Uno et al., 1988) underlining the sensitivity of 
the particles to moisture and air as the GeO2 may result 
from a reaction of the particles with a small amount of 
water or oxygen during the measurement. 

Small-angle X-ray (SAXS) scattering was used to 
determine the inter-particle distances and structure of the 
nanoparticles. Wide-angle X-ray (WAXS) scattering was 
used to determine the intra-particle structure. The capillary 
with solvent was measured first to obtain scattering pattern 
of the media without the GeNP. The measured pattern is 
presented in Figure 4a and shows no scattering intensity 
close to the direct beam. On the other hand, a strong 
signal in the WAXS regime is observed, corresponding to 
scattering of the quartz capillary. The measured reciprocal 
map of GeNP dissolved in THF and stored in quartz 
capillary is presented in Figure 4b. Compared to the 
SAXS pattern of the solvent in the quartz capillary alone, 
presented in Figure 4a, the scattering signal close to q = 0 
comes from the GeNP. Hence the GeNP exhibit a typical 
disordered internal structure in solution, whereby Figure 
4c corresponds to GeNP in solution with longer acquisition 
time to obtain better statistics from the scattering. Guinier 
analysis was applied to the measured reciprocal maps 

Figure 2: Schematic of the synthesis of colloidal GeNP including an image of dry powder.
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to obtain information about the size of the GeNP. More 
detailed information is given in Supplementary Material. 
The Guinier plot obtained from the measured reciprocal 
map is presented in Figure 4c (bottom subfigure), leading 
to a calculated diameter of 33.6  Å. SAXS measurements 
of the pure GeNP in powder form were carried out for 
comparison with SAXS measurements of dissolved GeNP 
in a capillary. The resulting reciprocal map is presented in 
Figure 4d (top subfigure). 

The scattering maxima in form of a ring correspond 
to the average particle-particle distance and random 
orientation of the nanoparticles. Taking into account the 

random orientation of the GeNP in the powder form and 
nanoparticles in closest packing (NP are touching each 
other) it is possible to estimate the average diameter (size) 
of the GeNP:

D
xc

= 2π
� (1)

where xc is the position of the measured peak in reciprocal 
space, i.e., in inverse Å. The corresponding circle gathered 
line-cut with Lorentzian peak fit and xc is presented in 
Figure 4d (bottom subfigure). The position of the peak 

Figure 4: SAXS/WAXS reciprocal space maps of GeNP used to determine inter/intra-particle structure and distances. (a) Reciprocal map of 
solvent in capillary. (b) Reciprocal map of dissolved GeNP in capillary. (c, top subfigure) Reciprocal map of dissolved GeNP in capillary with 
longer acquisition. (c, bottom subfigure) Guinier plot obtained from reciprocal map (Figure 4c, top subfigure). (d, top subfigure) Reciprocal 
space map of powder GeNP in capillary. (d, bottom subfigure) Line-cut with its fit obtained by circular gathering of reciprocal space map 
(Figure 4d, top subfigure).

Figure 3: (a) Powder XRD pattern of germanium nanoparticles. The star marks particle-particle correlations (see text). (b) Powder XRD 
pattern of germanium nanoparticles denotes the reflections of GeO2 after overnight measurement and compared to the reference pattern of 
GeO2 (PDF # 03-065-6772). The peaks at q = 1.5 and q = 1.7 belong to a crystalline phase of unknown composition.
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is in good agreement with the strongest peak measured 
by PXRD (Figure 3a). The calculated diameter is thereby 
D = 44.9 Å. The difference between the diameter obtained 
by Guinier analysis and the diameter calculated from the 
position of the scattering maxima can be explained by 
relatively close packing in the powder and less densely 
packed GeNP dissolved in THF. Further analysis of 
the nanoparticles was tried via transmission electron 
microscopy (TEM). However, during the measurement, 
the GeNP decompose under the electron beam (Figure S2), 
indicating that the particles are not only sensitive to 
moisture and air but still thermally unstable. This might 
be due to the halide terminated surface of these particles, 
which is still prone to a disproportionation reaction under 
heat treatment. Hence, the surface termination might play 
an important role in the stabilization of such GeNP and 
further surface modifications are needed to isolate more 
stable particles.

3  Conclusions
We presented a unique and novel synthetic route for the 
synthesis of germanium nanoparticles (GeNP) by using 
the disproportionation reaction of metastable Ge(I)Br 
solutions. This mild method generates well-defined GeNP 
with a sharp size distribution in the range of 20-100 Å 
and with a yield of up to 79%. The size of the particles 
can be easily controlled by using defined annealing 
times at certain temperatures. The resulting particles 
are sensitive to air and moisture. This sensitivity which 
can be traced back to the Ge-Br-moieties at the surface 
of the particles opens the door for further surface-
functionalization. Currently, we are working on a method 
for such functionalization and/or stabilization of the 
particles for future applications of these novel germanium 
nanoparticles.

Experimental section 

All reactions were carried out under rigorous exclusion 
of air and moisture using Schlenk techniques under 
nitrogen atmosphere. All organic solvents were dried over 
sodium and purified via distillation. DLS measurements 
were performed on a Malvern Zetasizer Nano ZS. EDX 
analysis was performed at a HITACHI SU8030 scanning 
electron microscope with Bruker-EDX using solid samples 
which were prepared in an Ar-filled glovebox. Elemental 
Analysis was performed using solid samples at a Vario 

Micro cube from Elementar Analysensysteme GmbH. 
Powder XRD patterns of the GeNP were measured at room 
temperature with a Stoe STADI-P X-ray diffractometer 
using monochromatized Cu-Kα1 radiation (λ = 1.540598 Å) 
and a Mythen ‑ 1K detector. Standard measurements were 
taken in a q range of (0.2-6 Å-1). Powder samples were fixed 
under an argon atmosphere with grease between two 
Mylar foils. 

SAXS measurements were conducted on a Xeuss 
2.0 setup (Xenocs). A CuKα X-ray beam with wavelength 
λ = 1.5418 Å (E = 8.04 keV) and a beam size of ~500 × 500 μm2 
(FWHM) with photon flux 107 ph./s was used. A  two-
dimensional detector Pilatus 300K (Dectris) with 487 × 619 
pixels of 172 × 172 μm2 was positioned in sample-detector 
distance (SDD) 367 mm. Powder and solution samples 
were fixed under nitrogen atmosphere conditions. 

Synthesis of the particles

The nanoparticles were prepared via disproportionation 
reaction of metastable subvalent Ge(I)Br solutions in 
the yield up to 79%. Synthesis of the metastable Ge(I)
Br solutions was done as follows: liquid germanium 
(40 mmol) reacted with HBr (40 mmol) at approximately 
1600°C under high vacuum conditions (Schnepf, 2005). 
The resulting gaseous products condensed with 200 mL 
of a 10 to 1 mixture of THF/PnBu3 on a surface at -196°C. 
After the solid matrix had been warmed to -78°C, an 
orange-reddish solution was obtained. This solution was 
slowly warmed up to room temperature under stirring. 
The hydrodynamic particle diameter was measured using 
DLS and was in a range of 20-40 Å. The solution was 
heated for 16 h at 55°C. The heating process increases the 
hydrodynamic diameter of germanium nanoparticles up to 
100 Å. All volatiles were removed under vacuum to give an 
oily reddish substance, which was washed up to six cycles 
with pentane and then dried under vacuum. Afterwards, 
the obtained dark red powder was dissolved in THF and 
filtered through a filter cannula (filter paper: pore size  
4.0-12.0 µm, grade MN 615) to remove the agglomerations 
of non-dispersible particles. The dissolution of the powder 
in THF results in a dark red colloidal solution with the 
before chosen hydrodynamic particle diameter from 20 to 
100 Å. For elemental analysis, EDX and powder XRD, all 
volatiles were removed in vacuum yielding a red powder, 
which is very sensitive to air and water.
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