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Monolayers of hard rods on planar substrates. II. Growth
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Growth of hard-rod monolayers via deposition is studied in a lattice model using rods with discrete

orientations and in a continuum model with hard spherocylinders. The lattice model is treated with

kinetic Monte Carlo simulations and dynamic density functional theory while the continuum model

is studied by dynamic Monte Carlo simulations equivalent to diffusive dynamics. The evolution of

nematic order (excess of upright particles, “standing-up” transition) is an entropic effect and is mainly

governed by the equilibrium solution, rendering a continuous transition [Paper I, M. Oettel et al.,

J. Chem. Phys. 145, 074902 (2016)]. Strong non-equilibrium effects (e.g., a noticeable dependence

on the ratio of rates for translational and rotational moves) are found for attractive substrate potentials

favoring lying rods. Results from the lattice and the continuum models agree qualitatively if the relevant

characteristic times for diffusion, relaxation of nematic order, and deposition are matched properly.

Applicability of these monolayer results to multilayer growth is discussed for a continuum-model

realization in three dimensions where spherocylinders are deposited continuously onto a substrate via

diffusion. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4976308]

I. INTRODUCTION

The dynamic adsorption process of particles at surfaces

or interfaces is interesting in the context of various fields in

physics and chemistry, e.g., (i) growth of thin metallic films

(isotropic particles), (ii) formation of Langmuir monolay-

ers,1 (iii) self-assembly of organic monolayers from solution

or by vapor phase deposition (anisotropic particles, mostly

rod-like),2,3 and (iv) growth of thin films of organic semicon-

ductors by vapor phase deposition (anisotropic particles).4,5

These examples have a strong motivation from applications

in common (smooth coatings, functionalized surfaces, effi-

cient organic solar cells), but also allow exploring the ques-

tions of structure formation away from equilibrium on a more

fundamental level.

Theoretical research in field (i), growth of thin films

with isotropic particles, has focused on a kinetic descrip-

tion in terms of an evolution of the time-dependent cov-

erage and cluster size (island) distribution, entailing simple

rules for particles adsorbing to or desorbing from islands, or

the merging and breakup of islands.6 A key tool to inves-

tigate and corroborate particular theoretical views has been

the method of kinetic Monte Carlo (KMC) simulations which

treats the time-evolution of a system through a stochastic

sequence of individual, atomic events. It is rejection-free, i.e.,

one keeps track only of allowed events, which guarantees

an efficient simulation of fairly large systems. As a result of

numerous theoretical and simulation studies, a fairly detailed

description of growth scenarios, island size distribution, and

island shape has become available, mainly in terms of scaling

relations.7,8

In the case of anisotropic particles, it seems to be par-

ticularly important and worthwhile to study the interplay

between the equilibrium phase diagram/equation of state and

the dynamics of film formation. Already in 3D bulk rod-like

particles exhibit numerous phases (liquid, nematic, smectic of

various kinds, and crystalline)—a variety which may further

increase when they are near a substrate. It is expected that

the structure of a film grown not too far from equilibrium also

reflects the equilibrium phase diagram. The classical model for

molecular monolayers on an unstructured substrate is Lang-

muir layers [(ii) above], i.e., amphiphilic molecules on a liquid

water surface. The typical finding is that of multiple structural

phases characterized inter alia by different tilt angles.1 On

solid surfaces, self-assembled monolayers (SAMs, (iii) above)

are the prototypical system.2,3 The substrate may be amor-

phous such as for the popular silanes on (oxidized) silicon

or crystalline such as for thiols on gold. The crystallinity of

the substrate obviously introduces additional constraints and

a potential having a periodic corrugation. The main structural

phases which have been found are a “lying-down” (λ) phase

and a “standing-up” (σ) phase, depending on the level of cov-

erage. Importantly, the existence of these phases translates

directly into growth behavior that is qualitatively different.9

Specifically, (depending on growth conditions) the λ phase

appearing first with the σ phase subsequently indicates a

change in the kinetics of growth and gives rise to (at least)

two regimes.

We note that the case of Langmuir layers (i.e., no under-

lying lattice) changes the situation, in that continuous lateral

spacing would be possible, in principle, in contrast to, e.g.,

SAMs of thiols on gold. This is one reason for differences

in the phase diagram, but both have in common that multiple

phases with a different tilt structure are possible.

We also note that there are other important systems

with angular degrees of freedom, namely, those related to
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organic molecular beam deposition (OMBD) of pentacene,

diindenoperylene, or other rod-like molecules employed in

organic electronics ((iv) above).10–15

In this context, we suggest to analyze simplified models

from the realm of soft matter science via a theoretical and

computational route which we believe to have potential for

addressing the interplay of equilibrium phases and structure

formation. Anisotropic particles are modeled by rods hav-

ing simple, classical interactions on a discrete, cubic lattice.

These may encompass steric exclusion (hard rods), mutual

attractions, and interactions with a substrate. The equilibrium

properties of such models (bulk or thin films) can be addressed

by classical density functional theory (DFT) and Monte Carlo

simulations, and serve as a reference for growth studies. Apart

from the lattice system, rods are additionally modeled in con-

tinuous space. In a first instance, we limit ourselves to steric

exclusions and attractions with a substrate; we treat the for-

mation of a monolayer of these rods on the substrate. This

modeling approach implies drastic coarse-graining of both the

particle–particle interactions as well as the orientations, which

are restricted to solely three, namely, one perpendicular and

two parallel orientations with respect to a substrate. Neverthe-

less, restricted-orientation models of hard rods already show a

rich phase diagram,16 which compares qualitatively well with

that of unrestricted-orientation models.17

In a previous paper,18 we have investigated the equi-

librium properties of lattice rods by classical density func-

tionals from fundamental measure theory (FMT) and simula-

tion. For the case of monolayers, a continuous λ–σ-transition

(“standing-up transition”) has been found, which also per-

sists in the case of finite substrate potentials. The agree-

ment between FMT and simulation was found to be very

good. We compared these findings to simulations of hard

spherocylinders with continuous positional and orientational

degrees of freedom and corresponding density functional the-

ory (DFT) in the low-density limit. In this case, the continuous

λ–σ-transition is found as well, but the scaling with a rod

aspect ratio is different from the lattice. Nevertheless, there is

good qualitative agreement between the lattice and continuum

regarding the degree of order in the monolayer as a function

of density.

Dynamics can now be introduced by the assumption that

the growth of monolayers proceeds by a constant flux of parti-

cles onto the substrate. Owing to the hard-core constraint, only

rods that find an empty space on the substrate are adsorbed.

Such a setup mimics the adsorption of rods from a reservoir

(bulk solution or gas phase) at a higher chemical potential or

from a reservoir under the influence of a gravitational poten-

tial (providing constant flux). For treating such a monolayer

growth scenario, we formulate a dynamic DFT model on the

basis of FMT and employ KMC simulations. KMC growth-

type simulations with anisotropic particles are much more

complex than those with isotropic particles and, therefore, have

found limited attention in the literature. As in our previous

work, we also employ Monte Carlo (MC) simulations of hard

spherocylinders with continuous degrees of freedom; growth

in this model is set side by side with that in the lattice model

after matching the kinetic parameters.

Previous theoretical work on the deposition of anisotropic

molecules can be found in Refs. 19–24. In the Clancy group,

the specific examples of monolayer growth with pentacene, 1P,

and 2P molecules on different substrates were modeled with

hard lattice dimers and trimers19,20 possessing sticky contact

interactions. These were motivated by quantum chemical cal-

culations. Emphasis was put on exploring different growth

patterns upon variation of temperature and substrate type,

yet the relation to equilibrium phases was not investigated.

Kleppman et al.21–23 investigate a mixed lattice–continuum

model for 6P on patterned substrates, exploring the feasibil-

ity to reproduce experimental findings with certain simplified

interactions. Toward the fine-end of the resolution scale is an

all-atom study of pentacene growth on C60.24 Keeping the

atomistic details comes at the price of a limited particle num-

ber (on the order of 100). Evidence for a rather sharp λ–σ

transition has been found.

The structure of the paper is as follows: In Sec. II, we

recapitulate the lattice version of FMT for hard-rod mixtures

and derive the dynamic DFT (DDFT) equations. Sec. III intro-

duces KMC simulations for anisotropic particles, where more

specific details on the implementation used here are described

in Appendix A. Sec. IV describes the simulations in the contin-

uum model with hard spherocylinders. Results from the lattice

and the continuum models for monolayer growth are presented

in Sec. V, and Sec. VI gives a summary with discussion on pos-

sible experimental relevance as well as an outlook for future

research.

II. DENSITY FUNCTIONAL THEORY

A. FMT for lattice models

A general FMT functional for hard rod mixtures on

lattices with arbitrary dimensions has been derived by

Lafuente and Cuesta.25,26 In Ref. 18, we provide the basic

definitions and examples for the functionals and their equi-

librium properties for mono-component rods in two and three

dimensions and in the monolayer case. In the present work,

we only need the free energy functional for the homogeneous

case for the monolayer. Rods with dimensions 1 × 1 × L

(in lattice units) are confined to a substrate plane (square

lattice) with their lower left corner (see Fig. 1(a)). Thus, the

FIG. 1. Illustration of the lattice model for hard rod

monolayers, as seen in 3D (a) and projected on the x–y-

plane (b). Blue rods are oriented in the x-direction, yellow

rods in the y-direction, and magenta rods in the z-direction.
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monolayer becomes a 2D ternary mixture of 1 × L rectan-

gles with two possible orientations in the substrate plane and

1×1 squares representing the upright rods (Fig. 1(b)).The bulk

number densities per unit square on the lattice are denoted

by ρ1, ρ2 (1 × L rods with orientation in the x- and y-

direction, respectively), and ρ3 (1× 1 rods). The total density is

ρ = ρ1 + ρ2 + ρ3. The free energy density is given as a sum

of an ideal gas part, excess part, and external part

f = f id
+ f ex

+ f ext with (1)

βf id
=

3
∑

i=1

ρi ln ρi − ρ, (2)

βf ex
= Φ

0d(L(ρ1 + ρ2) + ρ3)

−Φ0d ((L − 1)ρ1) − Φ0d ((L − 1)ρ2) , (3)

βf ext
=

3
∑

i=1

ρiV
ext
i . (4)

Here, β = (kBT ) is the inverse temperature which will be set

to 1 from now on, and

Φ
0d(η) = η + (1 − η) ln(1 − η) (5)

is the excess free energy of a zero-dimensional cavity (which

can hold no or only one particle) depending on its average

occupation η ∈ [0, 1]. The substrate potential is specified by

the three constants V ext
i

which can be different from each other,

in general.

To characterize the behavior of the system, we introduce

the order parameters

Q =
ρ3 −

ρ1+ρ2

2

ρ1 + ρ2 + ρ3

,

S =
ρ1 − ρ2

ρ1 + ρ2

.

(6)

Q, 0 signifies an excess (Q > 0) or depletion (Q < 0) of parti-

cles in the z-direction (nematic state) while S , 0 signals order

in the x–y-plane orthogonal to the nematic director (biaxial

state). Finite substrate potentials (with V ext
1
= V ext

2
, V ext

3
)

may introduce a nematic order Qid for the very low-density

ideal gas state. In Ref. 18, we have found that δQ = Q−Qid ∝

ρ for low ρ, i.e., there is always continuous nematic order-

ing with increasing density and finite slope. For a vanishing

substrate potential, δQ ∝ ρL2 for very long rods, and there

is a reentrant transition to a biaxial state. These findings for

V ext
i
= 0 are similar to those in Ref. 27, which treats a

hard-rod model in restricted orientations but continuous trans-

lational degrees of freedom within FMT. The effects of shape

biaxiality have been investigated in Ref. 28, and rod-disk mix-

tures accordingly in Ref. 29. For corresponding results with

continuum models, see Refs. 18 and 30.

B. Dynamic DFT on a lattice

1. Setup

The goal of our dynamic lattice DFT is to provide an equa-

tion for the time evolution of the observables ρ1, ρ2, and ρ3

(or, equivalently, ρ, Q, and S) in a system driven out of equi-

librium by particle deposition at constant rates. We limit our

description to this tractable set of observables, i.e., a given con-

figuration of the system specified by these three observables

stands for a much larger set of different microstates of the

non-equilibrium system. Thus we cannot expect to reproduce

trajectories of the system exactly. However, it is conceiv-

able to gradually improve the description by refining the set

of observables, thereby allowing for better discrimination of

non-equilibrium configurations.31

Within the framework provided by the observables

ρ1, ρ2, and ρ3, the following formally exact dynamic equations

are readily obtained:

∂ρi

∂t
= αins

i pins
i +

∑

j,i

αj→i ρjpj→i −
∑

j,i

αi→j ρipi→j , (7)

where i = 1, 2, 3. The constants αins
i

correspond to the depo-

sition rates of the individual orientation into an empty sys-

tem. The parameters αi→j characterize the particle mobili-

ties, i.e., the probability for a single particle of orientation i

in an otherwise empty system to change its orientation and

become a particle of orientation j is given by αi→jdt. The

complexity of the dynamics is contained in the probabilities

pins
i

and pi→j, which denote the probability that an attempted

particle deposition or orientational transition, respectively, is

successful in a non-dilute system evolving along a certain

non-equilibrium trajectory. These probabilities depend on the

history of the system and generally cannot be expressed as

functions of ρi.

Expressions for the probabilities pins
i

and pi→j can

be obtained by employing equilibrium-like approximations,

applicable for a situation where the deposition rates αins
i

are

very small compared to particle mobilities αi→j. Using the

excess chemical potential µex
i

of orientation i,

µex
i =

∂f ex

∂ρi

(8)

from Eq. (3), we use the thermodynamic definition of an

insertion probability,

pins
i = e−µ

ex
i =


(1−η)L

(1−(L−1)ρi)
L−1 for i = 1, 2

1 − η for i = 3
, (9)

where η = L(ρ1 + ρ2) + ρ3 denotes the packing fraction of

the system, equivalent to the surface fraction of the substrate

covered by a monolayer.

For the calculation of pi→j, we need to specify exactly how

the orientation of a rod is changed under the given dynamics.

To this end, we first consider a model where a change in ori-

entation from i to j is realized in two steps. First, a rod with

orientation i is removed from the system, and second, a rod

with orientation j is inserted into the system at a random lat-

tice site. We refer to these somewhat unrealistic dynamics as

UNCO, denoting that removal and insertion of a rod are spa-

tially uncorrelated. The quasi-equilibrium limit of pi→j under

the UNCO dynamics is readily obtained as pi→j = pins
j

. It can

easily be checked that with these probabilities Eq. (7) yields an

equilibrium state with ρi ∝ e−µ
ex
i for t → ∞, provided that no

particles are deposited, i.e., αins
i
= 0. These are precisely the

equilibrium particle densities following a minimization of the

free energy f = f id
+ f ex using Eqs. (2) and (3), with respect

to ρi.
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In order to compare the UNCO dynamic equations with

our KMC simulations, we make use of the fact that the equi-

librium phase diagram obtained from Eqs. (2) and (3) does

not feature biaxiality for L ≤ 12.18 We, therefore, make the

assumption that ρ1 = ρ2 also holds for the non-equilibrium

setting of the rod-lengths studied in the simulations (with

L = 5 and 9 investigated below). We consider two dif-

ferent modes of particle deposition: (i) perpendicular

deposition and (ii) isotropic deposition. The correspond-

ing deposition rates are (i) αins
1
= αins

2
= 0, αins

3
= αins, and

(ii) αins
1
= αins

2
= αins

3
=

1
3
αins. Time is measured relative to par-

ticle mobility, which we assume to be isotropic with αi→j = 1,

where i , j. Results of the UNCO model are obtained by

solving the set of differential equations numerically for an

initially empty system. Fig. 2 shows the UNCO trajectories of

the system for different deposition rates αins in the (η, Q) plane

resulting from perpendicular and isotropic depositions. Since

the behavior for different rod-lengths L ≤ 12 is found to be

qualitatively the same in the model, we limit ourselves at this

point to the case L = 5. Results for rod-lengths L = 9 are shown

in Sec. V, where we compare the dynamic DFT results to

simulations.

It is interesting to note that in the long-time limit t → ∞

the UNCO dynamics do not necessarily generate a configu-

ration in which all the rods stand up, i.e., for sufficiently fast

deposition we find Q < 1 while η → 1. This is reflected in the

UNCO dynamic equations being stationary for η = 1, irre-

spective of the value of Q, thereby allowing for a fully covered

surface with a certain fraction of rods still in the λ orienta-

tion (i.e., lying down). While somewhat counter-intuitive, this

behavior is rooted in the non-locality of the UNCO dynamics.

Once a λ rod is chosen for a change in orientation, these par-

ticular dynamics attempt to insert the rod after reorientation

at a random site of the lattice. For sufficiently large η, this

insertion is almost always impossible, even for a rod in the σ

orientation (i.e., standing up). As a result, the rod chosen to

perform the move remains at its initial site in the λ orientation.

Consequently, the system can remain locked in a fully packed

configuration, preventing it from switching out all the rods in

the system to those with a perpendicular orientation (to the

surface).

More realistic local dynamics are provided by the CORR

model, which performs changes in orientation locally and

takes correlations at the given site into account. It is based on

the simple observation that if a transition from a λ to σ orien-

tation is done locally, the move is always accepted since a rod

lain down on the substrate automatically guarantees room for

it to stand up at the same location. Hence, in the CORR model,

we employ p1→3 = p2→3 = 1. In order to recover the correct

equilibrium behavior in the stationary state without particle

deposition, we must have p3→i = e−µ
ex
i
+µex

3 , where i = 1, 2.

The remaining transition probabilities are the same as in the

UNCO model. Assuming no biaxiality (S = 0), results are

obtained by solving the set of differential equations numer-

ically for various depositions rates, considering both perpen-

dicular and isotropic depositions. In Fig. 2, we show results

of the CORR model for rods of length L = 5. In particular,

the theory predicts Q = 1 in the limit η = 1, meaning that in

the long-time limit with full surface coverage all the rods are

in the σ orientation. It can easily be shown from the dynamic

equations that, in contrast to the UNCO model, stationarity

in the CORR model requires η = 1 and ρ1 = ρ2 = 0. This

implies ρ3 = 1 and, therefore, Q = 1.

Figure 2 includes data from KMC simulations (Sec. III)

with matching dynamic parameters (Sec. III A below). We

note that for the error bars, here and everywhere else, KMC

data are first averaged into bins; thereafter the binned data are

averaged over six independent runs. Exceptions are for

α < 10−3, where data are collected from a single run; they are

otherwise noted. The CORR model appears to give an excellent

description of the dynamics of rods of lengths L = 5, particu-

larly in the case of perpendicular deposition. Sec. V compares

the dynamic DFT results with our KMC simulations further

for rod-length L = 9.

FIG. 2. (a) Trajectories of the deposition of a monolayer of rods of length L = 5 represented in the (η, Q) plane, where η denotes the covered surface fraction and

Q denotes the degree of nematic order in the monolayer. The system is initially empty (η = 0) and rods are deposited with different rates αins measured relative

to their rotational mobility. Rods are perpendicular to the substrate upon deposition. The blue curve corresponds to thermodynamic equilibrium. Results were

obtained using the UNCO (black) and CORR (red) dynamic lattice DFT (see text). KMC simulations matched to the dynamics of αins = 1 (fastest deposition)

were performed (green circles, for a description see below). Their error bars are smaller than the symbols. (b) Same analysis, but for deposition with random

orientations i = 1...3 inserted with equal rates αins
i

(isotropic deposition). Error bars for KMC simulations (green) are displayed.
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2. Finite substrate potentials

We consider the case where the substrate interacts via

an attractive potential of strength ǫ per segment touching the

substrate

V ext
i =

{

−ǫ (i = 3)

−Lǫ (i = 1, 2)
. (10)

Here, the rotational mobilities αi→j have to be partially mod-

ified. While the mobilities in the substrate plane remain

unchanged (i.e., unity in the present normalization), the

attractive interaction suppresses a transition from a λ to

σ orientation, and within the present dynamics, we have

αi→3 = e−ǫ (L−1)/2 for i = 1, 2. On the other hand, a transition

from a σ to λ orientation is promoted, leading to modified

mobilities α3→i = eǫ (L−1)/2 for i = 1, 2. In both the UNCO and

the CORR models, these modified mobilities lead to stationary

points for αins = 0, which are identical to the equilibrium prop-

erties obtained by minimization of the free energy functional

with the appropriate external potential in Eq. (10). Note that

we will study the scenario of an attractive substrate only in the

case of perpendicular deposition, which means we may leave

the insertion rate unmodified.

3. Quasi-equilibrium growth

When the flux rate is infinitely slow compared to all other

kinetic parameters in the monolayer, every moment of growth

is fully described by thermodynamic equilibrium. The change

in density of species j through deposition within time step dt

is proportional to the flux rate as

dρ
dep

j
= αins

j e
−µex

j dt. (11)

The deposited particles become redistributed instantaneously

(dρ
dep

j
→ dρj) with conservation of the total number of parti-

cles,

dρdep
=

∑

j

dρ
dep

j
=

∑

j

dρj = dρ, (12)

such that the total chemical potential µ = µj, likewise the incre-

ments dµ= dµj, is constant and equal among all species. Here,

µj = ln ρj + µ
ex
j

. We define rij =
∂µi

∂ρj
, and thus,

dµ = dµi =

3
∑

j=1

rijdρj (i = 1 . . . 3). (13)

In our system, ρ1 = ρ2. Solving for the two independent density

increments, we obtain

dρi = Aidρ (i = 1, 3), (14)

where A1 =
r13−r33

2r13+r31+r32−r11−r12−2r33
, A3 = 1☞ 2A1, and dρ is

defined through Eqs. (11) and (12). The total time increment

in dρ can be re-scaled, dt⋆= αinsdt, such that the coupled sys-

tem of equations in (14) does not depend on the total flux

αins anymore. The solutions ρi(t
⋆) can then be found through

numerical integration.

III. KINETIC MONTE CARLO SIMULATIONS

KMC is suited for simulating dynamical systems that can

be characterized by a finite number of elementary processes

occurring with different rates (denoted “events”). An under-

lying assumption is that each event j having a rate kj occurs

via a Poisson-process with mean waiting time 1/kj. As events

occur independently, the total random process of waiting for

any among all events is also Poissonian with a mean waiting

time 1/
∑

j kj.
42–46 Specifically, this probability distribution of

waiting times has the form Pwait(t) = e−
∑

j kj/t .

In each KMC iteration step, a single, currently allowed

event having rate ki is chosen randomly among all such events

with a relative probability
ki

ktot({C})
, ktot({C}) =

∑

j kj, where

{kj}j
��{C} ∋ kj is the full list of allowed events at this configura-

tion {C}. (Note that this list could include forbidden events,45

but at the computational cost of rejecting them.) KMC is

therefore effectively “rejection-free,” at least in the variant of

the algorithm used here, first proposed in Ref. 42. The wait-

ing time since the last event, i.e., the increment of time, is

chosen according to the distribution Pwait(∆t, {C}), employing

∆t = −1/ktot({C}) ln u, with u ∈ (0, 1] chosen randomly and

uniformly. The chosen event is executed. The list of allowed

events must be updated according to the new configuration by

adding newly allowed events and removing forbidden ones.

This tracking of allowed and forbidden events makes

KMC non-trivial, illustrated here for the case of hard-core

particles: An event might become forbidden, for example, if

a nearest neighbor rod is blocking the hopping or tumbling

move of a rod. Also, a new event must be added to the list

once the nearest neighbor(s) in the way moves away from

the rod. We implement a detection system that tracks proper

neighborhood patterns. Such a system becomes increasingly

complex, the higher the degree of anisotropy of the particles.

Our algorithmic approach (see Appendix A) can be extended

to general hard-core lattice systems. As one sees, the rejection-

free bonus of KMC comes at the cost of algorithmic complexity

of eliminating forbidden moves.

The kinetics of our lattice model (square lattice in the

x̂–ŷ-plane [substrate] with unit length u, size M × M = 2562,

and periodic boundary conditions) is characterized by the

rates of the allowed single-particle processes. The first rate

is k0
hop

for an explicit hopping process of a rod of orientation i

(i = 1. . . 3) on the substrate, translating it by one lattice site

in any of the 4 directions. This process may occur regard-

less of the orientation, and the rates are identical. The second

rate ktum is ascribed to a tumbling process, which changes

the orientation of a rod. Here, the rod is assumed to rotate

around one of its ends. Specifically, the tumbling process is

split into two types—the first, a tumble “upward” into the

ẑ-direction from a lying orientation (i = 1, 2) to a standing

one (i = 3). This rate is denoted as ku
tum. The second is a tumble

“downward” into the x̂–ŷ-plane from a standing orientation to

a lying one. This is denoted as kd
tum. The third rate k1↔2 is the

in-plane rotation between orientations 1 and 2 about the rod

midpoints. This constrains our investigations to rod-lengths

L of odd number. All rates are in units of inverse time. The

final rate (orientation-specific) is kins
i

for a random influx of

rods of orientation i, in units of inverse time multiplied by

u2. This influx of rods (corresponding to the insertion rate

in the DDFT model) is implemented as a random appear-

ance of rods of orientation i at constant rate kins
i

per lattice
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site, whereby the move is rejected if overlap occurs, i.e., the

rod “disappears.” There is hence a monotonic, but non-linear

relationship between number density ρ and simulated time (see

Fig. 6(a) below).

A. Matching to DDFT

In the following, we only consider the case where

ku
tum = kd

tum ≡ ktum (no substrate potential). The rates for

the tumbling and deposition processes are related to the rates

defined in the DDFT Equation (7) as follows:

αi→j ↔ 2ktum all combinations with i , j, (15)

αins
i ↔ kins

i , (16)

where the relation means equality up to the same constant

factor. The first relation holds since we have fixed αi→j = 1

in DDFT globally. The factor two arises from the fact that

the rods can rotate into each orientation in one of the two

rotational directions. Since one of the rates can be used to

define the time scale, a growth process only depends on ratios

of rates. As introduced before, we consider vertical depo-

sition (αins
i
= αinsδi,3) or isotropic deposition (αins

i
=

1
3
αins)

with the total deposition rate αins; the same deposition rate

holds for the KMC model via kins =
∑

i kins
i

. We also assume

isotropic transition rates αi→j (see Sec. II B), analogous to

ku
tum = kd

tum = ktum = k1↔2 in KMC. DDFT predicts that there

is no dependence of our observables on k0
hop

. This is indeed

what we also observe in KMC (see Fig. 3). Our matching

condition is hence set by the single independent variable α

characterizing the growth dynamics

α :=
kins

2ktum

=

∑

i kins
i

2ktum

≡

∑

i α
ins
i

αi→j

=

αins

1
. (17)

This variable is different from the single variable, commonly

denoted F/D, characterizing growth with isotropic particles,

where F is the incoming flux rate and D is the diffusion

constant in the substrate plane. For our KMC model, the

translational diffusion constant D≡Dlatt
2D

in the dilute limit

(monolayer density close to zero) is determined by both k0
hop

and ktum,

Dlatt
2D/u

2
=

*..
,

1

2
ku

tum+
1

1+ 2
kd

tum

ku
tum

(

kd
tum−

1

2
ku

tum

)+//
-

(L − 1)2

4
+ k0

hop

(18)

0

FIG. 3. Dependency of growth dynamics of the monolayer on the kinetic

parameter k0
hop

: There is virtually none. The total number density is ρ, and Q

denotes the degree of nematic order in the monolayer. Data with error bars are

from KMC simulations with L = 9, perpendicular deposition, and two cases of

the growth parameterα = 0.5, 0.05 (Eq. (17)) and different values of k0
hop

/ktum.

The solid curves are calculated by DDFT (CORR). The data set {k0
hop

/ktum =

1000,α = 0.05} is averaged over two independent runs instead of six.

≡ khop + k0
hop, (19)

see Appendix B. One sees that hopping and tumbling (through

an effective hopping rate k0
hop

) contribute to diffusion indepen-

dently.

B. Results: DDFT vs. KMC

1. The case ku
tum

= kd
tum

(no substrate potential)

We calculate the dynamics via KMC and DDFT for L = 9.

Since the total density ρ grows during the deposition process,

Q(ρ) is an indirect way to visualize the time dependence of

the nematic order Q(t), but in contrast to Q(t), Q(ρ) can be

directly compared with the equilibrium curve. In Fig. 4, we

compare KMC and DDFT (CORR) with varying degrees of

growth; we employ both perpendicular and isotropic deposi-

tions. There is very gratifying agreement between the theory

and simulation, although with a small deviation only in the

isotropic-deposition case. This is highlighted when we plot

the order parameter against the surface packing fraction η

in Fig. 5. The deviation of DDFT from KMC with isotropic

deposition appears to amplify with long RODS; compare these

results to L = 5 in Fig. 2(b) with α = 3. This is likely a

FIG. 4. Trajectories of the deposition of

a monolayer of rods of length L = 9

represented in the (ρ, Q) plane, for a

varying growth parameter α. Plotted are

calculations with KMC (symbols with

error bars) and DDFT (CORR) (black

lines) with (a) perpendicular deposition

and (b) isotropic deposition. The red

curves (EQUI) correspond to solutions

from equilibrium DFT.
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FIG. 5. Trajectories of the deposition of a monolayer of rods of length

L = 9 represented in the (η, Q) plane for α = 0.5, 0.05. Curves are DDFT

(CORR), symbols are KMC data; green (PERP) indicates perpendicular depo-

sition, pink/violet (ISO) indicates isotropic deposition. The red curve (EQUI)

corresponds to solutions from equilibrium DFT.

combination of effects: the density functional is less precise

for longer rods,18 and the packing fraction η(= Lρ12 + ρ3) is

particularly sensitive to resulting errors in the number density

ρ12 = ρ1+ ρ2; so, the error in η scales with L. Apart from this,

isotropic deposition with its random insertion of rod species

i = 1, 2 appears to emphasize errors in the calculation of ρ12.

Fig. 6(a) shows satisfactory correspondence between DDFT

and KMC for the total number density ρ for both deposition

types, while Fig. 6(b) highlights the errors when observing ρ12

alone.

The explicit evolution of observables in time such as in

Fig. 6 can be compared directly between DDFT and KMC if

the kinetic rates, rather than their ratios, are matched explicitly.

We set ktum =
1
2
αi→j =

1
2

as well as kins = αins and observe the

evolution of number densities during growth. If we re-scale

the time variable with the flux rate t⋆ = αinst, the evolution of

number densities can be compared for different growth rates.

Naturally, for decreasing flux rate these curves converge to

a single curve, the quasi-equilibrium growth curve obtained

by the solution of Eq. (14). From Fig. 6(a), one sees that the

time evolution of the total density is very well-described by

the quasi-equilibrium curve for all deposition rates. Since the

quasi-equilibrium curve is essentially determined by the equa-

tion of state (through µ(ρi)), a measurement of ρ(t) can be

regarded as an effective measurement of the equation of state.

This is different for ρ12(t) (Fig. 6(b)) where the results for the

fastest deposition rate deviate considerably both in shape and

magnitude from the quasi-equilibrium curve.

One may compare these results to a very simple general-

ization of the Langmuir growth model. The latter is formulated

for the adsorption of isotropic (L=1) particles, corresponding

to our lattice model with perpendicular rods only. The insertion

probability is proportional to the free substrate area, i.e., the

time development of the density is governed by ρ̇ = αins(1− ρ)

with the solution ρ(t) = 1− exp(−αinst) = 1− exp(−t⋆). It

describes our solution for perpendicular deposition reason-

ably well. In the case of isotropic deposition, the assumptions

of the insertion probability being proportional to the free sub-

strate area and of having no tumble processes lead to ρ̇ = αins

(1 − η) and Q̇ = 0. The solution ρ(t) = γ(1− exp(−t⋆/γ))

(γ = 3/(2L + 1)) differs grossly from our solution.

2. The case ku
tum

< kd
tum

: Attractive substrates

From the perspective of kinetics, the potential induces an

additional energy barrier for the rods to stand up, where the

activated dynamics are described by an Arrhenius law.52 The

corresponding rates employed follow the DDFT modeling (see

Sec. II)

ku
tum = ktume−(L−1)ǫ/2, (20)

kd
tum = ktume(L−1)ǫ/2. (21)

Figure 7 shows the resulting dynamics from both KMC

and DDFT calculations for the nematic order parameter

Q(ρ).

FIG. 6. Evolution of number densities during growth in a monolayer of rods of length L = 9 with growth parameters α = 0.5, 0.05; perpendicular- (PERP, green)

as well as isotropic-deposition growth (ISO, cyan/blue) is calculated via KMC (symbols with error bars) and DDFT (CORR) (black lines). (a) Total number

density ρ and (b) number densities of lying rods ρ12 = ρ1 + ρ2 versus time re-scaled with the flux rate t⋆ = αinst. The red curves (EQUI)—shown for both

deposition types—correspond to infinitely slow, quasi-equilibrium growth calculated from DFT.
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FIG. 7. Growth of a monolayer of rods

with lengths L = 9 on attractive sub-

strates under perpendicular deposition:

Dependency of growth dynamics on

translational diffusion. Indicated in the

legend are values of the kinetic param-

eter k0
hop

/(2ktum) (symbols with error

bars). Shown additionally are DDFT

calculations (black curves) as well as

results from equilibrium-DFT (black

dashed curves). The substrate strength

ǫ = 2.0. Growth with comparably small

rate α = 0.05 is represented (a) in the

(ρ, Q) and (b) in the (ρ,η) plane, where

it is seen that full packing is reached

at relatively low densities. The limiting

case of all rods lying on the substrate

(ρ ≡ ρ12) is drawn in orange. (c) Same

as (a), but for faster growth α = 0.5.

Data points represent binned averages

within single runs. (d) Illustration of a

fully packed configuration (η = 1) at

intermediate density. The color code is

as in Fig. 1.

A key feature distinguishes the dynamics on attractive

substrates from the one on neutral substrates: the kinetic

parameter k0
hop

contributing to translational diffusion comes

into play (compare Fig. 3). It appears that for large k0
hop

/ktum

the Q(ρ)-curves converge to a single one which is approxi-

mately described by the DDFT result, Figs. 7(a) and 7(c). Now

that tumbling moves are very rare events soon after a rod is

introduced, this parameter—representing a reduced hopping

rate—alone controls local equilibration of the translational

degrees of freedom. This likely means strong configuration

jamming occurs when rod translations cannot contribute to

relaxation. Fig. 7(b) shows that the surface becomes fully

packed atη = 1 at rather low densities ρ, illustrated in Fig. 7(d).

In an unusual change in character, the dynamics at full packing

fraction are dominated by the rare events of rods standing up

with (perpendicular) deposition taking place at the vacancies

generated.

IV. CONTINUOUS DEGREES OF FREEDOM:
HARD SPHEROCYLINDERS

Similarly to our investigation of equilibrium monolayers

in Ref. 18, we will explore the possibility to match our lat-

tice results in the dynamic case to corresponding results for a

continuum model with hard spherocylinders. One has to bear in

mind, though, that the lattice model does not result from a sys-

tematic coarse-graining procedure applied to the continuum

model. Rather, we attempt to match basic dynamic parameters

(i.e., characteristic microscopic times) and compare results.

We have performed MC simulations off-lattice (with

small displacement and rotation moves) of hard sphero-

cylinders with length Lsph, diameter Dsph, and aspect ratio

κ := Lsph/Dsph in the continuous 2D plane in a way analo-

gous to those of Ref. 18. The minuscule MC moves induce

pseudo-dynamics that on larger time scales (where time is

measured by the number of MC sweeps) can be described

by effective translational and rotational diffusion. As shown

in Refs. 49–51, it is possible to define a unique MC time

scale being independent of the size of the MC change of

any degree of freedom and to relate such an MC time scale

to that of Brownian dynamics. As a matter of fact, in our

case, we only need to relate the MC time scale to that of

KMC for the lattice model. Apart from the Brownian trans-

lational and rotational motion, the continuum model also

includes an external flux for introducing (depositing) rods

into the system. To compare the growth between the lattice

and continuum models, it is necessary to map the character-

istic times of their microscopic kinetics. In the continuum

model, these are {1/(FD2
sph

), τdiff, τrot} (with F denoting the

influx or deposition rate per area with a unit area chosen

by D2
sph

, τdiff the translational self-diffusion time, and τrot

a rotational relaxation time)—these must be matched to the

three times {1/(kinsu2), 1/ktum, 1/k0
hop
} in the lattice model

(u = 1). We discuss this matching procedure generally, at

first, before applying it to two very different growth mod-

els in Sections IV B and IV C. As in our previous work, the

order parameter used in the continuum model is the largest

eigenvalue, Qnem, of the nematic order tensor.

A. Basics of matching to lattice model

To avoid additional complications due to correlations, we

will perform the matching for the three time scales in the case

of a dilute monolayer, i.e., for the initial stage of film growth.

Furthermore, we address only the case of neutral substrates.

1. Translational diffusion

In the continuum model, the translational self-diffusion

time over a distance Dsph is given by

τdiff =

D2
sph

Dcont
2D

. (22)
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The equivalent time in the lattice model would be the trans-

lational self-diffusion time over a distance u (lattice unit).

Matching these gives

D2
sph

Dcont
2D

=

u2

Dlatt
2D

. (23)

For a dilute system of rods in the lattice model, the transla-

tional diffusion constant is given by Dlatt
2D

/u2 = k0
hop

+ khop(kd
tum,

ku
tum) (see Eqs. (18) and (19) and Appendix B), where k0

hop

accounts for the explicit translational move and khop is due

to the tumbling move. For vanishing substrate potentials

(kd
tum = ku

tum ≡ ktum), the contribution from tumbling becomes

khop
���kd

tum

= ku
tum =

2

3

(L − 1)2

4
ktum. (24)

This value is fixed for a given tumbling rate and rod-length L.

In the continuum model (with given translational and

rotational moves), we measure Dcont
2D

directly in a separate sim-

ulation where rods behave like an ideal gas and the diffusion

constant is extracted from the slope of the mean-square dis-

placement of a rod versus simulated time. In this way, the

diffusion rate from the translational move in the lattice model

can be fixed to

k0
hop = Dcont

2D /D
2
sph − khop(ktum) . (25)

The tumbling rate ktum entering the equation above is fixed by

a concrete rotational relaxation time (see below).

However, in Sec. III A, we showed that the dynamics do

not depend on k0
hop

in the lattice model as long as there is

no external potential. As our investigation is restricted to this

condition, the particular value of k0
hop

does not play any role

for evolution of the total density and the orientational order,

and can be set to zero. For a closer investigation of the case of

finite substrate potential, one would need to take the condition

in Eq. (25) into account.

2. Rotational relaxation

In the continuum model, the rotational relaxation time τrot

can be defined by the relaxation time for nematic order, i.e.,

the characteristic decay time in the autocorrelation function

〈Qnem(t)Qnem(0)〉 in a dilute system. We obtain this decay time

by recording the autocorrelation function in a system of sphe-

rocylinders with no interactions and fitting it to an exponential

(∝ exp(−t/τrot)).

In the lattice model, the corresponding autocorrelation

function 〈Q(t)Q(0)〉 can be obtained analytically in the ideal-

gas limit, and the characteristic decay time is τlatt
rot = (6ktum)−1.

For given rotational moves in the continuum simulation, the

tumbling rate ktum is determined by matching these times.

Instead of using the characteristic decay time of ori-

entational (nematic) order, one might think of matching

the rates for a transition from a standing-up to a lying-

down rod. In the lattice model, this would be affected by

4 possible discrete moves, each with rate ktum. Thus, this

transition time is 1/(4ktum). In the continuum model, this

transition time would be the first passage time for a rotation

from standing to lying, which we also determined in a simu-

lation with ideal spherocylinders. However, this first passage

time is about 100 times larger than the decay time for nematic

order. Through the comparison of lattice and continuum results

(see below), we find that matching the decay time for nematic

order is sensible and matching the first passage time leads to

grossly different results. The reason is that the autocorrelation

function measures a continuous change of order. A certain

change ∆Q comes about by a fraction of rods reorienting in

the lattice model, whereas for a corresponding change ∆Qnem

in the continuum model, the spherocylinders need (on average)

to reorient the same amount. The corresponding time needed

is much smaller than the first passage time for a rotation from

standing to lying.

3. Deposition time and growth parameter

The characteristic time for deposition on the unit area for

a dilute system does not depend on the diffusional properties

and is simply given by 1/kins (lattice, u = 1) and 1/(FD2
sph

)

(continuum). Hence the growth parameter α must be matched

between lattice and continuum in the following way:

α =
kins

2ktum

= kins(3τlatt
rot ) = (FD2

sph)(3τcont
rot ). (26)

B. Model I: Deposition as random “appearance”
of rods

In this model, the midpoints of the hard rods are con-

strained to a continuous 2D plane of size l2
Box
= 200× 200D2

sph

with periodic boundary conditions (see Fig. 8). They rotate

freely and diffuse along the substrate via small MC moves

as to approximate Brownian dynamics. Rotational moves are

performed as described in Ref. 48. New rods are introduced to

the monolayer (they “appear”) with a global rate rins = F l2
Box

.

As in the lattice model, hard-core repulsion between the rods

means an attempt to inserting a rod at some position and with a

certain orientation is rejected if it overlaps with another. Time

progresses also for these unsuccessful deposition attempts,

causing the number density of rods to depend on time in

a monotonic, but non-linear way, see Fig. 10 below. As in

the lattice model, we employ two deposition conditions: one

where rods are deposited in a vertical orientation and another

FIG. 8. Illustration of continuum model I for a monolayer of hard sphero-

cylinders.
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in random, isotropically distributed orientations. Results are

presented in Sec. V A, whereby the parameters are indicated

below.

Our investigations are performed for rods of length

L = 9 (lattice) and aspect ratio κ = 8 (continuum) since the

spherocylinders have total length Lsph + Dsph. We note that

results for κ = 9 are very similar and will not be shown.

C. Model II: Deposition as sedimentation caused
by a constant force (“gravity”)

In this model, the hard rods move in 3D space via small

rotations about their midpoints and translation moves in 3D.

They fall onto a square-well attractive substrate (well depth

= 50kBT, width = 0.05Dsph) in a box with periodic bound-

ary conditions in the substrate plane. The attractive substrate

is not of the sort described in Sec. II B 2—rather, it acts as

an “adherent” where the rod experiences the well (with the

orientation-independent depth) only if the surface-to-surface

distance to the substrate is less than the width of the square-

well potential. Thus it serves as a strong barrier against rods

desorbing. Rods diffuse and rotate by the same MC moves as in

model I, even though, now, midpoints are unconstrained above

the substrate and diffusion moves are generated in 3D. Rods

are generated with random positions and orientations at the top

of the box (l2
Box

× lz = 50× 50× 100D3
sph

) at a fixed rate; hence

we only investigate isotropic deposition. They “fall” to the

bottom of the substrate under an artificial gravitational force

g. In order to disentangle gravity and the adhesive substrate

potential, we switch-off the gravity when the ẑ-coordinate of

the rod midpoint is less than half a rod-length (Lsph + Dsph)/2,

where ẑ is normal to the substrate. This model qualifies for the

3D multilayer growth, emulating thin film growth with, say,

OMBD more closely; however, we investigate only exemplary

cases as the 3D nature of this model deviates significantly from

the lattice system in focus.

In order to match the characteristic deposition time, we

need to determine the deposition rate per unit area (flux) F.

Our MC pseudo-dynamics result in a net drift of the rods

towards the substrate with velocity v = Γg, where the mobil-

ity Γ is determined by the translational diffusion constant in

3D Dcont
3D

through Γ = Dcont
3D
/kBT . The flux is then given by

F = ρ3Dv = Dcont
3D
/kBT ρ3Dg, where ρ3D is the 3D (bulk) num-

ber density of rods well-above the substrate. In the simulations,

we fix ρ3D = 10−4/D3
sph

and measure Dcont
3D

through the slope

in the mean-squared displacement vs. time. Matching the flux

between lattice and continuum is achieved by appropriately

choosing g.

For matching the self-diffusion time, we measure the dif-

fusion rate Dcont
2D

(see Sec. IV A 1), but this time for an ideal gas

of rods adhering to the substrate. Note that although the MC

moves for translations continue in 3D, the substrate poten-

tial almost always causes a Metropolis rejection for a move

escaping the potential barrier. As this barrier is very thin

(0.05Dsph), the restricted 3D diffusion is effectively 2D dif-

fusion. Similarly, we match the rotational relaxation time by

measuring the autocorrelation function for nematic order as

described in Sec. IV A 2. We note that the orientational diffu-

sion of rods in model II arises from a combination of midpoint

rotation moves and vertical moves since the rods must remain

close to the adhering substrate. This leads to an autocorre-

lation of Qnem nondescribable by a single exponential. For

determining τrot, we fitted the initial decay.

Our monolayer orientational observables are calculated

strictly for rods adhering to the substrate, with the number

density in the monolayer denoted by ρsubs. We additionally

analyze the total density across the ẑ-direction, in particular,

as a “second layer” may form.

V. GROWTH RESULTS

A. Model I

In model I, where new rods “appear” within the mono-

layer, one might expect the evolution of the order parameters

Q (lattice) and Qnem (continuum) with the total number density

ρ to look similar to Fig. 4. Indeed this is what we find in Fig. 9,

FIG. 9. Growth of a monolayer of hard spherocylinders (κ = 8) using model I (appearing rods) represented in the (ρ, Qnem) plane: comparison to lattice model

(black) with matched kinetics. Monolayers are grown with perpendicular deposition (a) and isotropic deposition (b). Red data points correspond to thermodynamic

equilibrium in the lattice (steep curve) and continuum (shallow curve) models.
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where we varied the growth parameters α over two decades.

All continuum data are running averages over a single run,

and equilibrium data points for the lattice model are obtained

via grand canonical Monte Carlo simulations.18 Most strik-

ing in the figure is the similar form of the curves for growth

under perpendicular deposition with respect to the equilib-

rium curve (Fig. 9(a)). In both models, the downward dip of

the order parameter and subsequent approach to the equilib-

rium curve happens at about the same value of Q (Qnem),

but it is shifted to higher densities in the continuum. For

dilute systems, the shift in densities can be attributed to

the different two-body excluded volumes in the lattice and

the continuum models. If the lattice densities are multiplied

by the ratio of the volumes, which is approximately given

by18 L2
+L − 2

9·0.45L
(≈ 2.5 for L = 9), the agreement between the

lattice and continuum models is quite good for continuum

densities ρD2
sph
< 0.2, yet differences remain for higher

densities.

Fig. 10 displays the dynamics of the total number den-

sity ρ versus the re-scaled time t⋆ = kinst (lattice) and t⋆

= (FD2
sph

)t (continuum), respectively. The quasi-equilibrium

growth curve for the lattice model (see Sec. II B 3) is also shown

in Fig. 10(b). For the continuum model with isotropic deposi-

tion (Fig. 10(a)), there is little variation of ρ(t⋆) with α (as in

the lattice model), and the results seem to be well-described by

a quasi-equilibrium growth curve, which would be attained for

α → 0. For perpendicular deposition, the results for the high-

est growth rate (α ≈ 0.16) are different from those for the two

lower growth rates, but they converge at later times t⋆ & 20.

We point out a strong difference when comparing these growth

curves for the lattice and continuum: In the continuum model,

the density increases only very slowly beyond the dilute limit

(t⋆ & 0.1). Since the quasi-equilibrium growth curve is deter-

mined only by the equation of state (through µ(ρ(θ)) where

θ is the polar angle), this indicates the equations of state in

the lattice and continuum models, respectively, are very dif-

ferent already for moderate densities. The continuum equation

of state for the full density range is not known. In Ref. 18, we

only analyzed a virial expansion up to second order. Already

at this order, we found a different scaling of the second virial

coefficient: it is ∝ LsphDsph for the continuum model and ∝ L2

for the lattice model.

B. Model II

Figure 11(a) displays the growth of the monolayer in the

(ρsubsD
2
sph

, Qnem) plane, where Qnem is calculated for all rods

adhering to the substrate (i.e., those contributing to ρsubs).

The equilibrium curve shown corresponds to that of rods

with fixed midpoints, i.e., the system in model I. For the two

smaller growth rates (α = 10−6 and 10☞5), the nematic order

in the monolayer is close to the equilibrium curve, similar

to model I. On the other hand, faster growth (cyan squares,

α = 10−4) shows different behavior: the nematic order is

noticeably lower, an effect also seen in the isotropic-deposition

growth of model I (Fig. 9(b)). Furthermore, at higher densities

the monolayer does not converge to a fully ordered state. Qnem

drops, instead. This is an effect of particles accumulating on

top of the first layer.

Figure 11(b) shows ρ(t⋆) for model II. The initial, lin-

ear behavior characteristic of deposition on a dilute layer

is similar to model I; however, for ρsubsD
2
sph
& 0.2 signif-

icant deviations appear. There, growth in model I becomes

very slow (see Fig. 10(a), ISO curves). In model II, new

rods increasingly “hover” above the monolayer, breaking

the single-layer assumption and leading to enhanced adsorp-

tion in the first layer. Convergence to a quasi-equilibrium

growth curve for low α can be seen only up to ρsubsD
2
sph

≈ 0.3.

In the monolayer growth regime, two major differences

between model I and II can be observed. (i) The curve ρ(t⋆)

in model I quickly bends over and stays near ρD2
sph
= 0.15 for

a long time. This is not so in model II. Apparently almost all

the rods that are in the vicinity of the substrate reach it within

a short time-period. This happens since rods diffuse around in

the vicinity of the substrate and finally reach it after multiple

“attempts.” The fluxes employed are small so that diffusion

FIG. 10. Evolution with re-scaled time t⋆ of number densities ρ during monolayer growth in continuum model I and lattice. Perpendicular deposition (PERP)

is shown in purple, while isotropic deposition (ISO) is shown in orange. Same symbol shapes/line-style refer to the same growth parameter α. (a) Continuum,

κ = 8. (b) Lattice, L = 9. The green dashed curves (EQUI) correspond to quasi-equilibrium growth calculated with DFT. Deposition of ideal-gas rods (dotted

black lines) describes the initial slope in ρ(t⋆).
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FIG. 11. (a) Nematic order vs. density

in the first grown layer of hard sphe-

rocylinders (aspect ratio κ = 8) using

model II (rod sedimentation) for differ-

ent values of α. Red data points corre-

spond to thermodynamic equilibrium in

the continuum model with fixed mid-

points. (b) Evolution of the density in

the first grown layer ρsubs with re-scaled

time t⋆. The deposition curve for ideal

gas particles (dotted lines) means that

(on average) all drifting particles reach-

ing the substrate will stick to it. (c)

Height above substrate versus 3D rod

density for a growth parameterα = 10−4

and t⋆ = 2.3, corresponding to the last

point in (a). The increased density for

z/Dsph > 4.5 signals the formation of a

disordered second layer.

FIG. 12. Snapshots of growth in model

II for aspect ratio κ = 8 and growth

parameter α = 10−5.

is a reasonably fast process. (For the lowest α, the first rods

reach the substrate not by the sedimentation drift but by bulk

3D diffusion.) (ii) The growth parameters used to study model

II are well in the quasi-equilibrium growth regime for model I.

Nevertheless, we see these values of α generating clearly non-

equilibrium behavior that also differ significantly in character

to model I. We conjecture that an effective α for model II

is actually higher than reported owing to the aforementioned

bulk 3D diffusion.

In the regime past the monolayer, we comment on a few

preliminary findings: As aforementioned, in the vicinity of

reduced densities of 0.6 in the monolayer, the nematic order

drops due to a population of rods building up above the mono-

layer, jamming up space for rods in the first layer. An exem-

plary distribution of rods versus vertical height for this regime

is shown in Fig. 11(c). Rods in the monolayer contribute to the

measured density ρ(z) only up to z/Dsph = 4.5; thus, increased

density for larger z belongs to a second layer. This second

layer is very disordered as corresponding snapshots suggest

(see Fig. 12).

VI. SUMMARY AND OUTLOOK

We have conducted a study of monolayer growth in

hard rod models using dynamic lattice DFT, lattice KMC

simulations, and continuum simulations with diffusive dynam-

ics. The hard rod models employed do not aim to describe a

specific system but rather emphasize the steric effects which

can occur when looking at, e.g., Langmuir monolayers or the

initial, sub-monolayer stage of film growth with anisotropic

molecules. The nematic order Q in the monolayer is due to

entropy alone, and its growth with density or time is clearly

dominated by the equilibrium properties of the monolayer.

For a wide range of growth rates, the time evolution of total

density ρ in the monolayer is in fact described by a quasi-

equilibrium curve in which the monolayer equation of state

enters. Dynamic effects (deviations from quasi-equilibrium)

are more pronounced when monitoring Q(ρ) or, more so, Q(η),

where η is the packing fraction in the monolayer.

For the lattice model, we have formulated a dynamic DFT

which describes the results of corresponding KMC simulations
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very well. In the version used here, growth depends only on

the microscopic rate of rods standing up or lying down, i.e., the

rotational mobility. This independence of translational diffu-

sion through hopping on the substrate has been confirmed by

KMC in the case of neutral substrates, whereas for attractive

substrates, growth in KMC depends on hopping diffusion—

the DFT results describe the case of large hopping rates. This

particular influence of the substrate is interesting and should

be checked in further studies, both experimentally and theo-

retically (for models beyond hard rods). It also points to nec-

essary improvements in the dynamic DFT treatment. Instead

of considering only the rates of change between the aver-

aged densities for lying or standing rods, the explicit space-

and time-dependence of pair correlation functions in the layer

should be calculated, and the averaged densities reconstructed

from those. It is likely that the time-dependent correlation

functions are affected by hopping diffusion. The inclusion of

spatial dependence will also allow for a connection with both

the standard dynamic DFT equation for isotropic particles in

the continuum32,33 and extensions derived for anisotropic par-

ticles.34–38 It would be desirable for the continuum modeling

to use FMT functionals for hard spherocylinders having been

developed over the past years.39,40

The comparison of the off-lattice, continuum models with

hard spherocylinders shows that qualitative agreement in the

time-evolution of nematic order is obtained. This is true once

the relevant characteristic times for diffusion, relaxation of

nematic order, and deposition are matched. The evolution

of the total monolayer density is mainly determined by the

equation of state, which differs between lattice and continuum.

For this simple system, we have reached a good method-

ological control with the lattice and continuum treatments,

allowing for the study of equilibrium, dynamic effects, and

their interplay. In our opinion, this should be continued in the

study of more complicated and detailed models, and also for

studying multilayer growth. With anisotropic rods, the rules

for allowed processes in a KMC lattice formulation are not

clear from the beginning; hence continuum simulations are

needed to “gauge” the dynamic lattice models. Studies in this

direction are in progress.
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APPENDIX A: KMC IMPLEMENTATION

We implemented a rejection-free KMC algorithm devel-

oped in the spirit of Bortz et al.42 for highly anisotropic

hard particles. We use a detection system for tracking all

allowed/forbidden events in current configurations that is (1)

on-the-fly during simulation and (2) localized around the

change in configuration during each MC step. We restrict

our discussion in the following to purely hard-core interac-

tions between particles, although these considerations may be

extended to finite-ranged interaction potentials. Viewing the

kinetics from the point-of-view of a particle, a neighbor may

exclude one of the particles’ elementary moves (translations

or rotations) if the neighbor gets close enough. A similar state-

ment holds from the point-of-view of the neighbor. According

to the KMC method, any of their excluded moves are removed

from the current list of possible events. The opposite may also

be true—moves may suddenly become possible if the particles

have moved apart. These moves must be added to the current

list of events. The act of forbidding or allowing the moves

of a neighbor is not commutative for anisotropic particles, in

general. Fig. 13 shows this situation for rotations of hard rods

about their endpoints. This non-mutual relationship between

neighbors makes neighbor-lists unsuited for implementation.

We outline a characteristically different method using what we

denote as “inverted list indices” below.

We first take advantage of one feature unique to lattice

systems: sites can be tabulated. We implement a field over the

lattice that represents the state of occupancy at each site. Given

this setup, each particle need only know the local neighbor-

hood pattern of occupancy around it. To clarify, a move by a

particle is only possible if a minimal finite volume around it

is unblocked by other particles. In addition, if simulations are

not restricted to a plane, for example, a move may also require

particular sites around it to be occupied (such as in multi-

layer growth with rods, where a particle may only rotate and

translate with occupied sites beneath it as to exclude form-

ing overhangs). Hence, each move by a particle needs this

particular pattern around the particle in order to be consid-

ered allowed; else, the move is forbidden. The abstract object

representing the tracker for this neighborhood pattern is the

inverted list index—it acts as a local field over the lattice,

moving with the particle and switching with the particle’s ori-

entation, accordingly (see Fig. 14). Any change occurring on

the lattice is evaluated by the affected inverted list indices, and

if one changes its state (allowed to forbidden, or vice versa) the

inverted list index removes its “index” from the list of allowed

events. We note that we adapt the nomenclature of inverted lists

FIG. 13. Illustration (out-of-plane) of two neighboring rods and the space

they need for rotations about their ends. The left rod is blocked by the right

rod, while the right rod is free to rotate: their blockage is not mutual.
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FIG. 14. The inverted list indices in our lattice model for the moves of a

standing rod with L = 5: represented are their fields over discrete space, each

colored differently. The moves correspond to rotations downwards about the

rod-end on the substrate (gray), as well as translational hops to nearby planar

sites. Spurious pattern-checking above and beneath the plane is done since the

implementation was originally developed for multilayer growth.

from computer science; for the case of (1× 1) particles, Ref. 47

illuminates the situation: A list of events {ek} is stored, and a

particular event ek is executed at spatial index (i, j) on the lattice

(position of a particle). An inverted list {e(i ,j)} should allow

one to quickly access index in memory of the event occurring

at position (i, j). This is useful when doing updates locally

around the place of each event. Our inverted list indices differ

in that they exhibit spatial extent and are rather more sophis-

ticated; they perform their updates themselves, i.e., they may

add or remove their own indices from the events list. They

are merely called to re-evaluate their state if an occupancy has

changed within their local field.

APPENDIX B: DERIVATION OF Dlatt
2D

IN THE DILUTE
LIMIT

We begin by writing down the master equation describ-

ing the change of a population density ρi(t) (i = 1· · · 3) over

time within the dynamics of an ideal lattice gas of tumbling

rods (pure hopping does not change the number of rods in any

orientation),

dρi(t)

dt
=

∑

j,i

−ρi(t)T (i → j) + ρj(t)T ( j → i), (B1)

where T (i → j) is the transition rate for a rod to go from

orientation i to j. We are interested in steady-state ensemble

properties—hence, we enforce that for all i the left hand side

of Eq. (B1) is zero and the populations reach a stationary state

{ρ1, ρ2, ρ3}. This leaves us with the following condition for

the transition rates (which can be interpreted as global balance

in a Markov chain Monte Carlo algorithm):

∑

j,i

ρiT (i → j) =
∑

j,i

ρjT ( j → i). (B2)

The transition rates are simply T (1→ 2)=T (2→ 1)= 2k1↔ 2,

T (1→ 3)=T (2→ 3)= 2ku
tum, and T (3→ 2)=T (3→ 1)= 2kd

tum,

where the factor 2 arises because the rods can rotate into each

orientation with positive and negative rotation directions. One

can easily show that the only linearly independent equation

that remains is the following:

(ρ1 + ρ2)ku
tum = 2ρ3kd

tum. (B3)

Note that any dependency on the in-plane rotations with rate

k1↔2 drops out of the equations. Defining ρ12 := ρ1 + ρ2, we

obtain ρ12 = ρ3
2kd

tum

ku
tum

. Since the total density is preserved,

ρ = ρ12 + ρ3 = const., we find for the stationary state

ρ3

ρ
=

1

1 + 2
kd

tum

ku
tum

, (B4)

ρ12

ρ
= 1 −

1

1 + 2
kd

tum

ku
tum

. (B5)

These equations will be useful in steps that follow.

Returning to expressing the diffusion constant on an infi-

nite 2D lattice, we first consider the motion of the rods of

length Lu only along one axis. The first contribution to diffu-

sion comes from a tumbling move in an average time 1/ktum

(where ktum is ku
tum or kd

tum) which displaces the center-of-mass

of the rods by (L ☞ 1)/2 in units of u. According to Fick’s law

for 1D diffusion with diffusion constant D, 〈|∆x |2〉 = 2Dt,

we obtain the 1D contribution to translational diffusion from

tumbling as D = 1
8
ktum(L − 1)2 u2.

We next consider specifically the tumbles contributed by

upright rods (i = 3): The mean waiting time for the propagation

to this mean-squared-displacement is 1/kd
tum, as before. There-

fore, this part of the 1D diffusion is
ρ3

ρ
(L−1)2

8
kd

tum u2, where

we included the probability ρ3/ρ for a rod being upright. ρ12

population (on average) contributes to the diffusion in 1D (that

half aligned along the corresponding 1D axis).

The second contribution to translational diffusion along a

line is simply the rate 1
2
k0

hop
since, as before, the mean waiting

time for the propagation of 1u2 is 1/k0
hop

(and the same rate is

assigned for all populations ρi).

In summary, the 1D-translational diffusion coefficient on

a lattice in units of space u is

Dlatt
1D/u

2
=

1

2

((

ρ3kd
tum +

1

2
ρ12ku

tum

)

(L − 1)2

4ρ
+ k0

hop

)

, (B6)

where in 1D, the stationary densities are 1
2
ρ12 = ρ1 = ρ3.

Inserting (B4) and (B5) for the density ratios and observing

that diffusion in 2D is simply twice the diffusion in 1D,53 we

obtain

Dlatt
1D/u

2
=

*..
,

1

1 + 2
kd

tum

ku
tum

kd
tum +

1

2

*..
,
1 −

1

1 + 2
kd

tum

ku
tum

+//
-

ku
tum

+//
-

×
(L − 1)2

4
+ k0

hop, (B7)

which can be rearranged straightforwardly to the form of

Eq. (18).

1. Verification

We verify the form of Eq. (18) via KMC simulations of

a ideal gas (no interaction energy) of hard rods on an infi-

nite 2D lattice doing hopping and tumbling moves with input
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parameters L = 9 and various relations of rates k0
hop

, kd
tum,

ku
tum. The translational diffusion is measured by fitting a line

through the ensemble-averaged mean-squared-displacement

over simulated time, given 2 ·104 rods and some 223 MC steps

(depending on the relative rates) after a certain equilibration

time during which each ρi reaches a stationary average value.

The fit is weighted with the error bars of the data, the error-of-

the-mean (ensemble average). The fitted slope corresponds to

4 times the translational diffusion constant, in accordance with

Fick’s law in 2D. A series of such fitted slopes are measured

over a few independent trials and the agreement with Eq. (18)

is excellent. The averaged fitted diffusion rate matches that

of Eq. (18) to within error bars. The 1D case was verified, as

well, where the fitted slope corresponds to twice the diffusion

constant.
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