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Limits of size scalability of diffusion and growth: Atoms versus molecules versus colloids
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Understanding fundamental growth processes is key to the control of nonequilibrium structure formation for a
wide range of materials on all length scales, from atomic to molecular and even colloidal systems. While atomic
systems are relatively well studied, molecular and colloidal growth are currently moving more into the focus.
This poses the question to what extent growth laws are size scalable between different material systems. We
study this question by analyzing the potential energy landscape and performing kinetic Monte Carlo simulations
for three representative systems. While submonolayer (island) growth is found to be essentially scalable, we find
marked differences when moving into the third (vertical) dimension.
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Interfacial growth dynamics continues to be a focus
of intense research, relating concepts of nonequilibrium
(statistical) physics [1] to application-related areas such as
the fabrication of epitaxial thin films [2], the formation of
photonic crystals [3], the design of (hybrid) semiconductor
devices [4,5], and the (directed) self-assembly of nano- and
microscale particles into (crystalline) novel materials [6–10].
From the fundamental side, a major challenge is to understand
and eventually control growth depending on a system’s
microscopic properties such as the type of interactions and
the resulting surface kinetics [11]. In this regard, the best
studied case, both experimentally (see, e.g., [12,13]) and
theoretically [1,2,14–16], is that of atomic homoepitaxy.
Inspired also by the strong current interest in organic and
hybrid thin films, recent studies of growth focus more on
molecular systems [4,17–22] and colloids [10,23] character-
ized by much larger length (nanometer to micrometer) and
time scales. These developments raise intriguing questions:
Can the detailed results established for atomic homoepitaxy
be translated to molecular and colloidal systems? Is there a
“size scalability” of growth phenomena? One might expect
that for appropriate adjustment of the length, time, and
possibly temperature scales, the resulting morphologies are
similar. However, while recent work on colloidal epitaxy
suggests that certain observables are indeed scalable (mostly
for submonolayer growth) [23], the question on the overall
scalability remains open.

The limitations of size scaling become apparent already in
a simplified picture. The generally different pair interaction
potentials V (r) and, in particular, the different attraction
ranges � of V (r) (relative to the particle size σ ) for atoms
versus molecules versus colloids give rise to different diffusion
barriers (see further below). Let us assume for simplicity that
these enter the in-plane (i.e., intralayer) diffusion constant D‖
via an effective energy barrier EB in an Arrhenius-like manner,
i.e., ∝exp(−EB/kBT ), where kB is Boltzmann’s constant
and T is the temperature. If this applies, then the in-plane
diffusion rates of systems characterized by different length
and time scales (atoms, molecules, and colloids) can be made
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similar by simply adjusting the temperature. Considering the
initial stages of growth, in the simplest picture (nucleation via
stable dimers) the critical island density is expected to follow
approximately nc ∝ (D‖/F )−1/3 where F is the adsorption
rate (flux), produced in whatever form. This was indeed
reported for the submonolayer regime over a remarkably large
dynamic range [23]. It is tempting to assume that if we want a
colloidal system to behave similar to an atomic system, then the
temperature T colloid of the colloidal system can be chosen such
that the island density is similar to the atomic system (observed
at some T atom �= T colloid). Importantly, this would fix T colloid.
Going now beyond the initial stage (multilayer regime), the
vertical distribution of material will be determined also by the
effective out-of-plane (i.e., interlayer) diffusion constant D⊥
related to the Ehrlich-Schwoebel barrier Es [24,25]. Since
generally Es is of course different from EB, this implies
that for different Es, the resulting D⊥ is different, and so is
the out-of-plane morphology. As a consequence, while some
quantities such as nc may follow remarkably well the concept
of size scalability we expect the overall morphology (in-plane
and out-of-plane distribution of material) to be generally not
the same, i.e., not scalable.

In this Rapid Communication, we address the fundamental
issue of the limitations of size scalability of growth morpholo-
gies, using analytical calculations and kinetic Monte Carlo
(KMC) simulations. We first analyze in detail how different
V (r) (and, in particular, �) impact the different diffusion
processes, by considering three homoepitaxial systems: atoms
(with Ag as representative), the molecule C60, and colloids.
To isolate the impact of � we focus on spherical systems, i.e.,
without explicit orientational degrees of freedom [17,26]. We
then investigate the consequences of � on key observables
quantifying the growth behavior, including the island density,
the evolution of the individual layer coverages, and the shape
(compactness) of the islands. We demonstrate the effect of �

and the limits of size scalability.
Potential landscapes. Interactions between atoms typically

extend over roughly one atomic diameter [27], which we
consider long ranged. For colloids, the interactions can be
tailored relatively well. In order to identify the impact of �,
we here focus on colloids with short-ranged interactions with
a range of only a few percent of the particle diameter. This case
can be realized by depletion effects [28]. Finally, C60 has an
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FIG. 1. Part (a) depicts potential landscapes sampled along the
lines across a closed substrate layer, as well as across a step
edge, as illustrated in parts (b) and (c). Solid lines denote in-plane
sampling, while dashed lines denote sampling across a step edge.
The pair potentials used in part (a) are the Lennard-Jones potential
(atomic) [27], the Girifalco potential (C60) [29,30], and the Asakura-
Oosawa potential [28] (see inset) with attraction range � = 0.05σ

(colloidal). All pair potentials are scaled such that the well depth is
−1 and the intersection with 0 is at 1 (defining the diameter σ ). The
double arrow in part (a) illustrates the barrier Es that an atom has to
overcome to cross the step edge. The units of the x axis are in-plane
lattice constants.

(effective) interaction potential with a range in between those
of atoms and colloids [18,29,30].

To understand the effect of � we first consider the
energy landscape experienced by a tracer particle (Fig. 1).
Substantiating earlier considerations by Ganapathy et al. [23],
we here quantify these landscapes by using established
potentials V (r) for the three systems of choice. The resulting
landscapes are effective in the sense that V (r) already
involves integrations over internal degrees of freedom (of
the solvent in the case of colloids [28,31] or rotations in
the case of C60 [29]) and thus, entropic effects. This is in
contrast to approaches based on energy minimization with
all degrees of freedom (see, e.g., [19]). For the atomic
system [red lines in Fig. 1(a)] the resulting landscape displays
soft mounds between energetically most favorable binding
sites. The soft undulations reflect that the tracer always
“feels” at least three neighbors due to the relatively large �.
Further, the step-edge path is characterized by an energetic
barrier significantly larger than those encountered for in-plane
diffusion. The difference between the energy maximum at
x ≈ 2.5 and the corresponding in-plane diffusion barrier
(see black double arrow) constitutes the step-edge barrier
Es [24,25].

The potential landscape of colloids (blue lines) is strikingly
different. We note that this subject could easily be a longer
study by itself. Indeed, the “potential landscape” of colloids
typically has intrinsically entropic contributions due to the
presence of a (fluctuating) solvent which influences both
colloid-colloid and colloid-substrate interactions. These con-
tributions depend on the specific system considered. Here we
rather focus on our goal to identify the impact of �. To this end

we have chosen Vcolloid(r) such that the (depletion-induced)
� is only 5% of the diameter, corresponding to the system
considered in [23]. The resulting in-plane path displays a
“dip” at position x = 2.5; however, due to the small � this dip
is essentially delta-like. The step-edge path is characterized
(between 2 < x < 3) by a constant energy which matches the
corresponding in-plane value. Thus, the energetic step-edge
barrier entirely vanishes, and one is left with a “geometric”
step-edge barrier generated solely by the different lengths of
diffusion paths.

The C60 system is intermediate with respect to both the
sharpness of the landscape variations (see Fig. 1) and the
character of the step-edge barrier [18]. Thus, the colloidal
landscape represents the limiting case for ultrashort attraction.
This observation is in line with recent studies on the free
energy landscape related to colloidal cluster formation, which
is purely defined by geometry if � → 0 [32]. Using simple
geometric considerations we have determined (for hard-core
particles on a hexagonal lattice) the critical attraction range,
�c, beyond which the step-edge barrier becomes energetic:
The criterion is whether the diffusing particle “feels” all three
neighbors at all times (as is the case for atoms). From this we
find �c = √

3/2 − 1 ≈ 0.225. For � > �c, the free diffusion
barrier is lowered with respect to the step-edge barrier, yielding
an Es of energetic origin.

Towards the third dimension. These fundamental differ-
ences concerning step-edge diffusion are expected to strongly
influence the growth behavior. To explore these effects
quantitatively, we now consider hopping rates determining the
dynamics of the systems in the framework of a (lattice-based)
KMC approach [18,22,33,34]. For atomic and molecular
systems (consisting of roughly spherical molecules), hop-
ping between lattice sites i and j is commonly described
using an Arrhenius-like rate. Here we employ the Clarke-
Vvedensky bond-counting ansatz [35], which has been used
in a variety of recent atomic [33,36,37] and C60 growth
studies [18,22],

ratoms/molecules
i,j = ν0 exp

(
−Efree + niEn + si,jEs

kBT

)
, (1)

where ν0 is the attempt frequency, Efree denotes the barrier
for diffusion of a free particle, ni is the number of lateral
(nearest) neighbors, and En is the bond strength to each
neighbor. Finally, si,j = 1 if the diffusion path leads across
a step edge and 0 otherwise. Within this model, the in-
plane diffusion constant D‖ (during island nucleation) is
related to the free diffusion and binding contributions, i.e.,
D‖ ∝ exp(−EB/kBT ) with EB = Efree + niEn [36], while the
out-of-plane diffusion constant D⊥ is related to the total
barrier E⊥ = Efree + niEn + Es (after appropriate averaging).
Importantly, Eq. (1) has been shown to reproduce established
scaling laws for atoms such as the dependence of the critical
island size on the ratio D‖/F [36].

As discussed above, typical colloids with small � do not
experience an energetic step-edge barrier Es. Instead, Es is
determined by the ratio of path lengths for in-plane and
out-of-plane diffusion. Thus, it would appear counterintuitive
to model the impact of Es by a simple Arrhenius behavior,
as is done in Eq. (1). We thus propose a different model
(which, however, does not impact our general conclusions).
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According to experiments [23], the residence time of a
colloid at a site touching three particles scales linearly with
the diffusion path length. As the step-edge diffusion path
is d times longer than the in-plane path, the waiting time
associated with a step-edge diffusion process is also larger by
a factor d. Thus, the rate [which corresponds to an inverse
(average) time] is reduced by a factor d. Based on these
considerations, we make the following ansatz for the hopping
rate of colloids (with short-ranged interactions such as those
in Fig. 1):

rcolloids
i,j = ν0

1 + si,j (d − 1)
exp

(
−Efree + niEn

kBT

)
. (2)

For si,j = 0 (in-plane), rcolloids
i,j is identical to the corresponding

expression for atoms/molecules in Eq. (1), while for si,j = 1
(step-edge crossing), it reflects the reduction by a factor d.
The latter is a temperature-independent effect. Note that one
can formally rewrite the prefactor 1/d as exp(−G/kBT ) with
G = −kBT ln(1/d). Thus, when considering one temperature,
Eq. (2) is comparable with Eq. (1), but with a “Schwoebel
barrier” G of entropic nature (linear in kBT ) [31].

We now turn to the growth behavior. To this end we have
performed KMC simulations based on Eqs. (1) and (2) at one
flux rate (F ≈ 1 ML min−1).

Regarding the energy parameters, we set Efree = 0.54 eV
in accordance with our previous studies for C60 [18,22]. We
use this value for all three systems to obtain some degree of
comparability (this corresponds to scaling F suitably). Due to
the effective nature of the potential landscapes in Fig. 1(a), a
precise quantification of En, even though it obviously depends
on the material system. Following previous studies we set
EC60

n = 0.13 eV [18] and Eatom
n = 0.72 eV [22]. For typical

colloids, the pair interactions are tunable by changing solvent
parameters, thus, there is not one unique choice for Ecolloid

n .
Here we choose Ecolloid

n = 0.1 eV, yielding Ecolloid
n < EC60

n <

Eatom
n . This sequence reflects that the attraction range of

the colloidal interaction potential is the smallest among the
three systems considered. Regarding the step-edge diffusion,
earlier studies suggest that there is only little energetic dif-
ference in magnitude between the Ehrlich-Schwoebel barrier
of atoms and C60 [22]. Correspondingly, we set Eatom

s =
EC60

s = 0.11 eV. We have explicitly tested that the specific
choice of energy parameters does not affect our general
conclusions.

For the simulated colloidal systems the parameter d

[see Eq. (2)], which corresponds to the ratio of path lengths
of step-edge and in-plane diffusion, takes over the function of
a step-edge barrier. Here we use a coarse-grained (triangular)
lattice [corresponding to the fcc(111) lattice face of a bulk
C60 crystal], where interstitial sites are not considered. Each
site corresponds to a unit cell with area A = 1a × 0.866a

where a is the lattice constant. With this setup, we effectively
halve the number of potential valleys within each plane,
therefore each simulated diffusion step reflects two movements
between energetic minima. In the experiments of Ganapathy
et al. [23] the parameter d for the step-edge diffusion in
a colloidal system is given as d = 2.8. Due to our coarse
graining, we here choose d = 1.4 (as discussed in more detail

FIG. 2. Part (a) depicts the island density ρn(t) related to layer n

(in units of the area A = 0.866a2 of one unit cell with lattice constant
a) for atomic, C60, and colloidal growth, while part (b) depicts the
layer coverage �n(t). Time is measured relative to the time of the
formation of one monolayer (ML). The gray block depicts the region
in which �n(t) evolves identically for all three systems, while the
dashed line marks the time related to the snapshots (right). The length
bars indicate 100 lattice constants.

in Ref. [18]). In most of the simulations we use a surface of
1000×1000 lattice sites.

We characterize the surface growth in terms of three ob-
servables. The first (in-plane) observable is the island density
ρn(t) = N islands

n (t)/N sites, where N islands
n and N sites are the

number of islands in the nth layer and the number of simulated
lattice sites, respectively. Second, the out-of-plane growth
is studied via the layer coverage �n(t) = N

particles
n (t)/N sites,

where N
particles
n (t) denotes the number of particles in the nth

layer (i.e., number of occupied sites). Third, to quantify the
average size and morphology of islands, we calculate the
radius of gyration (averaged over all islands j ), Rgyr(t) =∑

j Rgyr,j (t)/N islands. The gyration radius of island j is defined

as Rgyr,j (t) =
√∑

i∈j (xi − x̄j )2/Ni∈j , where x = (x,y) and

Ni∈j is the number of particles i in island j . By definition,
Rgyr,j (t) gives the average distance of particles i in the island
j from the center of mass (x̄j ), so it is larger for a dendritic
island than for a compact island with the same number of
particles.

Numerical results for ρn(t) and �n(t) are depicted in
Figs. 2(a) and 2(b). The oscillations in ρn(t) reflect the
nucleation and subsequent merging of islands during the
growth of each monolayer, while the periodic increases in
�n(t) describe the filling of individual layers. For obtaining
the data in Fig. 2, we have scaled the temperatures such
that the coverage and island density during growth of the
first layer, i.e., in the range of time where in-plane diffusion
processes dominate, match as well as possible. Specifically,
T atom = 77 ◦C, T C60 = 40 ◦C, and T colloid = 28.5 ◦C. This
sequence of temperatures corresponds to the sequence of
the neighbor energies En (see above). Despite this optimized
temperature scaling we find small differences during the early
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FIG. 3. The normalized gyration radius Rgyr/R as a function of
time [38]. Each data point corresponds to the maximum of the data of
different layers n. The gray vertical line indicates the time related to
the inset, where Rgyr/R is plotted as a function of the attraction range
� (the gray dashed line is a guide to the eye). For the colloidal system,
� = 0.05. For C60 and the atomic system, � has been chosen as the
distance where the attractive part of V (r) has dropped to 10% of the
maximal attraction.

stages of growth, as visible, e.g., in the time dependence
of ρn(t) of atoms as compared to C60 and colloids [see
Fig. 2(a)]. These differences are essentially a consequence of
the fact that the binding energies [En in Eq. (1)] relative to
the barrier associated to free diffusion (Efree) are much
smaller in C60 (and in colloids) than in atoms, reflecting
that �C60 and �colloid < �atom [18]. These details of in-plane
hopping are indeed expected to strongly influence the in-plane
morphology.

Further important information on the in-plane island for-
mation is revealed by the radius of gyration Rgyr plotted in
Fig. 3. Specifically, we consider the ratio Rgyr(t)/R where
R is the average of island radii Rj =

√
Ni∈jA/π [38].

Thus, Rgyr/R is a measure of inverse compactness. As seen
from Fig. 3, the three systems indeed display significant
differences from the very onset of growth, i.e., already in
the submonolayer. The most pronounced time dependence
and the largest amplitudes of Rgyr/R versus t occur in the
atomic system. In fact, for small times we find a monotonous
dependency of the ratio Rgyr/R on the attraction range � (see
inset of Fig. 3), a trend which is preserved during the later
stages of multilayer growth. This implies that atoms (having
the largest �) tend to nucleate into much more fractal (less
compact) islands than C60 and colloids (for the temperature
scaling applied above). We can see this trend also in the
snapshots in Fig. 2.

Discussion. We now come back to the question of scala-
bility. As shown in Fig. 2, both the island density and layer
coverages appear to be essentially scalable during the growth

of the first ML. However, already at this stage the systems
deviate in their island morphology (see Fig. 3). As soon as the
second layer nucleates, all three systems deviate significantly
in all observables. This can easily be seen in the snapshots
taken after 2.6 ML in Fig. 2.

The attraction range � enters essentially all aspects of
growth by impacting the effective diffusion barrier in plane
and out of plane. While there is certainly a complex interplay
of various parameters, the following rather general trends can
be identified. Within each layer, islands merge the earlier the
larger � [see positions of the minima in ρn(t) in Fig. 2].
Further, � influences the degree of fractality at a given time:
For the smallest � (which we have realized by colloids), we
observe the most compact islands (see Fig. 3).

To conclude, our work provides strong evidence that key
aspects of growth, particularly the out-of-plane structure
formation following the first ML, do not simply scale with
the size of the particles, even after scaling of the temperature.
A major ingredient for the observed limitations of scaling
of, e.g., the time-dependent layer coverage �n(t), is that
the range � of typical attractive interactions relative to the
particle diameter markedly decreases when going from atoms
to C60 to colloids. As a consequence, the entire potential
landscape experienced by a tracer particle changes, and so do
the diffusion barriers. This concerns, in particular, the effective
step-edge (Ehrlich-Schwoebel) barrier. Moreover, for colloids
with very short-ranged (depletion) interactions the step-edge
barrier can even change its origin from energetic (such as in
atoms) to purely geometric.

Thus, “size scaling” by adjusting the temperature is
generally possible only to a limited extent for submonolayer
growth. The corresponding out-of-plane behavior deviates
substantially. This central conclusion is not dependent on the
fine details of the potentials but rather a generic consequence
of the different interaction ranges �. The case that, in
colloidal systems, V (r) can be perfectly tuned (by surface
functionalization, adjusting electrostatics, etc.) such that after
size scaling it matches that of atoms and the growth behavior
is similar, appears rather hypothetical (although in principle
possible). Moreover, due to the different nature of the step-edge
barriers between atoms and molecules, on the one hand,
and colloids, on the other hand, we speculate that also
the temperature dependence of the growth will generally
differ.

Therefore, while experiments for atomic systems and
established growth theories indicate the possible scenarios,
the resulting morphologies can strictly not be scaled in
size to quantitatively obtain those for larger particles. On a
more general level, the results relate to fundamental work
on the impact of � on the equilibrium phase behavior [39],
which changes ultimately if the interaction range is changed,
leading eventually to the absence of a liquid phase for certain
short-ranged systems. In this sense, the present findings are
the nonequilibrium growth analog to the impact of � on the
equilibrium phase diagram.
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