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Machine learning (ML) has received enormous attention in science and beyond.

Discussed here are the status, opportunities, challenges and limitations of ML as

applied to X-ray and neutron scattering techniques, with an emphasis on surface

scattering. Typical strategies are outlined, as well as possible pitfalls.

Applications to reflectometry and grazing-incidence scattering are critically

discussed. Comment is also given on the availability of training and test data for

ML applications, such as neural networks, and a large reflectivity data set is

provided as reference data for the community.

1. Introduction

Machine learning (ML) is receiving enormous attention in

essentially all areas of our lives, including in the physical

sciences (Erdmann et al., 2021). The application of ML stra-

tegies for the analysis of scattering data is particularly

attractive (Chen et al., 2021). Here we discuss the status,

opportunities, challenges and limitations of ML applied to

X-ray and neutron scattering techniques, with specific focus on

surface scattering (Feidenhans’l, 1989; Holý et al., 1999;

Birkholz, 2006; Als-Nielsen & McMorrow, 2011), which is

intended to include interface scattering as well, i.e. interfaces

between two condensed phases.

One motivation for applying ML in the context of scattering

data is simply the hope for faster and more efficient data

analysis compared with standard methods. The general theo-

retical framework for modelling and simulating scattering data

is well established. This allows for a simple generation of

training data, which is a huge advantage compared with other

fields where no direct data generation mechanism exists (e.g.

computer vision) or where the simulations are very compu-

tationally expensive. At the same time, although based

essentially on a simple Fourier transform, in addition to

optical effects, the conversion of scattering data back into

direct information is not straightforward. The acceleration of

conventional fitting strategies, which are generally time

consuming, with ML methods is also possible if sufficient

annotated experimental data are available.

Another motivation is derived from the need to handle

huge data volumes and data acquisition rates, which is an

almost universal trend in many areas of science. In the scat-

tering world this is due in particular to ever-improving sources

with higher flux and to greatly improved detector technology,

with area detectors of high resolution and high dynamic range.

Real-time experiments (Wang et al., 2021) and high-

throughput experiments (Ludwig, 2019; Bai et al., 2018)

constitute a particular challenge. In these and many other
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experiments the rate of data production

can be overwhelming and simply

impossible to handle for traditional

screening by humans, triggering a

demand for pre-screening and filtering.

A suitable ML algorithm to filter and

categorize or even analyse the data

before a human researcher inspects the

data can be extremely valuable.

There are, of course, many data

analysis strategies for different applica-

tions in physics. Here, we highlight

specific applications of ML techniques,

but without a detailed technical discus-

sion of the algorithms, for which we

refer the reader to the work of

Erdmann et al. (2021). Before discussing

ML strategies specifically applied to

surface scattering, we mention some other efforts that apply

ML to scattering methods.

For example, work on bulk crystallography started many

years ago and has showed impressive progress (Tatlier, 2011;

Oviedo et al., 2019; Lee et al., 2020; Bai et al., 2018). Other

standard scattering methods, such as small-angle scattering,

have also received considerable attention, especially for clas-

sification tasks (Song et al., 2020; Ikemoto et al., 2020; Franke

et al., 2018; Archibald et al., 2020; Chang et al., 2020). For non-

standard coherent scattering methods, such as X-ray photon

correlation spectroscopy (XPCS), ML-based analysis using

autoencoders has been employed (Konstantinova et al., 2021;

Timmermann et al., 2022). For a more general review of ML

methods for scattering we refer to a recent review, which also

discusses applications in the broader context of scattering

experiments, such as spectroscopy methods, theoretical

calculations, automated alignment procedures, beam optimi-

zation and data filtering (Chen et al., 2021).

The goal of the present paper is to discuss the perspectives

of ML applied to the analysis of scattering data in general and

surface scattering data in particular. We first explain the key

characteristics and challenges for scattering from surfaces. We

then discuss three main surface scattering methods [reflecto-

metry, grazing-incidence small-angle scattering (GISAS) and

grazing-incidence wide-angle scattering (GIWAS)], each in

their own subsection, with specific regard to ML-based data

analysis and their specific scattering geometries (Fig. 1). In

doing so, we implicitly cover both X-rays and neutrons, but we

also comment on the specifics of the two different probes

(Section 6). This is followed by a critical discussion of the main

challenges, as well as the possible role of a reference database

and perspectives for establishing it, for which we offer a

starting point (Pithan et al., 2022).

2. Strategies and challenges

ML can be applied to solving many different tasks in the

context of surface scattering, each with their own specific

challenges:

(i) Classification. The ML algorithm can sort the data of an

input data set into categories, such as particle shapes in GISAS

data, and the output would be a class for each data set.

(ii) Object detection. The ML procedure can find objects in

a data set, for example Bragg reflections in grazing-incidence

wide-angle X-ray scattering data, and output object coordi-

nates.

(iii) Parameter extraction. The ML algorithm replaces the

conventional fitting process and extracts numerical para-

meters directly from the data. For example, layer thickness

and roughness from reflectometry data could be the output of

such an approach (Fig. 2).

(iv) Data processing. For this approach scattering data are

typically processed to improve the conventional fitting

procedures. For example, the denoising of neutron reflectivity

data or XPCS data by an autoencoder has already been

demonstrated (Konstantinova et al., 2021; Timmermann et al.,

2022).

There are several challenges when trying to apply ML to the

analysis of scattering data. The most important one is arguably

the well known phase problem (Sivia et al., 1991), which can

lead to ambiguous solutions that require additional knowledge

for the data to be interpreted correctly.

Furthermore, experimental limitations can reduce the

information content in the data. Each setup has specific

properties and error sources that need to be taken into

account. Differences in the size, shape and divergence of the
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Figure 1
Schematics of typical surface scattering geometries. (a) Grazing-incidence small-/wide-angle
scattering (GISAS/GIWAS). Data are typically a 2D data set with out-of-plane (qz) and in-plane
(qxy) information. (b) Reflectometry recorded under the specular condition, i.e. the angle of
incidence is always equal to the detector angle. X-ray and neutron reflectometry are 1D data sets.

Figure 2
The neural network architecture for extracting thin-film parameters from
reflectivity data as demonstrated by Greco et al. (2022).



beam, for example, can lead to slightly different measurement

results. Also, different measurements might have a different

dynamic range in terms of intensity. This is of course affected

by the type of source, but also by optical elements in the beam

path, such as slits or monochromators, which may be different

between setups. Furthermore, the data may look slightly

different for different detectors. Similarly, different sample

environments may introduce specific noise or background into

the measurement. In addition, before any scattering

measurement, each sample typically has to be aligned. While

this is considered a routine task, the alignment is usually done

iteratively and has a finite accuracy, which may have a

surprisingly strong impact (Greco et al., 2022).

All these factors are difficult to generalize and usually

included in the analysis individually for each experimental

setup. Thus, if the results of the measurement are sensitive to

these effects, it is difficult to train an ML model that is agnostic

to the experimental setup. Therefore, to achieve the highest

performance, it is usually necessary to include information

about the setup in the model.

The above also implies that the training and test data for

neural networks must be of high quality. Training data need to

be diverse and accurately labelled to be useful. Currently in

most work the training is done with simulated data, since large

enough annotated sets of real data are not available. On the

other hand, for testing the performance of the neural network

a much smaller data set is sufficient. We stress here that real

experimental data are often very different from simulated

data, which makes it an absolute necessity to judge the

performance of a neural network on experimental data.

As with basically all ML applications, the dilemma between

high generality with poor performance or high specificity with

good performance is also found for surface scattering.

By choosing training data and hyper-parameters the

boundary for possible outputs is fixed. For example for X-ray

or neutron reflectometry, if we train the neural net only with

data from layers without interfacial roughness, we cannot

expect that model to perform well on rough layers. On the

other hand, increasing the flexibility of the neural network by

introducing a wider range of training data usually has a very

strong negative impact on the performance of the neural

network. Finding the optimum between performance and

flexibility is therefore a critical task for ML applications.

3. X-ray and neutron reflectivity

Specular X-ray and neutron reflectometry (XRR and NR), i.e.

where �i = �f and � = 0, are common techniques for investi-

gating surfaces, thin films and layered structures (Fig. 1). The

goal of these measurements is typically to extract different

physical parameters for each layer in the sample, such as

thickness, roughness and scattering length density (SLD), or in

the case of neutrons, even magnetic properties. However,

depending on the system studied, the data analysis of reflec-

tivity measurements can be difficult and time consuming. For

this reason, several attempts have been made to facilitate data

analysis using ML in recent years.

The majority of the publications on this topic focus on the

efficient extraction of layer parameters directly from the

measured reflectivity curve. The first such published attempt

(Greco et al., 2019) demonstrated a fully connected neural

network trained to predict the thickness, roughness and

electron density of organic thin films based on real-time

reflectivity measurements during growth (Fig. 3). The neural

network architecture is shown in Fig. 2. The training was done

for a fixed substrate using data simulated via a well established

theoretical model, such as the Parratt algorithm (Parratt,

1954). The advantage of this method is that, if trained prop-

erly, the neural network is well adapted to solving the inverse

problem for a given subset of samples and can predict the

sample parameters within a fraction of a second with high

accuracy. The disadvantage is that a new neural network

model must be trained (or at least re-trained) for different

sample architectures (e.g. different substrates). Other studies

have demonstrated that this approach also works in principle

for multiple layers (shown for up to three), but the possible

parameter range still had to be restricted (Doucet et al., 2021;

Mironov et al., 2021). The reason why it is difficult to train a

general ML model that is completely agnostic towards the

studied system is that, even without considering measurement

errors and a finite qz range, reflectivity problems do not always

have a unique solution because of the phase problem (Sivia et
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Figure 3
Real-time XRR data sets of a growing organic thin film fitted using the
mlreflect pipeline (Greco et al., 2022). The grey circles represent XRR
measurements at different times during growth. The numbers in
ångströms refer to the corresponding film thickness determined via a
manual least-mean-squares fit. The red curves are simulations based on
the respective neural network predictions. Figure adapted with permis-
sion from Greco et al. (2019) under a Creative Commons Attribution 4.0
International License, https://creativecommons.org/licenses/by/4.0/.



al., 1991). Including background, noise and roughness can

further increase the level of ambiguity, even for a simple

system, such as a single layer on a substrate (Greco et al.,

2021). Since the above-mentioned neural network models try

to approximate an inverse function that maps a given reflec-

tivity curve to a unique set of sample parameters, the solution

space necessarily needs to be restricted in such a way as to

achieve a mostly unique mapping.

In another approach (Loaiza & Raza, 2021), this problem is

tackled by identifying different symmetry-based families of

SLD profiles that can be uniquely distinguished. The main

idea is that, if the SLD family of the studied system is known,

the neural network can predict the complete SLD profile of

any sample within that family. While promising, this approach

has, however, not yet been tested with experimental data

where the above-mentioned experimental conditions apply.

Kim & Lee (2021) demonstrated a different neural network

architecture employing a mixture density model that predicts

a probability density for the sample parameters in the form of

several superimposed multi-modal Gaussians in the solution

space. This has the advantage of the network yielding several

possible solutions at once, with the height of the Gaussians

representing the likelihood of a given solution and the widths

of the Gaussians yielding implicit error estimates.

Other groups have tried to employ autoencoder archi-

tectures for the analysis of reflectivity data. For example,

Andrejevic et al. (2021) trained a variational autoencoder to

compress reflectivity curves from polarized neutron reflecto-

metry into an information-dense latent space. They deliber-

ately designed the architecture in such a way that the sample

parameters can be retrieved from the latent-space variables.

Furthermore, the idea is that further fitting in the latent space

is easier than fitting the reflectivity curve in q space, because

there are fewer local minima in the objective function. A

different application of autoencoders was shown by Aoki et al.

(2021) where an autoencoder was trained to denoise neutron

reflectivity measurements which can then be analysed more

easily through conventional means. This can help to reduce

the integration time that is necessary to achieve a suitable

signal-to-noise ratio during the measurement. This is parti-

cularly useful for neutron reflectometry where the flux is

typically several orders of magnitude lower than for

synchrotron radiation.

While already quite varied, all of the approaches published

so far still suffer from the problem of being specific to only a

subset of samples. In some cases, the neural networks are even

specialized to only a certain combination of materials. This

shows the necessity of prior physical knowledge to narrow

down the task for the neural network. In all of these examples,

this physical knowledge is inserted into the model via the

selection of the training data. This means that models must be

trained for every subset of problems, which can be non-trivial.

Furthermore, after a given model is trained, there is no way to

use additional knowledge, e.g. from other measurements, to

exclude certain solutions. Therefore, in the future it would be

interesting to explore neural network architectures that allow

the input of knowledge about the studied system during

inference time, i.e. after the model has already been trained.

However, successfully training such a model might be chal-

lenging and would arguably require a substantially different

neural network architecture from what has been published so

far.

Most of the training and testing of neural networks in this

context is done with simulated data, since large quantities of
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Figure 4
(a) Box plots of the absolute errors for 242 measured reflectivity curves for each of the three predicted parameters. The upper and lower edges of the
boxes represent the first and third quartiles, respectively, with the horizontal lines inside the boxes denoting the medians. The pink boxes represent the
error compared with the pure neural network predictions. The blue boxes represent the error after applying a simple least-mean-squares minimization
using the neural network predictions as starting parameters. The green boxes show the error when a qz shift optimization was performed before this fit.
(b) The same box plots of the median error but as a percentage of the ground truth. Figure adapted with permission from Greco et al. (2022) under a
Creative Commons Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0/.



varied and labelled experimental data are difficult to obtain.

Recent work (Greco et al., 2022) has shown, however, that the

performance of a model on simulated data is not a good

estimate for the performance on real data. While most of the

published work demonstrates results on at least some

experimental data sets, it frequently does not represent a large

and varied set of reflectivity curves. Without such a repre-

sentative data set, however, it is difficult to judge the general

applicability of a given method. As a result, future work

should strive to test their performance on larger data sets. In

addition, it might be useful to collect a large body of data that

can be shared among research groups for standardized testing,

as is common in other ML communities.

As an example for a performance test, Greco et al. (2022)

compared a neural network prediction with conventional

fitting results from 242 experimental XRR sets (Fig. 4). The

setup there was the fit of three parameters (thickness,

roughness, SLD) of a layer on an Si substrate. The median of

the initial prediction results (pink boxes in Fig. 4) is in the

range of 7–12% of the ground truth. If the initially predicted

parameters are used as starting parameters for a least-mean-

squares fit, the median of the error decreases to around 5%

compared with the ground truth. This result is acceptable for

many applications and can be refined further with post-

processing. For instance the screening for experimental errors

in q (q shift) in combination with a least-squares fit leads to a

further decrease in error (green boxes in Fig. 4).

Other issues for XRR and NR which may be critical for

analysis with an ML approach include the limited dynamic

range of the measurement, since it essentially defines the

maximum qz range that can be measured. This of course limits

the amount of information that can be extracted from the

data. In addition, for in situ reflectivity measurements, the

time it takes to perform a scan can be important. If the

observed real-time change in the sample is on the same time

scale as the time it takes to measure one reflectivity curve, it

may happen that different parts of the curve are measured

under different sample conditions. For example, during in situ

annealing of a sample, changes in roughness or thickness may

be continuously ongoing during a reflectivity scan. While a

human researcher may notice this effect and apply necessary

corrections when analysing the data, it is difficult to include

this in an ML model.

4. GISAS (GISAXS and GISANS)

Grazing-incidence small-angle X-ray and neutron scattering

(GISAXS and GISANS) [Fig. 1(a)] are surface-sensitive

techniques used to probe the morphology of surfaces with

statistically relevant averaging (Levine et al., 1989; Sinha et al.,

1988). GISAS has been employed for numerous applications,

such as investigating the deposition of metallic nanoparticles

on surfaces (Schwartzkopf et al., 2013) and elucidating the

morphology of nanostructured polymer thin films (Müller-

Buschbaum, 2003).

GISAS experiments employ a scattering geometry where

the surface sensitivity is achieved by the grazing incidence of

the incoming beam and the grazing exit of the outgoing beam.

If �i is below the angle of total reflection �c the transmission of

the beam is strongly limited and the amplitude from the

reflected beam is increased (Tolan, 1999).

In contrast to bulk methods like powder diffraction, where

scattering data in many geometries can often be reduced to a

one-dimensional problem, for surface scattering in grazing-

incidence geometry such a projection onto one dimension is

not possible due to the substrate surface, which breaks the

radial symmetry. In addition, the scattering background from

the surface is usually anisotropic and can include complex

diffuse scattering from the substrate (Sinha et al., 1988).

Therefore, GIWAXS and GISAXS data are 2D, which is

associated with specific challenges for ML-based analysis

GISAS data can provide information about the morpholo-

gical parameters of the surfaces studied, such as the number of

layers with different thicknesses and densities, the shape and

size distributions of nanoparticles on top of or embedded in

the layers, or the densities and spatial ordering of nano-

particles. The conventional analysis obtains the corresponding

parameters by solving the inverse problem via iterative

adjustments of the parameters and minimizing the difference

between the measured and simulated data. This fitting routine

is typically slow and would greatly benefit from automated

ML-based tools.

In general, assumptions about the studied structures might

be necessary to reduce complexity and avoid ambiguity in the

analysis. Therefore, some of the existing ML solutions for

automated GISAS analysis focus on particular morphological

models. In this way, convolutional neural networks (CNNs)

that extract nanoparticle orientations have been developed

(Van Herck et al., 2021; Liu et al., 2019). Fig. 5 shows the

typical CNN training workflow with augmented GISAS data

(Van Herck et al., 2021). A possible extension to this approach

would involve training an ML model to extract nanoparticle

size, interparticle distance and surface layer roughness from

GISAS data given the underlying assumptions about the

morphological model. Due to unavoidable discrepancies

between the simulated and experimental data, further

improvement in this direction might require building a data-

base with manually analysed GISAS images, which is a chal-

lenging task. An alternative approach involves modern data

augmentation techniques that can reproduce experimental

topical reviews

J. Appl. Cryst. (2023). 56, 3–11 Alexander Hinderhofer et al. � Machine learning for scattering data 7

Figure 5
A sketch of the workflow for training a CNN to extract parameters from
augmented GISAS data. The GISAS data shown are a simulation of
ordered nanoparticles on a surface. Data augmentation is done with
several noise sources (including Poisson noise) and cropping of data in
the centre to account for the beam stop that is typically present in
experimental data. Image reproduced with permission from Van Herck et
al. (2021) under a Creative Commons Attribution 4.0 International
License, https://creativecommons.org/licenses/by/4.0/.



artefacts via the generative adversarial network (GAN)

technique and its variants (Goodfellow et al., 2014).

A significantly easier approach is the category classification

of GISAS images on the basis of specific characteristics.

Ikemoto et al. (2020) used a simple CNN to classify GISAXS

data according to the shape of the nanoparticles (capsule,

spheroid, ellipsoid, truncated spheroid, hemispheroid, prism,

hexagonal prism or cylinder). This approach could be used to

select the initial model for an iterative fitting of the GISAXS

pattern. Also, a CNN was trained to predict 17 different

attributes of X-ray scattering images (including GISAXS

measurements) from a predefined list (Wang et al., 2017). An

interactive visualization system for X-ray scattering images

with multiple attributes was introduced by Huang et al. (2021).

The performance of the multilabel annotation task was

improved by Guan et al. (2018, 2020). The annotation process

for the classification tasks is substantially simpler and faster

than a comprehensive analysis, and future development in this

direction would benefit from aggregating the corresponding

data sets into a standard database available for the community.

5. GIWAS (GIWAXS and GIWANS)

Grazing-incidence wide-angle X-ray and neutron scattering

(GIWAXS and GIWANS) are key methods for investigating

crystalline structures on surfaces (Feidenhans’l, 1989). The

scattering geometry is essentially the same as GISAS

[Fig. 1(a)] with the only difference being the detected range

and resolution in q. The wide-angle geometry allows the

resolution of Bragg reflections and therefore the analysis of

crystal structures and domain orientations. The technique is

particularly suitable for in situ measurements that enable

investigation of crystallization processes or phase transitions

in real time, which typically result in hundreds of thousands of

images obtained per experimental day.

In contrast to GISAS images with rather complex contin-

uous diffraction features, GIWAS data mostly contain distinct

Bragg peaks superimposed on a scattering background and

other experimental artefacts such as detector gaps. In general,

the characteristics of the Bragg peaks such as their positions,

angular and radial sizes, and intensities allow us to obtain

information about unit-cell parameters, crystal size distribu-

tion or relative fractions of coexisting phases. ML algorithms

are ideally suited for processing GIWAXS images by identi-

fying diffraction peaks. However, there are substantially fewer

publications on machine learning for GIWAS data than for

GISAS. Most of the current approaches focus on preliminary

filtering of huge amounts of data. For instance, Wang et al.

(2017) used a neural network to classify both GISAXS and

GIWAXS images. Other approaches are required for quanti-

tative analysis of GIWAXS data.

The way GIWAXS images are processed depends on the

application. In some measurements, the expected structures

are known and the task of phase determination is simplified to

a comparison of the obtained diffraction peak positions with a

predefined list of crystal structures. In other cases, the struc-

tures are unknown and a correct structure determination

might require indexing algorithms and certain adjustments to

the experimental setup (such as larger q ranges, absence of

coexisting phases etc.). Moreover, the diffraction peak char-

acteristics are required for further quantitative analysis. Thus,

GIWAS image processing can be split into the peak detection

task and further steps using algorithms determined by the

specific application. Such an approach allows these complex

tasks to be separated into sub-tasks which are easier to

improve and test. Separating peak detection and further

analysis also allows the use of the same peak detection model

for a wide variety of different samples and experimental

setups with a wide range of different applications.

Sullivan et al. (2019) and Liu et al. (2020) employed deep

learning methods to accelerate and improve a Bragg peak

fitting routine. The first fully automated peak detection

approach for GIWAXS images was demonstrated by Starostin

et al. (2022). A neural network trained on synthetic GIWAXS

images allowed them to obtain a list of detected features

(areas with coordinates in a 2D image) which could be passed

on to other algorithms for peak indexing, structure matching,

unit-cell refinement or texture analysis (Fig. 6). Similarly to

GISAS, the quality of the peak detection analysis can be

improved if annotated experimental data are used for the
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Figure 6
Schematic of GIWAXS peak finding demonstrated for a 2D perovskite
thin-film structure during crystallization. (a) GIWAXS data, (b)
annotated with Bragg reflections detected by the ML algorithm at t =
60 s. (c) The radial positions of the detected peaks over time, with (d) the
found peak positions. (e) Colour code for peak origins. Image reproduced
with permission from Starostin et al. (2022) under a Creative Commons
Attribution 4.0 International License, https://creativecommons.org/
licenses/by/4.0/.



training or at least for formal testing. The use of GANs for

data augmentation in this case can be particularly complicated

since it is challenging to control the appearance of each

diffraction peak on the generated images.

In general, the peak finding procedure is followed by the

indexing step, which constitutes a highly challenging task. The

existing indexing tools either are based on slow iterative

routines (Savikhin et al., 2020) or require complementary data

from the specular geometry (Kainz et al., 2021), which are

unavailable for real-time GIWAXS measurements. Thus, ML

techniques might be suitable for accelerating the indexing

procedure. Related efforts in this direction are ML-based

crystal structure identification methods for 1D X-ray diffrac-

tion (XRD) bulk measurements (Tatlier, 2011; Oviedo et al.,

2019; Lee et al., 2020). However, to the best of our knowledge,

there have been no published attempts to employ ML to

accelerate indexing of GIWAS data so far.

The grazing-incidence geometry leads to a highly asym-

metric footprint of the beam on the sample surface, and the

associated Bragg reflection shape in GIWAXS experiments

depends on the resulting resolution, refractive index and

penetration depth. The varying shape leads to challenges for

the reliable identification of diffraction features in GIWAXS

data.

Also, a non-trivial texture, such as a partially preferred

domain orientation, may be challenging, in particular in

combination with the grazing-incidence geometry and the

associated distortion of the scattering signal.

6. X-rays versus neutrons

The above appears to be written mostly from the perspective

of X-rays but in fact applies largely to both X-ray and neutron

scattering, in particular when considering diffraction applica-

tions. For inelastic or quasi-elastic scattering (Grimaldo et al.,

2019), or other forms of addressing the dynamics such as

XPCS (Sinha et al., 2014; Timmermann et al., 2022), there are

more significant differences, but these are not the focus of the

present paper. Nevertheless, also for diffraction, we should

note some specific features of neutron scattering compared

with X-ray scattering (Greco et al., 2021).

In most cases, for both X-rays and neutrons, the scattering

follows kinematic theory, except for e.g. perfect crystals and

optical effects at surfaces (total reflection etc.). The key

difference concerns the elementary scattering processes and

the resulting scattering length and cross sections. These

differences lead to the following consequences, all of which

can impact the quality of the ML analysis:

(i) For X-rays, the scattering length depends on the number

of electrons and can only be positive; for neutrons, the inter-

action with the nucleus can be both attractive and repulsive.

Thus, positive and negative scattering lengths are possible,

which can lead to the absence of total external reflection.

(ii) Furthermore, different isotopes of the same element can

have very different scattering lengths for neutrons, which

allows for contrast tuning through isotopic substitution

(Fragneto-Cusani, 2001).

(iii) For neutrons, absorption is usually smaller than for

X-rays.

(iv) Neutron scattering is dependent on the nuclear spin.

This can introduce an incoherent part of the nuclear scat-

tering. For diffraction applications this can lead to an

enhanced background. We note that for quasi-elastic scat-

tering (energy resolved) this can be exploited to study the

dynamics (Grimaldo et al., 2019).

(v) Because of the magnetic moment of neutrons, the

magnetic structure of the sample can be studied (Ankner &

Felcher, 1999). For non-magnetic samples, a magnetic refer-

ence layer can be employed (Treece et al., 2019; Skoda et al.,

2022) which, for a given sample, produces different scattering

patterns depending on the polarization of the beam. These

patterns can then be co-refined in a common analysis proce-

dure to reduce ambiguities.

(vi) Many neutron sources use pulsed/polychromatic beams

with subsequent energy resolution to measure different q

simultaneously. Since the intensity of each wavelength in the

spectrum is not constant, counting statistics can be different

for different wavelengths or q values (and generally there

tends to be a lower incident flux than with X-rays). This affects

how the noise is modelled in ML applications (Aoki et al.,

2021) and, interestingly, these ‘sparse sampling’ concepts can

also be applied to time-resolved (low-counting) X-ray data

(Mareček et al., 2022).

7. Availability of reference data

A major challenge regarding the successful implementation of

ML strategies to analyse data arises from the limited avail-

ability of suitable test, validation and training data sets

consisting of raw experimental data and the corresponding

already-performed data analysis. While the training may be

aided by simulated (i.e. synthetic) data, the true performance

test for a neural network to be successful in the analysis of

scattering data can only be for real experimental data with

their intricacies.

There has been some progress regarding the availability of

experimental raw data through data portals and the policies of

large-scale facilities (Dimper et al., 2019) and federated data

catalogues like PaNOSC and DataFed (Götz et al., 2020;

Stansberry et al., 2019) following the FAIR principles (Wilk-

inson et al., 2016) and endorsing open science (Bezjak et al.,

2018). In the current state, however, this can be seen rather as

a source of data sets from individual experiments (e.g. Scop-

pola et al., 2020) that provide a significant portion of the

metadata generated at large-scale facilities by a specific

instrument, but currently do not map the end-to-end process

of a scientific experiment (Doucet, 2020). Even more impor-

tant is the lack of experiment-specific annotated data to

enable ML-based data analysis in surface scattering. Today, if

available, individual data sets from a limited number of

samples may be found attached to individual scientific publi-

cations, e.g. Doucet et al. (2021), as there is no common

domain-specific data repository, such as the PDB for protein

crystallography (Berman et al., 2000), which allows the

topical reviews
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retrieval of analysed data and raw data in a systematic fashion

(Helliwell et al., 2019). This lack is also due to the more

individual and non-standardized character of the respective

experiments in surface scattering compared with e.g. protein

crystallography.

Nevertheless, larger-scale and comprehensive collections of

technique-specific data sets are feasible. For example,

MLExchange is a platform for easing the use of AI/ML tools

by scientific communities by bringing together models, data

sets and processing workflows on a single platform (Hexemer

et al., 2021). Other recent initiatives such as DAPHNE4NFDI

(DAPHNE4NFDI Consortium, 2023) or the Tübingen Cluster

of Excellence for Machine Learning in Science (Universität

T̈ubingen – Cluster of Excellence, 2023) are also working

towards this goal. Scientific community-driven groups such as

ORSO (Open Reflectometry Standards Organization; Arnold

et al., 2022) can also help in this context.

As a step towards better availability of reference data, in

conjunction with the present publication a collection of ML-

ready data sets of X-ray reflectometry are published by Pithan

et al. (2022).

8. Outlook and summary

We have discussed the status, opportunities, challenges and

limitations of ML as applied to X-ray and neutron scattering

techniques. In general, ML-based methods are much faster

and can be more easily automated compared with conven-

tional fitting and modelling approaches. However the latter

are typically more precise, since an expert user controls each

step of the analysis. This direct control is, on the other hand,

typically time consuming, which makes ML methods prefer-

able for large data volumes and time-critical applications.

In the past few years significant progress has been made in

applying ML methods to surface scattering, but some critical

milestones are yet to be reached before the scientific

community can use ML methods for routine data analysis

tasks in surface scattering. Certainly the most relevant missing

part is access to large and diverse annotated data sets for

testing and comparing the performance of different ML

analysis approaches. We are confident that the recent forma-

tion of data science consortia will be an important ingredient

for the success of ML in scattering.

9. Supporting information – details of XRR data set

We have compiled, and published on Zenodo, a collection of

experimental XRR curves, together with corresponding box-

model parameters that fit the measured data, and these can be

used to test, train or validate ML models (Pithan et al., 2022).

From the authors’ point of view the provided data set is

intended as a nucleation site for a corresponding reference

database. We plan to extend this data set to include a larger

variety of models, materials, substrate materials and NR data,

and we explicitly welcome external contributions to further

versions of the data collection.
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