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Machine-learning-based online 
data analysis enables autonomous 
closed-loop experiments
Real-time data analysis based on machine-learning
(ML) presents an important opportunity to establish 
closed-loop feedback systems, enables live-
monitoring physical parameters beyond observables 
and allows for real-time decision-making during 
synchrotron experiments. Here, an arti cial neural 
network, capable of considering prior knowledge, 
was used to extract physical thin lm parameters 
during an X-ray re ectometry (XRR) experiment.

X-ray user facilities rank amongst the largest scienti c 
data producers in the world, and recent advances in 
accelerator development and detector technology are 
resulting in an increasing volume of data generated in 
experiments. This is driving a surge in interest regarding 
the application of machine-learning (ML) techniques to 
automate data analysis. In order to prepare beamlines 
for ML-driven experiments, speci c solutions to manage 
acquisition, analysis and storage have been developed 
at research facilities or in data-driven national and 
international collaborations such as DAPHNE4NFDI [1], 
PaNOSC and ExPaNDS. 

Using an X-ray re ectivity (XRR) 
experiment as a case study, 
this work presents the seamless 
integration of user-developed 
ML code with beamline control 
infrastructure, enabling real-time 
data analysis and integrated 
archiving of the analysed results 
with respect to FAIR ( ndable, 
accessible, interoperable, reusable) 
principles. It also demonstrates 
the accuracy and robustness of 
ML methods when applied to 
the analysis of XRR curves and 
Bragg re ections of thin lm 
structures [2] through the ability 
to autonomously control a vacuum 
deposition setup.

User-developed ML code can be integrated into beamline 
control and data acquisition so ware such as BLISS [3]
through the underlying TANGO layer [4] that is commonly 
used in beamline environments. This approach ensures 
high portability of the user-developed code between 
multiple synchrotron sources and demonstrates the 
interoperability of ML codes and TANGO to access entire 
ML models. Unlike beamline control processes, ML 
data analysis can run on compute resources in central 
computing facilities. Using VISA [5] – a solution for remote 
access to IT infrastructure for data processing – users can 
prepare and use IT infrastructure exclusively available to 
the experimental team shortly before and during speci c 
experiments that can be customised to their needs.  

For the case-study, a combined one-dimensional 
convolutional neural network (CNN) with subsequent 
multilayer perceptron was trained to extract physical thin-

lm parameters (thickness, density, roughness). The ML-
model was used to reconstruct scattering length density 
(SLD) pro les in an XRR experiment on beamline ID10.

It is important to note that for a given SLD pro le, the 
corresponding theoretical XRR curve can be swi ly 
calculated. However, reversing this operation presents a 
challenge because of the inherent ambiguity that o en 

Fig. 136: a) The machine learning 
pipeline with special emphasis on the 

injection of priors at inference time.  
 b) Sketch of the autonomous 

acquisition and feedback scheme.
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allows for multiple, di erent SLD pro les to correspond
to the same curve within the bounds of measurement 
uncertainty. Fundamentally, this is related to the 
famous phase problem of scattering. Consequently, it is 
vital in re ectivity analysis to make use of the physical 
understanding of the investigated system in order to 
reduce the number of potential solutions and to identify 
the correct one. In this work, two methods to integrate 
existing physical knowledge into the ML model at runtime 
are highlighted: physics-based parameterisation, and 
the including of boundaries through open parameters as 
additional input to the neural network (Figure 136a). 

Molecular thin lms of AlQ3 were chosen for demonstration
purposes. With the aim to grow molecular thin lms 
of prede ned thickness, an ML-based autonomous 
experiment took control over the growth process and 
terminated it once the target thickness was reached 
(Figures 136b and 137). Prior knowledge from preceding 
measurements (e.g. a plausible lm thickness range) was 
provided as input of the ML model to achieve robust tting 
for a large number of consecutive scans. Figure 137b
shows the result of the closed-loop deposition control 
for several target thicknesses between 80 Å and 640 Å. 
As expected for well-functioning closed-loop control, 
the target thicknesses closely matched the reached 
thicknesses, except for one outlier. Overall, the chosen 
target thicknesses could be reached within ±2 Å average 
accuracy. The control so ware BLISS was used to store 
the ML analysis results together with the original raw data 
in one NeXus-compliant hdf5 le and to interact with the 
facility-provided electronic notebook. 

This use case convincingly demonstrates the main 
advantages of using ML in this context. The ML approach 
gives reliable t results both for simple two- to three-layer 
models as well as for complex multilayer models in the 
millisecond regime. The combined speed and reliability of 
the ML approach could not be achieved by simple tting 
scripts or with reliance on human supervision. More widely, 
ML-based online data analysis has enormous potential to 
make publicly available datasets FAIR through enriching 
the raw archived data with scienti cally relevant, real-
time data analysis results (data + metadata).

Fig. 137: a) X-ray re ectivity measurement results and 
corresponding ts performed on-the- y. b) The target 

thicknesses are plotted on the x-axis, while the truly reached lm 
thicknesses at which the deposition was terminated are given 
on the y-axis. In this representation, data on the diagonal line 

illustrates the well-functioning closed-loop experiment.


