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Impact of molecular quadrupole moments
on the energy levels at organic heterojunctions
Martin Schwarze 1, Karl Sebastian Schellhammer2,3, Katrin Ortstein 1, Johannes Benduhn 1,

Christopher Gaul 3, Alexander Hinderhofer4, Lorena Perdigón Toro 5, Reinhard Scholz1, Jonas Kublitski 1,

Steffen Roland5, Matthias Lau1, Carl Poelking6, Denis Andrienko 6, Gianaurelio Cuniberti 2, Frank Schreiber4,

Dieter Neher 5, Koen Vandewal 1,7, Frank Ortmann 3 & Karl Leo 1

The functionality of organic semiconductor devices crucially depends on molecular energies,

namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity

values of thin films are, however, sensitive to film morphology and composition, making

their prediction challenging. In a combined experimental and simulation study on zinc-

phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a

function of molecular orientation in neat films or mixing ratio in blends are proportional to the

molecular quadrupole component along the π-π-stacking direction. We apply these findings

to organic solar cells and demonstrate how the electrostatic interactions can be tuned to

optimise the energy of the charge-transfer state at the donor−acceptor interface and the

dissociation barrier for free charge carrier generation. The confirmation of the correlation

between interfacial energies and quadrupole moments for other materials indicates its

relevance for small molecules and polymers.
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Organic semiconductors gained much attention because of
their attractive application in low-cost, large area, and
flexible electronic devices1–4. While organic light-

emitting diodes (OLEDs) already entered the market in thin
film displays, several other promising applications such as solar
cells, transistors, photodetectors, or lasers still require improve-
ments in performance. In contrast to their inorganic counter-
parts, organic semiconductors typically consist of weakly bound
molecules, where charge carriers occupy rather localised states.
Associated to these states are the ionisation energy (IE) and
electron affinity (EA) of organic molecules, which are related to
the transport energies of holes and electrons and, consequently,
determine the functionality of electronic devices5,6.

In organic solar cells (OSCs), fundamental processes deter-
mining the device performance are the dissociation of charge-
transfer (CT) states at the donor−acceptor interface into free
charges and their non-geminate recombination via CT states back
to the ground state7–9. Therefore, the CT state energy (ECT)
determines the open-circuit voltage (Voc) of OSCs10, while its
difference to the energy of separated charges (ECS) influences the
generation efficiency of free charge carriers and, thus, crucially
affects both the short-circuit current density (jsc) and the fill-
factor (FF)11,12. Both ECT and ECS are linked to IE of the donor
and EA of the acceptor.

IE and EA of molecules in organic films significantly depend
on molecular orientation and mixing ratio in blends13–15. In
particular, charge−quadrupole interaction can induce large
electrostatic shifts of the electronic levels in crystalline films16–19,
which, for example, allows in blends with molecular intermixing,
a continuous tuning of IE and EA by adjusting the ratio of two
different molecular species20,21. Furthermore, simulations indi-
cated that these interactions can assist the dissociation of CT
states at planar donor−acceptor interfaces22,23. However, it
remains an open question to which extent such findings for these
model systems are general and, particularly, how they are
applicable to donor:acceptor blends without long-range order
which are usually employed in efficient OSCs.

In this study, we demonstrate the tunability of the solid-state IE
by charge−quadrupole interactions and their relevance in sys-
tems with long-range and short-range order, being, thus, relevant
for most organic devices. As a model system, we choose zinc-
phthalocyanine (ZnPc) because of the possibility to gradually
change its quadrupole moment (QPM) by stepwise fluorination
(FnZnPc)20. In order to establish the role of the quadrupole
component perpendicular to the molecular plane (Qπ), we mea-
sure for FnZnPc the change in IE with molecular orientation, film
thickness, and mixing ratio in blends. The ultraviolet photoelec-
tron spectroscopy (UPS) analysis reveals a linear change of IE
with Qπ in all cases. Moreover, when applying these findings to
OSCs, we demonstrate how QPMs influence ECT at planar and
bulk heterojunctions between donor and acceptor. Time-delayed
collection field (TDCF) measurements further show that elec-
trostatic gradients induced by QPMs can assist free charge carrier
generation in these solar cells. Finally, we extend the study to
other material systems, indicating the relevance of the findings for
a large variety of organic semiconductors.

Results
Dependence of thin flm energies on the component Qπ. IE and
EA of molecules in thin films deviate from their gas-phase values,
IE0 and EA0, due to polarisation effects24–26. In weakly bound
solids with localised states, the electrostatic corrections (Δ+ and
Δ−) to the gas-phase values consist of an induced and a perma-
nent contribution. While the first term decreases the distance
between IE and EA, the latter originates from the interaction of

excess charges with static charge distributions and shifts IE and
EA equally17–20. We concentrate on the permanent contribution
in this study, which is often dominated by the charge−quadru-
pole term in the multipole expansion because molecules with
dipole moments often stack with alternating molecular orienta-
tions in ordered organic solids16,18. In this case, the permanent
contribution can be approximated by a sum over the interaction
energies of a charged molecule, described by its atomic excess
charges qj at positions rj, with the quadrupole tensors Qi of all
surrounding molecules at sites ri 27:

EQ ¼
X
i;j

qj
8πϵ0ϵr

�
ri � rj

� �
�Qi � ri � rj

� �

ri � rj

���
���5

; ð1Þ

where we use the dielectric permittivity εr as a macroscopic
constant. We describe the charged molecule by its actual dis-
tribution of atomic charges to have an appropriate description at
distances in the range or below the spatial extent of molecules.

Due to the strong dependence of EQ on distance, EQ changes
with the chemical and crystal structure of the compound. Like
many other planar molecules, FnZnPc typically arranges in a π
−π-stacking geometry28,29, where the intermolecular distance
along the stacking direction (approximately 3.8 Å 28) is signifi-
cantly smaller than along the other two directions (13−14.5 Å 30).
Therefore, we first investigate if the quadrupole component
perpendicular to the molecular plane (Qπ) dominates EQ (see
Fig. 1 for Qπ values) by analysing for FnZnPc layers (20 nm) the
difference in IE between face-on and edge-on orientation of the
molecules (Fig. 2a, see Supplementary Figs. 1–3 and Supplemen-
tary Note 1 for X-ray scattering results). The representative UPS
spectra in Fig. 2b show that IE of a ZnPc film in edge-on
orientation is 0.22 eV smaller as compared to the film in face-on
orientation, in agreement with previous results13. In contrast,
F8ZnPc exhibits an IE value in edge-on orientation that is 0.37 eV
larger than the IE value in face-on orientation. To connect this
behaviour to molecular properties, we calculate Qπ by density
functional theory (DFT) for ZnPc and its fluorinated derivatives
(results in Supplementary Table 1). As displayed in Fig. 2c, the
difference in IE between edge-on and face-on orientation
increases with Qπ from ZnPc to F16ZnPc.

To prove that Qπ dominates in EQ (see Eq. 1), we calculate EQ
for a single charged molecule at the film surface for both
orientations (see Methods and Supplementary Fig. 4). The
difference in EQ between both orientations exhibits the same
correlation with Qπ as observed for the IE difference in
experiment (Fig. 2c). Interestingly, the simulations reveal that
the relevant range of charge−quadrupole interactions is different
between both molecular orientations (Supplementary Fig. 5). For
edge-on orientation, EQ is dominated by interactions between the
next few neighbours along the π−π-stacking geometry. For face-
on orientation, EQ is also dominated by interactions with Qπ

components at small integration limits, which however is
compensated by the interaction with other components when
the integration limit in the lateral direction becomes larger
than 100 nm. Previous investigations indicate that the interaction
with other components than Qπ can be even more dominant in
face-on orientation for molecules with a different symmetry than
FnZnPc such as pentacene, having two molecular short axes19,31.
In the absence of long-range order, such as in donor:acceptor
blends with crystal sizes much smaller than 100 nm, the
interaction of charges with Qπ components should dominate32–34.

To further verify the dominance of charge−quadrupole
interactions along the π−π-stacking direction for edge-on
orientation, we measure IE of FnZnPc for coverages below the
monolayer thickness and evaporate the material stepwise onto
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p-doped BPAPF, leading to an edge-on orientation in thin films
(Supplementary Figure 6). IE at very small coverages, denoted as
IEs, deviates strongly from the value of thick layers (see dotted
lines in Fig. 2d). Notably, for all ZnPc derivatives, IEs is reduced by
0.6 eV compared to their respective gas-phase ionisation energies
IE0, indicating minor influence of charge−quadrupole interactions
on IE at low coverages. With increasing layer thickness, IE
strongly changes and approaches the value of a thick edge-on
oriented film when the monolayer thickness (13−14.5 Å 30) is
reached. The strong IE shift can be explained by the formation of
an ordered monolayer in edge-on orientation, leading to an
increase of the magnitude of EQ due to charge−quadrupole
interactions along the π−π-stacking direction. In good agree-
ment, the change of IE scales with the Qπ value of the respective
ZnPc derivative (Supplementary Fig. 6c). Note that the change
in IE until the first edge-on monolayer is formed can occur for
different growth modes, such as island growth or transition of
molecular orientation from face-on to edge-on.

After having demonstrated the strong effect of Qπ on the
energy levels in model systems based on ZnPc derivatives, we
further analyse its impact in donor:acceptor blends which are
typically used in OSCs. Such blended structures usually exhibit
significant structural disorder and phase separation that both can
change with mixing ratio13,32,35,36. Previous studies found
changes of energy levels with donor:acceptor mixing ratio, which
were assigned to changes in crystal size and to electrostatic
changes13,15,37. We trace back these energetic changes to the
influence of the molecular tuning parameter Qπ.

We measure the energy levels of F8ZnPc:C60 blends at different
mixing ratios (see UPS spectra in Supplementary Fig. 7). As
shown in Fig. 3a, IE of F8ZnPc decreases by more than
300 meV with increasing C60 content. IE of C60 shows a similar
change, which suggests that a large amount of donor and

acceptor molecules interact electrostatically with the other
species despite the phase separation in these blends. The larger
IE change of F8ZnPc at higher C60 contents indicates that F8ZnPc
molecules which are closer to C60 molecules experience a larger
electrostatic shift.

To validate that the electrostatic changes originate from charge
−quadrupole interactions, we compare the behaviour of F8ZnPc:
C60 blends to previously reported ZnPc:C60 blends13, as ZnPc and
F8ZnPc exhibit a similar magnitude but a different sign of Qπ.
Figure 3b shows the electrostatic correction Δ+ of IE for ZnPc
and F8ZnPc blended with C60. While Δ+ differs strongly between
ZnPc and F8ZnPc in pure layers, this difference reduces
continuously with increasing C60 concentration, and Δ+ finally
approaches −0.6 eV. This value is also observed for very small
coverages of (F8)ZnPc, indicating that the charge−quadrupole
interaction energy EQ approaches 0 for high C60 contents (see
Fig. 2d for comparison). Therefore, we attribute the decrease
(increase) of IE of F8ZnPc (ZnPc) with increasing C60 content
to the interaction of charges with a reduced number of Qπ

components of the donor.
The dominance of charge−quadrupole interactions along the π

−π-stacking direction is attributed to the shorter intermolecular
distance in this direction for the ZnPc derivatives. To verify
whether this simple model is also valid for other materials, we
extend our investigation to other molecules that show a strong
dependence of IE on molecular orientation in neat films13,14,38–41

or on mixing ratio in donor:acceptor blends15,37 (see Fig. 1 for
chemical structures). We calculate their QPMs and observe that
for both cases the change in IE scales linearly with the respective
Qπ (Supplementary Fig. 8). Notably, the slope is surprisingly
similar to the one observed for intermixed blends of different
ZnPc derivatives20 (Supplementary Fig. 9). Charge−quadrupole
interactions are also relevant for polymers. Similar to
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sexithiophene (alpha-6T), poly-3-hexylthiophene (P3HT) shows
a smaller IE for end-on orientation with the polymer chain
perpendicular to the substrate plane42. This analysis indicates
that the impact of Qπ on thin film energy levels is relevant for
many organic materials including varying molecular structures
and different morphologies of their (blend) films.

Impact of Qπ at donor−acceptor interfaces in solar cells. The
functionality of OSCs is linked to the formation of charge-
transfer (CT) states of a donor cation and an acceptor anion at
their interface (Fig. 4a), mediating charge carrier dissociation and
recombination in OSCs7,8. In the following, we demonstrate how
molecular quadrupole moments can influence the CT state energy
(ECT) as well as its difference to the energy of separated charges
(ECS). For this purpose, we analyse ZnPc:F4ZnPc:C60 solar cells
based on bulk heterojunctions (BHJ) with two electron donating
molecules (ZnPc and F4ZnPc) and one acceptor (C60) with a fixed
volume content of the acceptor (60%). Different mixing ratios
between ZnPc and F4ZnPc are used to selectively change the
average of the molecular parameters in the donor phase.

For analysing ECT, we obtain the relevant gas-phase energy
levels of donor and acceptor molecules (IE0,D and EA0,A) as well
as the intramolecular relaxation energies of their ions by DFT.

We further calculate for ZnPc/C60 and F4ZnPc/C60 the Coulomb
binding energies of the energetically relaxed ion pairs and find
that they differ up to several 10 meV between ZnPc and F4ZnPc
because of their different charge distributions43 (see Methods
section and Supplementary Fig. 10a). We calculate from these
parameters the expected variation of ECT from ZnPc:C60 to
F4ZnPc:C60 (dashed line in Fig. 4b and Supplementary Fig. 10b).
Experimental values of ECT obtained from Gaussian fits to
sensitively measured external quantum efficiency (see Supple-
mentary Fig. 11) and electroluminescence spectra44. In good
agreement with the calculations, the experimental values increase
with F4ZnPc content (purple squares in Fig. 4b). However, the
measured shift of ECT is 0.1 eV larger than expected from the
variation of molecular parameters, which can be partly attributed
to the larger static energetic disorder at high ZnPc contents,
reducing ECT (Supplementary Fig. 12). In addition to energetic
disorder, charge−quadrupole interactions lower the effective IE
of the donor and further reduce ECT at large amounts of ZnPc.

To verify the impact of charge−quadrupole interactions on
ECT, we additionally fabricate solar cells with a planar hetero-
junction (PHJ) between a ZnPc:F4ZnPc blend layer with varying
mixing ratio and a neat C60 layer. The ZnPc:F4ZnPc layer
is grown on p-doped BPAPF to ensure edge-on orientation of
the donor molecules, causing a large change of IE induced by
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charge−quadrupole interactions (see Fig. 2b and Supplementary
Fig. 9). At high ZnPc contents, the planar devices exhibit a
significantly lower ECT (green circles in Fig. 4b) than the ternary
BHJ devices. This can be explained by extended long-range order,
which increases the charge−quadrupole interaction energy and
reduces IE of the donor for large ZnPc contents. The change of
ECT with donor mixing ratio directly influences Voc because
charge carriers recombine via CT states at open-circuit9. There-
fore, the different shifts of ECT in BHJ and PHJ devices upon
changing the donor content is reflected in a similar difference in
Voc shift, demonstrating the relevance of charge−quadrupole
interactions for important device parameters (Fig. 4c).

The generation efficiency of photocurrent depends on the
dissociation barrier of CT excitons (ΔEdiss), which depends on
the difference between ECS and ECT11. We next discuss how
quadrupole moments can induce electrostatic gradients at the
donor−acceptor interface that lead to a lower ΔEdiss. In the case of
a negative quadrupole component Qπ,D of the donor, charge
−quadrupole interactions along the π−π-stacking direction
reduce IED and EAD of donor molecules within the donor phase
(green arrows in Fig. 5a). This shift is smaller at the interface with
C60 due to the interaction with its neutral Qπ,A components. The
negative Qπ,D influences the energies of acceptor molecules (IEA
and EAA) close to the interface, as indicated by the UPS
measurements on donor−acceptor blends in Fig. 3. Therefore,
the negative Qπ,D induces an electrostatic potential gradient from
the donor to the acceptor phase, which directly reduces ΔEdiss.

To analyse ΔEdiss in ZnPc:F4ZnPc:C60 solar cells, we obtain
the difference between IED and EAA in ternary blends with
UPS and take this as an estimate for ECS45. The results in
Fig. 5b show that ECS increases more strongly with Qπ,D as
compared to ECT, indicating a rise of ΔEdiss from high ZnPc
to high F4ZnPc contents and verifying our considerations that

charge−quadrupole interactions can reduce ΔEdiss. For PHJs, we
observe a similar increase of ΔEdiss for higher F4ZnPc contents
(Supplementary Fig. 13). We perform TDCF measurements11

on ternary solar cells to investigate how the increase of ΔEdiss
affects the generation efficiency of free charge carriers. In this
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method, donor molecules are excited by a short laser pulse.
After a delay of 8 ns, when all geminate recombination has
taken place46,47 (Supplementary Fig. 14), the charges are
extracted by applying a large negative bias voltage. As shown
in Fig. 5c, the amount of collected charges follows the current-
density/voltage characteristics of the solar cells, revealing that
the reduced photocurrent at high F4ZnPc contents is predomi-
nantly due to a field-dependent free charge carrier generation11.
We attribute the increased field-dependence to the increased
ΔEdiss. The increase of ΔEdiss with Qπ,D causes a significant
reduction of the device parameters FF and jsc once Qπ,D is
larger than −30 ea02 (Fig. 5d). This finding explains the
observation in previous studies where the use of F4*ZnPc
(a variant of F4ZnPc, see Fig. 1 for the chemical structure)
as donor in combination with C60 yields well-performing
solar cells48. In contrast to F4ZnPc, F4*ZnPc has a more negative
Qπ,D of −41.6 ea02, being sufficiently low to ensure efficient CT
exciton separation.

The correlation of FF and jsc with Qπ is not restricted to this
particular system. We further calculate Qπ,D and Qπ,A values for
three donors (SubNc, ZnPc, F4*ZnPc) each combined with one
non-fullerene acceptor (Cl4SubPc or Cl6SubPc). In PHJ devices49,
FF and jsc increase for all donors when the acceptor Cl4SubPc is
substituted by Cl6SubPc, which can be explained by the increased

difference between Qπ,D and Qπ,A (Supplementary Fig. 15). These
results indicate that a precise adjustment of Qπ,A being larger than
Qπ,D should be considered when designing efficient non-fullerene
acceptor molecules. For example, Qπ,A can be increased by adding
electron withdrawing side groups to the acceptor. In literature,
there are already examples of efficient acceptors having such
side groups50,51, where a larger degree of fluorination resulted in
an improved charge extraction52. Furthermore, the results of a
recent study indicate that quadrupole moments also affect
polymer solar cells. Here, an improved charge generation in
P3HT/PCBM bilayer solar cells was observed when P3HT was
oriented end-on42, which can be explained by the reduced
relevance of the positive quadrupole component along the
polymer chain (see quadrupole components of alpha-6T in
Supplementary Table 1 for comparison). Therefore, quadrupole
moments and molecular orientation should be taken more into
account for the design of future photovoltaic materials such as
small molecules, oligomers and polymers.

Discussion
In conclusion, we show that charge−quadrupole interactions
along the π-π-stacking direction can induce large electrostatic
energy shifts to the electronic levels of molecular films, depending
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on molecular orientation and blend composition. Due to the
sensitivity of the interaction energy to the local morphology, the
electronic levels of blends strongly depend on the mixing ratio.
Utilising the example of OSCs, we show the dependency of
the charge-transfer state energy at donor-acceptor interfaces on
the quadrupole component in π−π-stacking direction. Moreover,
we present a strategy to tune the driving force for free-charge-
carrier generation by adjusting the respective quadrupole com-
ponents, which can be used to optimise non-fullerene acceptor
molecules. A similar correlation is found for other materials
than ZnPc derivatives, suggesting that our findings can be applied
to a large variety of small molecules and polymers. These results
highlight the necessity to consider the quadrupole moment as an
important molecular parameter in future material design for
high-performing organic semiconductor devices.

Methods
Ultraviolet photoelectron spectroscopy. The spectra are acquired by a PHOIBOS
100 analyser system (Specs, Berlin, Germany) at a base pressure of 10−11 mbar
using He I excitation lines (21.22 eV) and an energy resolution of around 150meV.
By repeating the sample production under the same experimental conditions, the
experimental error for the position of the obtained energetic states is estimated to
be 50 meV. The Fermi level positions of all spectra are calibrated to the Fermi edges
of the gold or silver substrates. All samples are thermally (co-)evaporated at rates of
0.1–0.2 Å s−1 in UHV at a base pressure of 10−8 mbar using individual quartz
crystal monitors for each material. As substrates, sputter-cleaned gold foils are used
for face-on orientation and silver foils covered by 5 nm of an amorphous layer of p-
doped BPAPF (3 wt%, doped with NDP9) for edge-on orientation29. NDP9 is a
commercial p-dopant supplied by Novaled GmbH, Germany. The layer thickness
of the organic layers under investigation is always 20 nm. IE values are obtained
from the sum of the work function and the maximum position of the HOMO peak.
The work function is extracted from the onset of the high binding energy cut-off.

X-ray scattering. The experiments are performed at the ESRF, France (beamline
ID03), with a photon energy of E= 22.0 keV. The reciprocal space maps (RSM) are
measured under grazing incidence geometry with an angle of incidence of αi=
0.07°. Each RSM is assembled from 16 single images recorded with a PILATUS 300k
area detector. All measurements are performed in air. The samples are thermally
(co-)evaporated at rates of 0.1−0.2 Å s−1 in UHV at a base pressure of 10−8 mbar
using individual quartz crystal monitors for each material. As substrates, glass
substrates covered by 1 nm of chromium and 30 nm of gold are used for face-on
orientation and glass substrates covered by 5 nm of an amorphous BPAPF are used
for edge-on orientation29. The layer thickness of the FnZnPc layers is 20 nm.

Solar cell device preparation. The solar cells are thermally evaporated at ultra-
high vacuum (base pressure < 10−7 mbar) on a glass substrate with a pre-structured
indium tin oxide (ITO) contact (Thin Film Devices, USA). The layer stacks of the
ternary bulk heterojunction solar cells are: Glass/ITO/BPAPF:NDP9 (40 nm, 5 wt
%)/ZnPc:F4ZnPc (5 nm, varying ratio)/ZnPc:F4ZnPc:C60 (38 nm, varying ZnPc:
F4ZnPc ratio, 60 vol% of C60)/C60 (15 nm)/C60:W2(hpp)4 (8 nm, 3 wt%)/Al (100
nm). The layer stacks for planar heterojunctions are: Glass/ ITO/ BPAPF:NDP9
(20 nm, 10 wt%)/ZnPc:F4ZnPc (10 nm, varying ratio)/C60 (40 nm)/BPhen (8 nm)/
Al (100 nm). NDP9 is a commercial p-dopant supplied by Novaled GmbH, Ger-
many. All the organic materials were purified 2−3 times by sublimation. The
device area of 6.44 mm2 is defined by the geometrical overlap of the bottom and the
top contact, verified with a profilometer. To avoid exposure to ambient conditions,
the organic part of the device is covered by a small glass substrate which is glued on
top. The relative content of donor and acceptor phases in ternary blends is esti-
mated to have a precision of better than ±5 wt%.

Current−voltage characteristics. The current−voltage characteristics in dark
and under solar illumination are measured with a source measure unit (Keithley
2400, USA) at room temperature. For the latter condition, the solar cells are
illuminated with a spectrally mismatch-corrected intensity of 100 mW cm−2

(AM1.5G) provided by a sun simulator (16 S-150 V.3 Solar Light Co., USA) and
masked to avoid edge effects and to precisely define the area. The intensity is
monitored with a calibrated Hamamatsu S1337 silicon photodiode.

Sensitive external quantum efficiency (sEQE). The light of a quartz halogen
lamp (50W) is chopped at 141 Hz and coupled into a monochromator (Newport
Cornerstone 260 1/4m, USA). The resulting monochromatic light is focused onto
the solar cell, of which the short-circuit current is fed to a current pre-amplifier
before it is analysed with a lock-in amplifier (Signal Recovery 7280 DSP, USA).
The time constant of the lock-in amplifier was chosen to be 0.5 s or 1.0 s and the
amplification of the pre-amplifier was increased to resolve low photocurrents.

The EQE is determined by dividing the photocurrent of the OSC by the flux
of incoming photons, which was measured using a calibrated Si and InGaAs
photodiode. The measurements are performed at room temperature.

Electroluminescence (EL). EL measurements were obtained at room temperature
with an Andor SR393i-B spectrometer equipped with a cooled Si and cooled
InGaAs CCD detector array (DU420A-BR-DD and DU491A-1.7, UK). The spec-
tral response of the setup was calibrated with a reference lamp (Oriel 63355). The
emission spectrum of the OSCs was recorded at different injection currents with
respect to voltages, which were lower than or at least similar to the Voc of the device
at 1 sun illumination.

Time-delayed collection field. In TDCF measurements, the device is excited while
held at a varying pre-bias and after a delay time of 8 ns a collection bias of 2.5 V is
applied. The excitation was generated with a diode-pumped, Q-switched Nd:YAG
laser (NT242, EKSPLA, 500 Hz rep-rate, 5.2 ns pulse duration, 590 nm wave-
length). Also, to compensate for the internal latency of the pulse generator, the
laser pulse was delayed and homogeneously scattered in an 85 m long silica fibre
(LEONI). An Agilent 81150A pulse generator was employed to apply the pre-bias
and collection bias to a homebuilt amplifier directly connected to the sample. The
current through the device was measured via a grounded 10 Ω resistor in series
with the sample and recorded with an Agilent DSO9104H oscilloscope.

Density functional theory. The simulations are performed to calculate the
molecular quadrupole moments, the ionisation energy, and the intramolecular
relaxation energy in gas-phase of the relevant molecules. The quadrupole tensor
components Qij are obtained from following definition:

Qij ¼
Z

pðrÞ � 3rirj � jrj2δij
� �

� d3r: ð2Þ
The ionisation energy was determined as the difference of the total energy of the

positively charged molecule and the neutral molecule in the relaxed geometry of
the neutral molecule. The intramolecular relaxation energy is determined as the
difference in total energy between the negatively (positively) charged molecule in
its optimised geometry and its energy in the geometry of the neutral molecule. We
used the M06-2x exchange-correlation functional53 and the correlation-consistent
basis set cc-pVTZ54 as implemented in the computational chemistry package
NWChem55.

Charge−quadrupole interaction energy calculation. The energy is calculated for
a given molecule at site rj as a discrete sum including all other molecules (at sites ri)
in the considered geometry, according to

EQ rj
� �

¼
X
i;k

qj;k
8πϵ0ϵr

ri � rj � τk

� �
�Qi � ri � rj � τk

� �

ri � rj � τk

���
���5

ð3Þ

with the quadrupole tensor Qi of molecule i and the relative dielectric permittivity
(assuming εr= 2.856 for all FnZnPcs). Hereby, qj,k is the fractional excess charge
at atom k of the molecule j and rj+ τk is its position. The quadrupole tensor and the
fractional excess charges are obtained in gas phase for all molecules in
their respective relaxed structures. The charge distributions and the resulting
quadrupole moments might slightly differ in the film phase due to the surrounding
polarisable medium. The film structure was generated according to the crystal
structure of CuPc57 (see Supplementary Figs. 1–4). We assume a simplified
orthorhombic lattice and take the intermolecular distances (approximately constant
3.8 Å and 13.5 Å) from literature28,30. For face-on geometry, a film thickness of 20
nm implies that we take into account 53 layers along the surface normal. We restrict
the summation in lateral directions to a large area of 400 nm × 400 nm, which is
sufficient for convergence. For edge-on geometry, we have 15 layers in the direction
of the surface normal for a 20 nm film, while the lateral dimension of the integration
region is equally big. To investigate the relevant range for the interaction energy, we
vary the summation in lateral direction between 10 and 200 nm (Supplementary
Fig. 5). In addition, we reduced the thickness of the film in edge-on orientation from
20 to 3 nm and observe an increase of the interaction energy by 10% for ZnPc, in
good agreement to the change of IE observed in experiment (Fig. 2d).

Energy change of CT states due to molecular parameters. We estimate the
variation of the CT state energy (ECT) from the change of molecular parameters
when replacing ZnPc with F4ZnPc using following expression:

ECT ¼ IE0;D � EA0;A � Ecoul;CT � λD � λA; ð4Þ
where IE0,D is the gas-phase ionisation energy of the donor (ZnPc/F4ZnPc) and
EA0,A is the gas-phase electron affinity of the acceptor (C60). Ecoul,CT is the Cou-
lomb binding energy between the donor cation and the acceptor anion, which is
screened by a mean dielectric constant of εr= 3.6, obtained from εr= 2.8 for ZnPc
and εr= 2.8 for C60

56. For a detailed description how Ecoul,CT is obtained, we refer
the reader to a our previous publication43. λD is the intramolecular relaxation
energy of the donor cation and λA is the intramolecular relaxation energy of the
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acceptor anion. All values are obtained from DFT simulations. To compare
with the experimental data in Fig. 4b, we additionally subtract a polarisation energy
of 2.1 eV.

Data availability
All the data supporting the findings of this study are available within the article, its
Supplementary Information files, or from the corresponding authors upon reasonable
request.

Code availability
The code used for the calculation of the charge−quadrupole interaction energy is
available from the corresponding authors upon reasonable request.
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