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Using both quasi-elastic and fixed-window neutron spectroscopy, we study the dynamics of highly

concentrated aqueous protein solutions of bovine serum albumin around the denaturing transition. For

the temperature range 280 K < T < 370 K, the total mean-squared displacement hu2i is recorded. Below
and above the denaturing, we observe that hu2i increases monotonically with T, but at the denaturing

transition it decreases strongly. This observation can be rationalized and quantitatively modeled as

a transition from a liquid protein solution to a gel-like state. Atomic vibrations, molecular subunit

diffusion and, most importantly, diffusion of the entire protein determine hu2i. The latter is strongly
hindered due to entanglement and cross-linking of the chains and causes the pronounced decrease of hu2i.
Using information from the full quasi-elastic signal, we separate the diffusion contribution from hu2i and
reveal the transition temperature. For the analysis of this separation, we introduce a general concept,

which is applicable to other colloid systems exhibiting both center-of-mass and internal dynamics.
1 Introduction

Crucial to the physical understanding of soft and biological

matter is the obvious, but in general insufficiently understood,

link between the microscopic properties and the functionality of

the system. Microscopic properties, such as dynamics, have been

intensely addressed by, inter alia, neutron spectroscopy tech-

niques.1–4 Neutron spectroscopy allows both the picosecond

subunit diffusion and the nanosecond translational and rota-

tional diffusion of globular proteins to be probed.5,6 A significant

amount of work on protein dynamics has been carried out on

powder or hydrated powder samples,2 which simplifies the

analysis, since some degrees of freedom including the center-of-

mass motion do not contribute. Solutions of proteins5,7–12 are

obviously more complex, but closer to physiological conditions.

Importantly, in many situations in biology, proteins are found at

rather high concentrations, known as macromolecular crowding,

up to and above 30% in volume. This implies that, in contrast to

dilute aqueous solutions with effectively independent proteins,
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the interactions between the dissolved proteins are important and

give rise to qualitatively different effects.

At elevated temperatures proteins denature and at sufficiently

high protein concentration aggregate and form gels.13,14 The

denaturing transition itself is an important key to the physical

behavior of the protein.

The issue of denaturing of a protein in a crowded environment

was previously addressed by simulation,15 concluding that

crowding can enhance the structural stability, but experimentally

the effects arising upon denaturing of crowded proteins with

their intrinsic complex charge distribution are not clear. Only few

experimental results on the microscopic dynamics of protein

suspensions around denaturation are available,16,17 but

a systematic understanding and a theoretical framework have

not been achieved yet. In this study, we report on a neutron

spectroscopy study of the denaturing transition of bovine serum

albumin (BSA) in crowded aqueous (D2O) solutions and a newly

developed framework to quantitatively investigate the hindered

dynamics of the proteins upon entanglement and cross-linking

and to analyze the different contributions to the mean-squared

displacement hu2i around the denaturing transition. Importantly,

our novel framework is not restricted to the study of denaturing

of proteins, but can be applied to any system with both center-of-

mass and internal dynamics, e.g. also conventional polymer

solutions.
2 Experimental method and data processing

For all neutron measurements the samples were prepared by

dissolving BSA (Sigma-Aldrich product code A3059, 99%
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 Elastic intensity S(Q,|u| < Du) (solid circles) of a 500 mg ml�1

BSA aqueous (D2O) solution upon heating from 280 to 370 K with 7.4 �
10�2 Kmin�1. The data were recorded at IN10. Fits of the polynomial eqn

(10) to the data at fixed temperatures are superimposed as solid lines.
purity) with mass m in D2O with volume V to obtain the protein

concentration c ¼ m/V. After complete dissolution and equili-

bration, the solutions were contained in double-walled

aluminum cylinders with 23 mm outer diameter and 0.3 mm gap

which were sealed against vacuum. Due to the complete filling

and sealing of these sample holders, the neutron scattering

experiments were performed at constant sample volume while

the pressure changes with sample temperature. We used the

neutron backscattering spectrometers IN10 and IN16 at the ILL

in Grenoble in the standard configuration with unpolished Si

(111)-monochromator and analyzer crystals, which set the

selected neutron wavelength to 6.27 �A and achieve an energy

resolution of approximately - Du ¼ 0.9 meV (gaussian FWHM).

The Q-ranges set the probed length scales to 3.2 �A # l # 12 �A

(IN10) and 3.3 �A # l # 33 �A (IN16), respectively, with l ¼
2p/Q. The data were normalized to the incident neutron flux.

Using Paalman–Pings coefficients18 the empty cylinder signal

was subtracted. Subsequently, all data were scaled by the

inverse detector efficiency obtained from the elastic intensity of

vanadium. Due to the large incoherent scattering cross-section

of the proteins, our data reflect the single particle correlation

function of the protein hydrogen atoms. For the quasi-elastic

data, we assume that vibrational and diffusive modes are

uncoupled and obtain6,10,19,20

SðQ;uÞ ¼ exp

�
� 1

3
hu2vibiQ2

�
L ðu;gÞ

5fAðQÞ dðuÞ þ ½1� AðQÞ� L bðu;GÞg:
(1)

Therein, hu2vibi denotes the so-called mean-squared displace-

ment of vibrations. The Lorentzian function L(u,g) models the

convolution of translational and rotational diffusion of the entire

protein.10 The symbol 5 indicates the convolution with respect

to the variable u. A(Q) is the incoherent elastic structure factor.

Using a single phenomenological parameter 0 # b # 1, the

Kohlrausch–Williams–Watts (KWW) function21

L bðu;GÞ ¼
ðN
�N

dt

2 p
e�i u t exp

�
���t G��b�; (2)

describes a broad range of internal relaxation times. Although

in our case it turns out that b ¼ 1, we introduce the KWW

function to make our analysis applicable to other colloid

systems exhibiting both center-of-mass and internal dynamics.

G and b are assumed to be nearly constant for Q < 2 �A�2.22,23

Finally, d(u) designates the Dirac function of the elastic

scattering.

The experimental quasi-elastic scattering function reads

Sexp(Q,u) ¼ RDu(u)5S(Q,u) + B (3)

with the instrumental resolution function RDu(u) and a flat

background B accounting for both the water diffusion and the

phonon contribution which exceed the accessible dynamic range

of the instrument.

With fixed elastic window neutron backscattering, one

measures the incoherent scattering function at u ¼ 0 within

the instrumental resolution function RDu(u). Thus, the

measured fixed-window scattering is linked to the quasi-elastic

signal by
This journal is ª The Royal Society of Chemistry 2012
SðQ; juj\DuÞ :¼ R DuðuÞ5SðQ;uÞju¼0

¼
ð
R DuðuÞ SðQ;uÞ du: (4)

3 Results and discussion

In Fig. 1, the measured fixed-window scattering intensity is

shown for a full temperature scan through the denaturing tran-

sition for an aqueous BSA solution with c ¼ 500 mg ml�1 cor-

responding to a volume fraction of 27%. The change of the

overall dynamics is clearly reflected in the non-monotonous

behaviour of the intensities versus temperature. In order to

understand the dynamical changes in more detail, we determine

the total mean-square displacement for each temperature,

respectively:

hu2i :¼ �3 lim
Q/0

�
log½SðQ; juj\DuÞ�

Q2

�
: (5)

hu2i consists of three contributions from atomic vibrations hu2vibi,
molecular subunit diffusion hu2subi and, most importantly,

diffusion of the entire protein hu2diffi (for a detailed derivation see

the Appendix):

hu2i ¼ hu2vibi + hu2subi + hu2diffi (6)

hu2subi ¼ (1 � p)chDr2i (7)

hu2diffi ¼ (2p)�3/26Ds, (8)

with c ¼ 1� ffiffiffiffiffiffiffiffi
2=p

p ðN
0

expð�x2=2� j y xjbÞ dx, where y ¼ G

Du
.

For our data cz 1, since for high-resolution instruments we can

safely assume that G [ Du. A fraction p of protons has

a correlation time far beyond the accessible time window, such

that they have a very narrow energy signal and, therefore, can be

considered as immobile. The internal diffusive modes are

confined on the given time scale to an average length of hDr2i1/2.
The mean-squared displacement due to diffusion of the entire

protein is 6Ds, where s ¼ 2 p/Du is the maximum observation
Soft Matter, 2012, 8, 1628–1633 | 1629



time of the instrument and D is the apparent diffusion coefficient

taking into account both rotational and translational diffusion.11

Fig. 2 (A) shows hu2i for the full temperature scan through the

denaturation transition. hu2i was extracted from the data by

a quadratic fit to log [S(Q,|u| < Du)] versus Q2 (eqn (10)) using the

entire Q-range of IN10, as shown for one example data set in the

inset. Starting at T ¼ 280 K, hu2i increases linearly with

temperature up to 325 K. A steep decrease is observed in the

temperature range of denaturing, namely 331 K < T < 354 K,

consistent with structural changes observed by Fourier trans-

form infrared spectroscopy.24 Upon further heating, hu2i starts to
increase again with temperature. hu2i is significantly larger than

the typical observed vibrational amplitude of only 10�2 �A2,

suggesting that protein diffusive modes are present in addition to

atomic vibrations confirming the validity of eqn (6). We ratio-

nalize the data depicted in Fig. 2 (A), remembering that below

the denaturation temperature, proteins occur in their native

state, which for most globular proteins is a solution of charge-

stabilized monomers.25,26 The protein dynamics in this region

consists of global translational and rotational diffusion, internal

and confined diffusive motion of side chains and protein domains
Fig. 2 (A) Total mean-squared displacement hu2i (circles) of an aqueous

BSA (500 mg ml�1) solution versus temperature T. The solution was

heated at 7.4 � 10�2 K min�1. Using eqn (9) we describe the data (solid

line superimposed on the data) and determine the denaturing interval T1

< T < T2 (dotted vertical lines). The upper images illustrate a colloidal

suspension of native proteins (left) and the cross-linked network of

denatured proteins (right). Inset: Measured elastic intensity S(Q,|u| <

Du) versus Q2 (circles) for the same sample at T ¼ 290 K recorded at

IN10. A quadratic fit according to eqn (10) (solid line) was used to

determine hu2i. (B) hu2i � hu2diffi (circles). The two vertical dashed lines

denote the transition regime. At T0 ¼ (T1 + T2)/2 a transition occurs,

characterized by a kink in the curve (arrow).
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and vibrational modes. Upon increasing the temperature, the

proteins enter the denaturation regime (T1 < T < T2). We

rationalize this transition in two steps. First, the proteins unfold

and extend, which can be understood as similarly to a helix to

random coil transition, initially proposed in the seminal paper by

Zimm and Bragg.27 Second, the unfolded protein chains entangle

and potentially cross-link partly. This entanglement and cross-

linking process can be seen as in between chemical gelation and

polymer vulcanization.28,29 The entanglement significantly

reduces translational and rotational diffusion. While a quantita-

tive theory of the amplitude (Du2 in the model described below)

of the effect is not available at present, we can qualitatively use

the analogy to existing theories for the cross-linking of polymers

(vulcanization).30 The segment dynamics is then reduced typi-

cally by (some power of) the inverse number of entanglement

points,Ne, and it appears plausible that a similar mechanism is at

work also for concentrated protein solutions. Thus, raising the

temperature above the denaturation regime, a gel-like state is

observed which can be understood rather in terms of the

dynamics of a cross-linked network than in terms of the

dynamics of separated molecules. In the spirit of the above, we

model the dynamics of the transition by
hu2i ¼ (a1T + b1)[1 � Q(T*)] + (a2T + b2)Q(T*) (9)

where T* ¼ (T � T0)/DT with the transition width DT and the

denaturing temperature T0. The indices 1 and 2 denote the liquid

state of native proteins and gel-like state of denatured proteins,

respectively, and Q(x) is a smeared-out step function,

Q(x) ¼ [1 + exp(–x)]�1, with the functional characteristics of the

helix melting models by Zimm and Bragg.27 For the case a1 ¼ a2,

which is approximately fulfilled here, the temperatures T1, 2 of

the turning points of hu2i, defining the denaturing interval, are

T1;2 ¼ T0 � DT ln zþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z ðz� 2Þp � 1

ih
, whereDu2¼ b1� b2 and

z ¼ Du2

2 aDT
. T1 can be interpreted as the temperature where

unfolding of the proteins starts, and T2 where the entanglement

and cross-linking of the chains is completed. Du2/DT is a measure

of how rapidly hu2i decreases. The width DT of the transition in

a simple model depends on the inverse number of participating

units of the helix, but of course for a real protein this is more

complex. The reduction Du2 of the dynamics is due to entangle-

ment. Although we observe that the slopes ai are nearly the same

below and above denaturing, we point out that in the general

case, ai probably depends on the protein concentration. Note,

when the gel-like state is cooled back from 370 K down to 280 K,

the curve for T < T2 of hu2i is well below the heating curve in

Fig. 2 (A),31 which shows the irreversibility of the denaturing

process and supports the assumption that translational and

rotational diffusion are significantly hindered by entanglement

and cross-links. Hence, upon cooling the cross-linked network of

denatured proteins persists.

In order to unveil the temperature dependence of hu2i � hu2diffi,
namely the cumulative mean-squared displacement originating

only from vibrational and subunit-diffusive modes, we use the

apparent diffusion coefficient D extracted from quasi-elastic

spectra to calculate the corresponding contribution to hu2i by

eqn (8). Fig. 3 shows a typical spectrum recorded on IN16.
This journal is ª The Royal Society of Chemistry 2012



Fig. 3 Example spectrum S(Q, u) (symbols) recorded at IN16 for BSA

in D2O (protein concentration 500 mg ml�1 corresponding to a volume

fraction f ¼ 27%, T ¼ 301 K, individual detector tube at Q ¼ 0.6 �A�1).

The solid line superimposed on the data indicates the fit of the model

from eqn (3) with b ¼ 1, hence the KKW function turns into to Lor-

entzian L(u,G). The Lorentzians in eqn (3) are indicated by the dashed

[R(u)5L(u,g)] and dash-dotted [R(u)5L(u,g + G)] lines, respectively.

The solid line in the center denotes a Gaussian model of the resolution

function R(u). The scattering signal decreases with Q, resulting in larger

error bars on the fitted g. Inset left: g (symbols) fitted to the signal from

grouped detectors versus Q2. Inset right: Temperature dependence of

hu2diffi due to global diffusion as calculated from eqn (8) (symbols). The

solid line is a linear fit for T # 320 K, namely hu2diffi ¼ aT + b. For

temperatures beyond 320 K we assume that the diffusion is hindered by

entanglement of the proteins and, hence, nearly zero. Therefore, we

postulate hu2diffi ¼ (aT + b)[1 � Q(T*)]. The transition regime is denoted

by the two vertical dashed lines.
The width g as obtained from the fits to eqn (3) are plotted in the

left-hand inset of Fig. 3. We observe a clear relationship g¼DQ2

defining the apparent diffusion coefficient D. Considering that

not only the translational but also the rotational diffusion

contributes to D,10,11 we can interpret D as a measure for the

global diffusive dynamics of the protein. The right-hand inset in

Fig. 3 depicts the temperature dependence of the mean-squared

displacement hu2diffi calculated from eqn (8) using the energy

resolution -Du¼ 0.9 meV. Below the transition regime, indicated

by the two vertical lines, we observe a linear relation hu2diffi ¼
aT + b. Inspired by de Gennes’ scaling law for the diffusion of

a polymer in a cross-linked network,30 we assume a negligible

global diffusion coefficient D for T > T2. Indeed, near and above

the denaturing temperature, fitting according to eqn (3) yields

diffusion coefficients D dropping close to zero. Therefore, we

describe the full temperature dependence by hu2diffi ¼ (aT + b)[1�
Q(T*)], where Q(T*) is the same smeared-out step function used

for the fit of hu2i as shown in Fig. 2 (A). Fig. 2 (B) depicts

the temperature dependence of the mean-squared displacement

hu2i � hu2diffi. We observe a change of the dynamics at a temper-

ature T0 ¼ 343 K characterizing the transition from a liquid

protein solution to a gel-like state. The inverse slopes of hu2i �
hu2diffi versus T, occasionally discussed in the literature as

a phenomenological force constant,32 are k1 ¼ (a1 � a)�1 ¼
4.1 � 10�2 N m�1 and k2 ¼ a2

�1 ¼ 0.7 � 10�2 N m�1, for T < T1
This journal is ª The Royal Society of Chemistry 2012
and T > T2, respectively. We note that the physical significance of

the force constant is limited in the present case, but it is stated for

reasons of comparability.

We speculate that the difference in k1 and k2 can be attributed

to the higher conformational flexibility of the unfolded protein

chains in the cross-linked network. In the native state the

proteins are stiffer due to hydrogen bonds and surface charge

both of which are mainly responsible for the stable three-

dimensional structure.

4 Summary and conclusion

We investigated the dynamics of crowded BSA protein solutions

around the denaturing transition. We have identified denaturing

in the fixed-window data. We have developed a novel physical

framework for the unfolding and entanglement allowing hu2i(T)
to be understood. Using quasi-elastic and fixed-window scat-

tering data, the measured hu2i can be decomposed into the

vibrational, subunit diffusive, and global diffusive contributions.

The characteristic transition temperatures defining the denatur-

ation range become observable. The driving force for the drop in

hu2i in the denaturing regime can be rationalized by the signifi-

cant slowdown of the global diffusion, accounting for both

translational and rotational diffusion. This slowdown is induced

by structural change and entanglement as well as cross-linking of

the proteins. The experimental and analytical framework, which

we have introduced, will allow to accurately test computer

models.15

Appendix: Analysis of fixed elastic window neutron
backscattering

In this appendix we develop an analytic framework for the

calculation and decomposition of the total mean squared-

displacement hu2i of a protein in solution determined with fixed

elastic window neutron backscattering. The presented analysis is

based on quasi-elastic concepts, which are transferred to the case

of fixed elastic window measurements.

Assuming the independence of diffusive and vibrationalmodes,

as well as the harmonicity of the latter, eqn (1) expresses the full

quasi-elastic scattering function of a protein solution, S(Q, u),

accounting for translational and rotational diffusion.10 The so-

called elastic intensity of proteins in solution, S(Q,|u| < Du), is

directly related via the resolution function, as given in eqn (4).

Anticipating the result from the derivation subsequent to this

section, the total mean-squared displacement hu2i is obtained

from the elastic intensity by fitting�3log[S(Q,|u| < Du)] with the

following polynomial:

P(Q) ¼ b + hu2iQ2 + cQ4 (10)

Therein, b accounts for both the background and the arbitrary

scaling of the experimental elastic line, c originates from higher

spatial correlations as described in detail in the next section.

Connection of elastic scattering intensity to several diffusive

modes

In the following, we derive a formula describing the elastic line

intensity in terms of vibrational, global and internal diffusive
Soft Matter, 2012, 8, 1628–1633 | 1631



modes for smallQ values. To start with, we solve the integral eqn

(4) by using the model function eqn (1) and assume a Gaussian

resolution function of the instrument (which is valid for the

spectrometers IN10 and IN16) of the form

R DuðuÞ ¼ exp

�
� u2

2Du2

�
:

Thereby, for reasons of readability we skip any scaling

parameter. With this the integral eqn (4) yields

SðQ; juj\DuÞ ¼ exp

�
� 1

3



u2vib
�
Q2

�
$

�
AðQÞ F1

g

Du
; 0

� �
þ ½1� AðQÞ� Fb

�
g

Du
;
G

Du

��
; (11)

where Fb is the integral expression

Fbðx; yÞ ¼
ffiffiffi
2

p

r
exp

�
x2

2

� ðN
0

exp

�
� 1

2
ðxþ xÞ2� y xj jb


dx :

General mean-squared displacement

The total mean-squared displacement hu2i is introduced as an

apparent quantity in eqn (5). In the following we will attach

a physical meaning to it. In order to analyze hu2i, we define the

general (Q-dependent) mean-squared displacement hu2iQ by

exp

�
�Q2

3



u2
�
Q


:¼ SðQ; juj\DuÞ: (12)

Note that the explicit Q-dependence is denoted by a subscript

Q to distinguish it from the total mean-squared displacement

hu2i. Using eqn (12) and eqn (11), we obtain

u2
�
Q
¼ 
u2vib�� 3

Q2
log xðQÞ; (13)

in which

xðQÞ ¼ AðQÞ F1

� g

Du
; 0
�
þ ½1� AðQÞ� Fb

�
g

Du
;
G

Du

�
:

We approximate eqn (13) up to 3rd order using a Taylor

polynomial at Q ¼ 0:



u2
�
Q
¼
X3
n¼0

an

n!
Qn þ O ðQ4Þ: (14)

Therein, O(Q4) is the remainder of the series and the coeffi-

cients are defined by

an ¼ lim
Q/0

dn

dQn



u2
�
Q
:

nth-Derivative of incoherent elastic structure factor

In order to calculate the Taylor coefficients an, we have to first

determine the nth-derivative of the incoherent elastic

structure factor. To start with, we introduce a general form of the

incoherent elastic structure factor, which according to B�ee33

reads
1632 | Soft Matter, 2012, 8, 1628–1633
BðQÞ ¼ 1

N

XN
j¼1

���
ei Q rj
����2:

Therein, rj ¼ (xj,yj,zj)
T might be the position vector of the jth

scatterer in one of the solvent exposed side chains of the protein.

We recall that a protein in solution has no preferential orienta-

tion vector due the random collisions with the surrounding

solvent molecules. We assume that the orientations of the

molecules are nearly equally distributed. Therefore, we have to

average the general elastic incoherent structure factor A(Q) over

all possible orientations yielding

A0ðQÞ ¼ 1

4 p

ð2 p

0

ðp
0

BðQÞsinq dq d4:

in which Q ¼ Q[cos(4)sin(q),sin(4)sin(q),cos(q)]T. For reasons of

generality we additionally consider the pseudo-elastic incoherent

structure factor,16,22 based on the following conception: Corre-

lation times much longer than the instrumental time window

correspond to a very narrow signal in u, which is indistinguish-

able from the elastic peak in the quasi-elastic signal. Therefore,

a fraction p of scatterers is considered as immobile, the remaining

fraction 1 � p as diffusive scatterers. This translates into the

pseudo-elastic incoherent structure factor

A(Q) ¼ p + (1 � p) A0(Q)

The first five derivatives of A(Q), denoted by A(n)(Q), were

obtained by employing Mathematica� for the limit Q ¼ 0:

Að0Þ ¼ 1

Að1Þð0Þ ¼ 0

Að2Þð0Þ ¼ � 2 ð1� pÞ
3



Dr2
�

Að3Þð0Þ ¼ 0

Að4Þð0Þ ¼ 1� p

5

�
mx þmy þmz þ 2 mx;y þ 2 mx;z þ 2 my;z

�
Að5Þð0Þ ¼ 0;

(15)

where 

Dr2
� ¼ 1

N

XN
j¼1

D�
rj �



rj
��2E

is the average fluctuation amplitude, related to the size of the

confinement of the internal diffusive scatterer, such as the protein

side chains. Moreover, the higher moments of the scattering

coordinates are

mx ¼ 2

N

XN
j¼1

 D
x4
j

E
þ 3

D
x2
j

E2

� 4
D
x3
j

E D
xj

E!

mx;y ¼ 2

N

XN
j¼1

�
2
D
xj yj

E2

�2
D
yj

E D
x2
j yj

E

þ
D
x2
j

E D
y2j

E
� 2

D
xj

E D
xj y

2
j

E
þ
D
x2
j y

2
j

E�
:

We note that the expressions my, mz and mx, z, my, z are

analogously defined.
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Taylor coefficients an

Having obtained the nth-derivative of the incoherent elastic

structure factor A(n)(0), we proceed by calculating the Taylor

coefficients in the truncated series (eqn (14)). To this end, we first

calculate the derivatives for x at Q ¼ 0, which are

xð0Þ ¼ 1

xð1Þð0Þ ¼ 0

xð2Þð0Þ ¼ � 2 D

Du

ffiffiffi
2

p

r
þ
�
1� Fb

�
0;

G

Du

�
Að2Þð0Þ

xð3Þð0Þ ¼ 0

xð4Þð0Þ ¼
�
1� Fb

�
0;

G

Du

�
Að4Þð0Þ

þ 12 D2

Du2

�
1� Du

D
Að2Þð0Þ

� ffiffiffi
2

p

r
þ F

ð1;0Þ
b

�
0;

G

Du

��

xð5Þð0Þ ¼ 0; (16)

where F(1,0)
b denotes the derivative of Fb (eqn (12)) with respect to

the first argument. Using x(n)(0) we obtain the Taylor coefficients:

a0¼ � 3

2
xð2Þð0Þ

a1¼ 0

a2¼ 1

4

h
3 xð2Þð0Þ2 � xð4Þð0Þ

i
a3¼ 0

(17)

Finally, the general total mean-squared displacement hu2iQ can

be approximated as follows

u2
�
Q
¼ a0 þ a2

2
Q2 þ O ðQ4Þ: (18)

Decomposition of total mean-squared displacement

Using eqn (18) the total mean-squared displacement simplifies to

(cf. eqn (5))

hu2i :¼ �3 lim
Q/0

�
log½SðQ; juj\DuÞ�

Q2

�
¼ a0: (19)

by combining eqn (17), (16), (15) the total mean-squared

displacement can be decomposed into the following sum (cf. eqn

(6), (7, 8)) D
u2
E
¼
D
u2vib

E
þ
D
u2sub

E
þ
D
u2diff

E
D
u2sub

E
¼ ð1� pÞ c

D
Dr2
E

D
u2diff

E
¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p Du2

r
D;

(20)

Therein, c ¼
"
1� Fb 0;

G

Du

� �#
. Due to the energy resolution

of the instrument the global diffusion of the protein can only be

observed within a time window of width s ¼ 2p/Du. During that
This journal is ª The Royal Society of Chemistry 2012
time the protein has isotropically explored a space, which size is

characterized by a mean-squared displacement of hDR2(s)i ¼
6Ds. Hence, hu2diffi ¼ (2p)�3/2hDR2(s)i.
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