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Viscosity and diffusion: crowding and salt effects in protein solutions
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We report on a joint experimental–theoretical study of collective diffusion in, and static shear viscosity

of solutions of bovine serum albumin (BSA) proteins, focusing on the dependence on protein and salt

concentration. Data obtained from dynamic light scattering and rheometric measurements are

compared to theoretical calculations based on an analytically treatable spheroid model of BSA with

isotropic screened Coulomb plus hard-sphere interactions. The only input to the dynamics calculations

is the static structure factor obtained from a consistent theoretical fit to a concentration series of small-

angle X-ray scattering (SAXS) data. This fit is based on an integral equation scheme that combines high

accuracy with low computational cost. All experimentally probed dynamic and static properties are

reproduced theoretically with an at least semi-quantitative accuracy. For lower protein concentration

and low salinity, both theory and experiment show a maximum in the reduced viscosity, caused by the

electrostatic repulsion of proteins. On employing our theoretical and experimental results, the

applicability range of a generalized Stokes–Einstein (GSE) relation connecting viscosity, collective

diffusion coefficient, and osmotic compressibility, proposed by Kholodenko and Douglas [Phys. Rev.

E, 1995, 51, 1081] is examined. Significant violation of the GSE relation is found, both in experimental

data and in theoretical models, in concentrated systems at physiological salinity, and under low-salt

conditions for arbitrary protein concentrations.
1 Introduction

A quantitative understanding of the dynamics in concentrated

solutions of interacting proteins is of importance to the evalua-

tion of cellular functions, and the improvement of drug delivery.

Transport properties such as collective and self-diffusion coeffi-

cients, and the static and high-frequency shear viscosities, are

strongly affected by the aqueous environment,1 and in particular

by crowding effects due to high concentration of macromole-

cules, coupled both by direct and solvent-mediated, hydrody-

namic interactions (HIs).2–4 The latter type of interaction, which

is both long-range and of many-body nature, poses a particularly

challenging task to a theoretical treatment of diffusion and

rheological transport properties.

In the present paper, we report on a combined experimental

and theoretical study on collective diffusion, low shear-rate static
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viscosity, and static and dynamic scattering functions of

concentrated solutions of bovine serum albumin (BSA) proteins.

The goal of this study is twofold. On the one hand, we explore

how far a simple colloidal model in combination with state-of-

the-art theoretical schemes can capture the microstructure and

dynamics of proteins in solution. On the other hand, we inves-

tigate the concentration- and salt-dependence of collective

diffusion and the static shear viscosity, and use our results to

assess the applicability range of a generalized Stokes–Einstein

(GSE) relation which combines the collective diffusion coeffi-

cient with the isothermal osmotic compressibility and the shear

viscosity.

BSA is a protein which is readily soluble in water and stable

over a wide range of protein concentrations at low salt content.

At higher salt content, however, it has a tendency to form dimers

and oligomers. Its stability and reproducibility make it well-

suited as a model system for globular proteins.

Proteins constitute identical solute units surpassing any

synthetic colloid suspension in terms of monodispersity. In this

respect, they are ideally suited to the application of analytical

theoretical models used with good success for large colloids.

However, the construction of a quantitatively accurate theoret-

ical model for protein solutions is considerably obstructed not

only by the potential presence of impurities and oligomers, but

also by the complex internal conformation and surface of

a protein. The folding state depends on various control
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parameters such as temperature, protein concentration, pH

value, and salinity. The irregular protein surface implies an

orientation-dependent protein interaction energy with repulsive

and attractive parts, and furthermore complicates the description

of hydrodynamically influenced transport properties.

In a first step towards calculating dynamic properties of

proteins, it is nonetheless possible to use a model of reduced

complexity, with system parameters such as the pH-dependent

particle charge determined from a consistent fit of theoretical

expressions for the scattered intensity to the experimental static

scattering functions. We use here a simple colloid model where

the BSA interactions are described by the repulsive, electrostatic

plus hard-core part of the isotropic Derjaguin–Landau–Verwey–

Overbeek (DLVO) potential.5 The effect of the non-spherical

shape of BSA proteins is accounted for in the static intensity

calculations within the so-called translational-orientational

decoupling approximation, by describing the proteins as oblate

spheroids interacting by a spherically symmetric effective pair

potential.

Using this simplifying protein interaction model, the static

structure factor, S(q), entering into the static scattered intensity,

is calculated as a function of wavenumber q, by using our newly

developed modified penetrating background corrected rescaled

mean spherical approximation (MPB-RMSA). This analytical

method has been shown to be in excellent accord with numeri-

cally expensive computer simulation results for S(q).6,7 The

system parameters of the protein-interaction model, most

notably the effective protein charge, are determined from

adjusting the theoretically calculated static intensity, I(q), to the

experimental one. The consistent agreement of calculated values

and small-angle X-ray scattering (SAXS) data for I(q) in a wide

range of concentrations and wavenumbers indicates that left-out

attractive interaction contributions are of minor importance at

the considered salinities. As an independent additional check, the

static light scattering (SLS) data for S(q) at low q are found to be

well reproduced by the theoretical fits of the SAXS data.

Without any further adjustment, the analytically calculated

static structure factors are used as the only input to our theo-

retical calculations of the collective diffusion coefficient, dC, and

the low shear-rate limiting static viscosity h. To calculate dC and

the high-frequency part, hN, of the static viscosity, we use two

approximate analytical schemes, namely the pairwise additive

hydrodynamic interaction (PA) approximation, and the so-called

self-part corrected dg method. As shown by two of the present

authors,8 these two methods give results which are in general in

good agreement with more elaborate Stokesian Dynamics

simulation results for particles with Yukawa-type pair

interactions.

The static viscosity,

h ¼ hN + Dh, (1)

consists of a short-time part, hN, determined solely by hydro-

dynamic interactions (HIs), and a shear-stress relaxation part

Dh, with Dh > 0. We calculate the latter using mode-coupling

theory (MCT), which, like the two employed short-time schemes,

requires S(q) as the only input.

Our comparison with the experimental dC measured by

dynamic light scattering (DLS), and with h obtained from
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viscometry, is a stringent test for our theoretical results and for the

employed isotropic interaction model, since except for the static

input, no fit parameters are involved. In particular, no further

adjustments of the theoretical predictions have been made on

referring to the actually non-spherical shape of BSA proteins. We

show that despite the simplicity of our model, most dynamic

features are well reproduced by the theoretical results, to an at

least semi-quantitative accuracy. In particular, both a low-

concentrationmaximumof the reduced viscosity, and amaximum

in dC at a different concentration, are well captured by the theory.

We note here that in the past, several experimental studies of

collective diffusion in BSA solutions9–13 have been analyzed on

basis of more approximate analytic expressions for the hydro-

dynamic interactions, for charged particles in form of far-field

expansions of the translational two-body mobility tensors trun-

cated after a few terms. In more recent studies, Bowen and

Mongruel,14 and Yu et al.,15 have calculated the collective

diffusion coefficient in conjunction with a detailed discussion of

various direct interaction contributions to the osmotic

compressibility factor, S(q / 0), entering into dC. Their treat-

ment of the salient hydrodynamic, i.e., sedimentation coefficient

contribution, to dC is still quite approximate, since it relies on

a spherical cell model expression for ordered neutral spheres,16

and on an empirical expression for the sedimentation coefficient

of charged spheres. The experimental results in the present paper

are consistent with the earlier findings, but are unparalleled

regarding the statistics, and the range of explored protein volume

fractions and added salt concentrations. Only the good quality of

our scattering data in combination with our elaborate viscosity

data has allowed for a reliable comparison to our state-of-the-art

theoretical results. The theoretical approach used in this work

goes significantly beyond earlier theoretical work on BSA protein

diffusion and viscosity, foremost regarding the thorough

hydrodynamic treatment, but also regarding the high quality of

the static structure factor input.

For BSA, also the short-time self-diffusion has been found to

be reasonably well described by a simple spheroid model.17,18 Of

course, this does not imply that the complex conformation of

a globular protein plays no role. The DLVO model, even with

inclusion of van der Waals attraction, is not sufficient to fully

explain the rich phase behavior of proteins.19,20 For example, it

has been shown that surface patchiness has an important effect

on the phase diagram.20 Also, binding of multivalent ions to the

protein surface can give rise to non mean-field behaviors beyond

DLVO, such as charge inversion, re-entrant condensation and

liquid–liquid phase separation.21–23

Generalized Stokes–Einstein (GSE) relations, which approxi-

mately relate diffusion to rheological properties in concentrated

complex liquids, are an important issue in microrheological

studies, since a valid GSE relation allows to infer a rheological

property more easily from diffusion measurements. Several GSE

relations in colloidal dispersions of electrically neutral (porous

and non-porous) spheres, and charged particle suspensions have

been explored.24–27 We study here a GSE relation not discussed in

this earlier work, which has been proposed by Kholodenko and

Douglas.28 This GSE relation, which we refer to in the following

as the KD-GSE relation, has been used in the biophysical and

soft matter community.29–32 It relates dC to h, and to the square-

root of the isothermal osmotic compressibility.
Soft Matter, 2012, 8, 1404–1419 | 1405



We present a thorough discussion of the applicability range of

the KD-GSE relation for BSA solutions, and for generic

colloidal fluids of solvent-impermeable spherical particles with

screened Coulomb interactions, for a large range of salinities.

Both the short-time and the long-time versions of the KD-GSE

relation are considered. At high salinity, where the electrostatic

interaction of particles is strongly screened, we find these two

relations to become invalid at larger concentrations. At lower

salinity, the KD-GSE relations are poorly satisfied even at low

concentrations.

The paper is organized as follows. Sec. 2 includes the experi-

mental details of the sample preparation, and of the SLS, DLS,

SAXS, and rheological measurements. In Sec. 3, we discuss the

employed simplifying model of BSA, and present the essentials of

our theoretical methods, allowing for a fast calculation of

measured static and dynamic properties. Our experiment data

are shown in combination with the theoretical results in Sections

4 and 5, dealing with static and dynamic properties, respectively.

Sec. 5 includes the examination of the KD-GSE relation. Our

conclusions are contained in Sec. 6.
2 Experimental details

Sample preparation

BSA is a globular protein with a linear extension of about 7 nm.

The considered aqueous solutions of BSA with no added salt,

and with monovalent added salt such as NaCl, have a pH in

between 5.5 and 7. Under these conditions, BSA is stable in

solution, folded in its native state, and carrying a negative net

charge in the range of roughly 8 to 20 elementary charge units

(see below for details).33,34 BSA was purchased from Sigma (cat.

A3059) as a lyophilized powder, certified globulin- and protease

free.

The sample preparation for all experimental techniques started

with the dissolution of protein powder in a solvent, and subse-

quent waiting until the solution was homogenized. The protein

mass concentration, cp, in the solution volume, VH2O
+ mp$q, is

given by the BSA mass mp via

cp ¼ mp

VH2O þmp$q
; (2)

where the specific protein volume q ¼ 0.74 ml g�1 determines the

self-volume of proteins upon dissolution.35

For small-angle X-ray scattering, deionized and de-gased

water was used as solvent. The samples with concentrations

higher than 15 mg ml�1 were prepared directly, while smaller

concentrations were prepared from a stock solution of 18 mg

ml�1. The samples were filled into a plastic syringe and inserted

into the capillary during the measurement.

For the viscosity measurements, the solutions were prepared

similarly using as solvent both deionized water, and solutions of

NaCl in deionized water. The NaCl molarity is calculated from

the total solution volume, including the protein self-volume. All

solutions used for the viscosity experiments were further de-

gased by a water-jet air-pump.

For our light scattering experiments, stock solutions of BSA

proteins in deionized water were mixed with solutions of NaCl

in deionized water according to the required concentration. The
1406 | Soft Matter, 2012, 8, 1404–1419
NaCl molarity is calculated from the total water volume. Then,

every sample was pressed with a plastic syringe through

a hydrophilized nylon membrane filter with a pore size of

100 nm (Whatman Puradisc 13), and transferred into a cylin-

drical glass scattering cell. The cell was sealed immediately with

a plastic cap.

The effect of the difference in NaCl concentrations between

light scattering and viscosity samples, arising from the slightly

differing sample preparation, is negligibly small.

Protein solutions often contain considerable amounts of

dimers and oligomers. The fraction of dimers and other oligo-

mers in commercial BSA products has been carefully analyzed,

e.g., by Hunter and Carta,36 who find a mass fraction of 6.4% of

oligomers for the BSA product from Sigma used in this work. A

purification scheme involving gel filtration has been successfully

applied by Neal et al.,10 and Placidi and Cannistraro,12 to obtain

the monomer fraction as a monodisperse model system.

However, the preparation method by Neal et al. would be quite

time-consuming and very delicate under our experimental

conditions (dialysis against deionized water), in particular since

we apply or plan many different techniques (namely, DLS,

SAXS, neutron scattering and viscometry) to the same samples.

Therefore, and similar to the light scattering studies in ref.

11,13, our sample preparation follows a more direct and simple

way, i.e. dissolution of the protein powder and removal of big

aggregates with a membrane filter. This preparation has allowed

us to reach very low salt concentrations, which after gel filtra-

tion with the connected buffer conditions would have required

an exhaustive dialysis, and could have caused further problems,

in particular in the case of de-ionized water. Our protein solu-

tions, although perhaps slightly more polydisperse, represent

thus an experimentally well-defined and well characterized

model system, with a large accessible range of salt concentra-

tions. The polydispersity effects are included in our fit functions

for the purpose of describing the polydisperse experimental

protein solution with the monodisperse theoretical model

system.
Static and dynamic light scattering

Multi-angle dynamic light scattering (DLS) was performed at

various concentrations of protein and added salt, at a tempera-

ture of T¼ 295 K. In particular, the BSAmass concentration, cp,

was chosen between 0.1 to 150 mg ml�1, and the concentration of

added salt was 0 (no added salt), 5, 150 and 500 mM. Note that,

even in the zero added-salt case, the analysis of the scattering

data discussed in Sec. 4 reveals a residual electrolyte concentra-

tion of a few mM, scaling roughly linear with cp (see Table 1).

This suggests a few possible sources of the residual electrolyte

ions. First, a possible source could be the surface-released

counterions of charged BSA oligomers, not contained in our

monodisperse model. Second, a salt contamination of the BSA

stock, and third the dissociation of acidic or alkaline surface

groups off the BSA proteins cannot be excluded.

Static light scattering (SLS) experiments were performed on

the same samples. We used a combined SLS/DLS device from

ALV (goniometer: CGS3, correlator: 7004/FAST), located at the

Institut Laue Langevin in Grenoble, with a minimum correlation

time of 3.125 ns as initial and shortest time. The HeNe laser was
This journal is ª The Royal Society of Chemistry 2012



Table 1 Fit parameters f, |Z|, ns, and A/A0, for the BSA concentration
series without added NaCl, with intensities shown in Fig. 2. The addi-
tional parameters LB ¼ 0.711 nm, s ¼ sB2

¼ 7.40 nm, a ¼ 1.75 nm, b ¼
4.74 nm are kept fixed, and A0 is taken from the form factor fit in Fig. 1.
The obtained fit values at cp ¼ 0.9,1.8,45, and 90 mg ml�1 should be taken
with a pinch of salt (see related text). The listed values for cp are according
to eqn (2)

cp [mg ml�1] f |Z| ns [mM] A/A0

0.9 5.19 � 10�4 34.5 1216 1.20
1.8 1.34 � 10�3 18.8 608 1.08
4.5 3.72 � 10�3 19.1 1278 0.96
7.2 6.97 � 10�3 16.7 1497 0.97
9 1.04 � 10�2 14.6 1510 1.05
13.5 1.28 � 10�2 12.6 1297 0.81
18 2.06 � 10�2 10.8 1292 0.85
45 8.19 � 10�2 9.47 2375 1.0
90 1.74 � 10�1 8.52 3323 1.0
operated at wavelength l0 ¼ 632.8 nm, with an output power of

22 mW. The accessible range for the scattering angle (wave-

number) was 30–150� (q ¼ 0.007–0.026 nm�1). Moreover, the

DLS intensity autocorrelation function decays on a time scale

much slower than the interaction time, sI � s2d0=ð4d0Þ � 0:3 ms,

of BSA, where d0 is the single protein average translational free-

diffusion coefficient, and sd0 is an effective hydrodynamic

diameter. Hence, in the q / 0 limit, DLS probes the long-time

collective diffusion coefficient dLC of BSA.

The coefficient dLC, also referred to as the gradient diffusion

coefficient, quantifies the long-time decay of long-wavelength,

isothermal protein concentration fluctuations. While, in

principle, dLC needs to be distinguished from its short-time

counterpart dSC, with dLC # dSC, it has been shown37,38 that the

relative difference is very small ((5%) even in highly concen-

trated systems. For solutions like the ones considered in

this work, where non-pairwise additive HI contributions are

small, dC ¼ dLC becomes practically identical to dSC. This allows

us to use more simple short-time dynamic methods for

calculating dC.
The normalized intensity autocorrelation function obtained

from DLS,

g
2
ðq; tÞ ¼ hIðq; 0ÞIðq; tÞi

hIðqÞi2 ;

was fitted according to the Siegert relation, by the double

exponential decay function

g
2
ðq; tÞ � 1 ¼

 X
i¼1;2

Ai$exp
��Diq

2t
�!2

þ B; (3)

with decay constants D1 and D2, and amplitudes A1 and A2. The

fit results were essentially the same with and without the back-

ground-correction constant B. At all probed angles, the two

decay constants are widely separated (D1 T 10 � D2). The faster

mode, D1, is attributed to the (long-time) collective diffusion

coefficient, dC, of BSA monomers. The appearance of the slower

mode characterized by D2, can be attributed to the slow motion

of the larger impurities and oligomers. After having checked that

D1 is overall q-independent within the experimental resolution, it

was averaged with respect to its residual scattering angle fluc-

tuations to gain better statistics.
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Small-angle X-ray scattering

Aqueous solutions of BSA with mass concentrations between

0.9 mg ml�1 and 270 mg ml�1, and without added salt, were

measured by small-angle X-ray scattering (SAXS), at the beam

line ID02 of the European Synchrotron Radiation Facility

(ESRF) in Grenoble, France. The standard configuration at

a 2 m sample-to-detector distance, and a photon energy of

16051 eV was used. Measurements were repeated several times in

the flow mode and with short detection times to ensure the

absence of radiation damage. The data from the CCD were

processed with the standard routines available at the beam line

for radially averaging the data and correcting for transmission.

Repeated measurements were summed up, and the solvent

scattering was measured independently and subtracted from the

data. Additionally, two dilute samples (at cp ¼ 1 and 2 mg ml�1)

with 150 mM of added NaCl were measured for form

factor fitting.
Viscosity measurements

The viscosity data were measured at T ¼ 25 �C, for different

concentrations of protein and added salt. The first data set was

obtained for solutions without added salt, while the second set

describes systems with 150 mM NaCl. All measurements were

performed at a shear rate of 60 Hz � 1/sI, using the suspended

Couette-type viscometer described in ref. 39. The important

advantage of this instrument is the possibility to measure the

viscosity with a nearly homogeneous shear rate. In contrast,

capillary methods or methods with falling probes do not guar-

antee homogeneity of shear rates. For capillary viscometers, e.g.,

the shear rate is zero at the capillary axis and maximal at its

surface. Our device, where the rotor is fully immersed in the

sample solution, works under nearly constant shear rate, without

exhibiting surface effects, which would otherwise occur especially

at higher protein concentrations. A test made for cp z 20 mg

ml�1 and 100 mg ml�1, without salt and for 2 M added NaCl,

revealed no shear-rate dependence of the viscosity for shear rates

between 50 and 95 Hz. This is consistent with the recent study in

ref. 40, where the BSA solution viscosity has been found to

be independent of the shear rate in the concentration interval

1–400 mg ml�1, for shear rates of 47–4700 Hz.

The precision of the viscosity measurements is approximately

0.1%. In order to minimize systematic errors, every measure-

ment was repeated three times, including separate sample

preparations. The viscometer directly measures the relative

shear-viscosity of the solution against pure water (for technical

details see ref. 39). For the aqueous BSA solutions without

added salt discussed in this work, the relative viscosity was

directly measured. For BSA solutions with added salt, this

quantity was obtained as the ratio of the following two values:

(a) the directly measured relative viscosity of the BSA solution

with salt against water divided by (b) the directly measured

relative viscosity of the salt solution (without BSA) against

water. We have checked that our BSA viscosity data are in good

overall agreement with corresponding viscosity data on similar

human serum albumin (HSA) solutions described in ref. 41.

In this HSA study, a glass capillary microviscometer has

been used.
Soft Matter, 2012, 8, 1404–1419 | 1407



Fig. 1 BSA form factor fit. Open circles: SAXS intensities at two protein

concentrations of cp ¼ 1 and 2 g/l, for 150 mM of added NaCl. The SAXS

intensities have been divided by cp, and by a common, q-independent factor

A0.Red solid line:Angular-averaged spheroid form factor according to eqn

(4), fitted to the SAXSdatawithin 0.3 nm�1 < q<1.15 nm�1, as indicatedby

the blue vertical line segments. The obtained fit values are a¼ 1.75 nm and

b ¼ 4.74 nm. Inset: Intensity on a double linear scale.
3 Theory

Single-particle properties

In the following, we discuss the spheroid model of BSA. We use

this model for the form factor fitting, and in determining effective

sphere diameters related to different single-particle properties.

At low protein concentration and sufficient amount of added

salt, inter-protein correlations are negligible. The scattered

intensity, I(q), is then solely determined by the form factor P, i.e.

I(q) f P(q). Crystallographic measurements42–44 have revealed

a flat and roughly heart-shaped structure of albumins. The

computation of single-particle properties with an account of the

highly complex particle shape of biomolecules can be done by

numerical simulations only and is beyond the scope of this

paper.43,45 Rather, the aim of the present study is to give an

essentially analytic description of the microstructure and the

dynamics of interacting BSA proteins with low computational

cost. We therefore intentionally choose an extremely simple

model for the fit of the protein form factor, by an oblate, solid

ellipsoid (spheroid). Clearly, this mapping of the complex protein

configuration onto a simple geometric shape is a delicate and

broad topic on its own. Considering that the focus of the present

work is on collective correlations rather than on single-particle

properties, we cannot discuss all details of this subtle matter; we

basically follow the approach of ref. 46.

For a homogeneously scattering spheroid with dimensions

a and b, where a denotes the semi-axis of revolution, the orien-

tationally averaged form factor, Pell, is given by47

PellðqÞ ¼
ð1
0

dmj f ðq;mÞj2 (4)

with the scattering amplitude f(q,m) ¼ 3j1(u)/u, and

u ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2m2 þ b2ð1� m2Þ

p
. Here, j1 is the spherical Bessel func-

tion of the first kind.

The fit of eqn (4) to our newly recorded, low-concentration

SAXS intensities at cp ¼ 1 and 2 mg ml�1, and for 150 mM of

added NaCl, is shown in Fig. 1 of Sec. 4, along with a discussion

of the obtained best fit values a ¼ 1.75 nm and b ¼ 4.74 nm.

When protein correlations come into play at higher concen-

trations or lower salinities, the spheroid model of BSA becomes

too complex for an analytic treatment. Therefore, as far as

the protein–protein interactions are concerned, we describe the

proteins as effective spheres with diameter s. Depending on the

considered single-particle property, different definitions for s can

be given.

Consider first the geometric effective diameter,

sgeo ¼ 8(ab2)1/3 ¼ 6.80 nm, which follows from equating the

volume of the effective sphere to that of the spheroid. This

effective diameter reflects the volume of the protein and the

hydration layer visible to SAXS, but does not include thermo-

and hydrodynamic effects of non-sphericity.48,49 Thus, it should

be considered as a lower boundary to the effective sphere

diameter.

A thermodynamic effective diameter, sB2
¼ 7.40 nm, follows

from demanding equal second virial coefficients, B2(T), of hard

spheroid and effective hard sphere.50

Alternatively, dynamic single-particle properties can be used in

defining the effective diameter. For hydrodynamic stick-
1408 | Soft Matter, 2012, 8, 1404–1419
boundary conditions and a < b, the translational free diffusion

coefficient of an isolated spheroid reads43,51,52

dell
0 ða; bÞ ¼ kBTSða; bÞ

12ph0a
; (5)

with absolute temperature T, Boltzmann’s constant kB, solvent

shear-viscosity h0, S(a,b) ¼ 2 atan x(a,b)/x(a,b) and

xða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja2 � b2j

p .
a. Equating dell0 to the diffusion coefficient,

d0 ¼ kBT/(3ph0sd0), of an effective sphere gives sd0 ¼ 7.38 nm.

Finally, one can derive another effective diameter from the

intrinsic viscosity

½h� ¼ lim
f/0

hðfÞ � h0

h0f
; (6)

where f is the particle volume fraction. For a spheroid with

hydrodynamic stick-boundary conditions,53,54

½h�ell¼ 5

2
þ 32

15p

�
b

a
� 1

�
� 0:628

�
1� a=b

1� 0:075a=b

�
; (7)

which for a ¼ b reduces to the Einstein result, [h]sph ¼ 2.5, for

a solid sphere. Note here that [h]ell > 2.5 for a s b. Explicitly,

[h]ell ¼ 3.25 for the best fit values a and b given in Fig. 1. On

demanding equality of the interaction-independent linear terms

in the virial expansions of the viscosity,

h

h0

¼ 1þ ½h�fþ O
�
f2
�
;

for spheroids and effective spheres, and on using fell ¼ (4p/3)ab2n

and fsph ¼ (p/6)s[h]
3n for an equal number density n, the effective

diameter s[h] ¼ 7.42 nm is obtained.

Due to the moderate aspect ratio, b/a¼ 2.71, the four obtained

effective diameters are quite similar in magnitude. We use

s ¼ sB2
¼ 7.40 nm in all our calculations of static and dynamic

properties discussed in this paper.
Static scattering intensity and structure factor

Concentrated protein solutions exhibit pronounced inter-particle

correlations which are reflected in the static scattering intensity.
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This applies also to dilute, low-salinity solutions where the

proteins show long-range electrostatic repulsion.

In order to allow for an analytical theoretical treatment, we

assume that the static scattering intensity of interacting BSA

proteins can be approximated by

I(q) ¼ AcpPell(q)Sm(q), (8)

where Sm is the so-called measurable static structure factor. Here,

A is a q-independent factor (of dimension velocity3), that should

be the same for all intensity measurements corrected for

recording time and source intensity.

For calculating Sm(q), we use the rotational-translational

decoupling approximation,37,55 where the spheroid shape is

accounted for in the scattering amplitudes only, so that

Sm(q) ¼ [1 � X(q)] + X(q)S(q). (9)

Here,

X ðqÞ ¼ 1

PellðqÞ

2
4ð1

0

dmf ðq;mÞ
3
5

2

; (10)

with 0# X(q)# 1 and X(q / 0) ¼ 1, and S is the so-called ideal

structure factor of ideally monodisperse effective spheres of

diameter s ¼ sB2
and screened Coulomb repulsion of DLVO

type. For the BSA model spheroid used here, X(q) stays close to

unity for q ( 0.5 nm�1, decaying for larger q steeply towards its

first zero value at q z 1.3 nm�1. For q > 1.3 nm�1, X(q) < 0.04.

The orientational disorder assumed in the decoupling approxi-

mation has the general effect of damping the oscillations in

Sm(q). While Sm(q) is practically equal to one for q T 1.3 nm�1,

irrespective of the still visible oscillations in S(q), the effect

of orientational disorder on Sm(q) is weak in the range

q( 0.5 nm�1, where the most distinctive features in S(q) are seen.

We further note that Sm(q / 0) ¼ S(q / 0) for monodisperse

systems, a feature which plays an important role in our upcoming

discussion of collective diffusion.

The ideal structure factor, S(q), entering into eqn (9), is

calculated using the repulsive part of the DLVO pair-potential,5

buðxÞ ¼
8<
:

N; x ¼ r=s\1;

g
e�kx

x
; x. 1;

(11)

also referred to as the hard-sphere Yukawa (HSY) potential. The

coupling parameter, g, and the screening parameter, k, are given

by

g ¼ LB

s

	
e k=2

1þ k=2


2

Z2; (12a)

k2 ¼ k2
c þ k2

s ¼
LB=s

1� f

�
24fjZj þ 8pnss

3
�
: (12b)

Here, LB ¼ be2/3 is the solvent-characteristic Bjerrum length in

Gaussian units, b ¼ 1/(kBT), 3 is the solvent dielectric constant,

and Z is the effective protein charge number in units of the

proton elementary charge e. The factor 1/(1� f) in k2 corrects for

the free volume available to the microions.56,57 We have not

included van der Waals (vdW) forces in u(x). However, we have
This journal is ª The Royal Society of Chemistry 2012
checked that the influence of vdW attractions is small for most of

the considered systems.

Eqn (12b) consists of two additive parts. The first part,

k2c f |Z|, is due to protein-surface released counterions, which are

assumed to be monovalent. The second part, k2s , accounts for the

screening due to all other monovalent microions. Owing to

the overall charge neutrality, this contribution is proportional to

the co-ion concentration ns. A lower bound of ns $ 10�7 M in

pH-neutral aqueous solutions is due to the self-dissociation of

water. Additional contributions to ns can arise from dissolved

CO2, and added salt such as NaCl. For a protein solution, ns can

have a (putatively linear) dependence on cp if charged protein

oligomers are present, acting as an additional source of surface-

released counterions not contained in our model. Moreover, the

protein stock solution might contain a residual amount of salt,

and the proteins might dissociate acidic or alkaline surface

groups during solvation. Note that due to the overall charge

neutrality, the total concentration of monovalent counterions is

given by ns + 6f|Z|/(ps3).

In recent work,6,7 two of the present authors have derived

a computationally efficient integral equation scheme for

computing S(q) using the screened Coulomb potential in eqn

(11). This so-called modified penetrating background corrected

rescaled mean spherical approximation (MPB-RMSA) shares

the analytical simplicity of the widely used RMSA,46,58 but is

distinctly more accurate. All calculations of S(q) in this paper are

based on the MPB-RMSA.

The spheroid-Yukawa (SY) model used in our calculations of

I(q) and Sm(q) ignores orientational-translational coupling.

Therefore, it can be expected to apply only to fluid-phase BSA

solutions when cp is sufficiently low, and when the ionic strength

is not too large, so that the anisotropic protein shape and pair-

interaction parts are not important. At larger cp, there is orien-

tational-translational coupling, and the decoupling approxima-

tion becomes invalid. We note again that the possible presence of

residual protein oligomers and scattering impurities is not

accounted for in our one-component model. The virtue of the SY

model, however, is its analytical simplicity. The concentration

range in which the SY model is applicable to BSA is examined

in Sec. 4.

Since we use a spherically symmetric screened Coulomb plus

hard-core pair potential for the protein–protein interactions,

a short discussion of the neglected anisotropy in the electric

double layer around a charged spheroid is in order here.

The mean electrostatic potential,Fðr;mÞ ¼PN
l¼0FlðrÞPlðmÞ, of

a spheroid with a corresponding axisymmetric charge distribu-

tion immersed in an electrolyte solution includes in general

higher-order multipoles with l > 0. Here, r is the distance of

the spheroid center to the field point, m¼ cos w is the cosine of the

angle relative to the spheroid rotational symmetry axis, and the

Pl ’s are Legendre polynomials.

For large r, all multipoles decay asymptotically equally fast

according to59–64

FlðrÞ � fl
e�kr

r
; (13)

where k denotes the inverse electrostatic screening length, and fl
depends on the charge distribution. This implies that, in prin-

ciple, the pair interaction energy of two spheroids depends on
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their relative orientation even when r [ k�1. However, the

multipolar strengths, fl, for a spheroid with b/a � 1 can be

expected to be small for larger l. Moreover, since after orienta-

tional averaging, hPl(m)im ¼ 0 for all l > 0, our neglect of

anisotropic pair interaction contributions can be expected to be

reasonable, for systems where the particles can essentially rotate

freely.
Short-time diffusion

We summarize here the analytical methods used in calculating

the (short-time) collective diffusion coefficient dC. These methods

require S(q) as their only input, with the BSA protein interac-

tions described by the spherical pair potential in eqn (11).

The colloidal short-time regime covers correlation times t

within sB � t � sI. Here, sB ¼ mp/(3ph0s) is the momentum

relaxation time of a globular protein of mass mp. Within a short-

time span, a protein has diffused a very small fraction of its size

only. For BSA in water, sB � 1 ps, and sI z 0.3 ms. The BSA

short-time dynamics is thus not resolved in our DLS experiment

determining the measurable dynamic structure factor, Sm(q,t), as

a function of wavenumber q and correlation time t.

Within the translational-orientational decoupling approxi-

mation used in the SY model, Sm(q,t) is determined as

Sm(q,t) ¼ [1 � X(q)]G(q,t) + X(q)S(q,t), (14)

where G(q,t) and S(q,t) are, respectively, the self intermediate

scattering function,65 and the dynamic structure factor of ideally

monodisperse, charged effective spheres interacting according to

eqn (11).

As discussed in relation to eqn (3), the diffusion of oligomers

or impurities results in a well-separated mode in g2(q,t), with

a decay rate about ten times smaller than q2dLC. Therefore, we

denote the (monomeric) protein–protein dynamic structure

factor, corrected for the well-separated slow oligomer mode, by

Sp
m(q,t).

Owing to the smallness of the proteins compared to the

wavelength of visible laser light used in our DLS experiments,

one obtains t [ sI and q � qm. Here, qm is the wavenumber

where S attains its principle peak value. On recalling that

X(q � qm) z 1, it follows that the influence of orientational

disorder on Sp
m(q,t) via the anisotropic spheroid scattering

amplitude f(q,m) is negligible. As a consequence,

Sp
m(q � qm,t [ sI) f exp[�q2dLCt]. (15)

To calculate dLC z dSC, we use two complementary analytical

methods, namely a self-part corrected version of the so-called dg

scheme due to Beenakker and Mazur,8,66–69 denoted here as the

corrected dg scheme for brevity, and a pairwise additive (PA)

approximation of the HIs. The latter becomes exact at very low

concentrations, but its prediction for dSC worsens when protein

volume fractions f T 0.05 are considered (see our discussion of

Fig. 3 in Sec. 5). On the other hand, the PA predictions for hN,

and for the short-time self-diffusion coefficient dS not considered

here, are reliable up to substantially larger volume fractions, as

has been ascertained in comparison to Stokesian Dynamics
1410 | Soft Matter, 2012, 8, 1404–1419
computer simulations8,26 and experimental data.66 The PA

expression for dSC reads

dS
C

d0
¼ 1

Sðq/0Þ
�
dS

d0
� 5fþ 12f

ð1
N

dxx½gðxÞ � 1�

þ24f

ðN
1

dxx2gðxÞ~ya12ðxÞ þ 8f

ðN
1

dxx2gðxÞ½~xa
12ðxÞ � ~ya12ðxÞ�

�
; (16)

with dS given in PA approximation by

dS

d0
¼ 1þ 8f

ðN
1

dxx2gðxÞ�xa
11ðxÞ þ 2ya11ðxÞ � 3

�
: (17)

The two-body mobility functions, xaij and yaij, can be expanded

analytically in powers of s/r ¼ 1/x. The short-range mobility

parts

~xa12(x) ¼ xa12(x) � (3/4)x�1 + (1/8)x�3,

~ya12(x) ¼ ya12(x) � (3/8)x�1 + (1/16)x�3,
include all terms in the series expansion in 1/x with the far-field

terms up to the dipolar level subtracted off. For x > 3, an explicit

analytical expansion to O(x�20) is used.70 Since the series expan-

sion in 1/x converges slowly at small separations, accurate

numerical tables, which account for lubrication at near-contact

distances,71 are employed for x > 3.

The only input required in eqn (16) and (17) is the radial

distribution function g, related to S by a one-dimensional

Fourier transform.65 The two functions are obtained in our

analysis by the analytical MPB-RMSA.

The second short-time method used in the present work for

calculating dSC z dC and hN, is the self-part corrected dg scheme.

In this scheme, dSC is obtained from the exact relation37

dS
C

d0
lim
q/0

SðqÞ ¼ dS

d0
þ lim

q/0
HdðqÞ (18)

containing the distinct part, Hd(q), of the so-called hydrody-

namic function H(q). The dg scheme of Beenakker and Mazur

provides an easy-to-use integral expression for Hd(q), including

S(q) as the only required input. The explicit form of the

dg-scheme expression for Hd(q) is given in26,69 and will be thus

not repeated here.

Extensive comparisons with Stokesian Dynamics simula-

tions,8,26 and experiments on charged colloids,66,72 and for small f

also with PA calculations, have shown that the dg scheme

predictions for Hd(q) are good for all concentrations up to the

freezing transition value, even though the dg scheme involves

hydrodynamic approximations at any concentration. In partic-

ular, it disregards lubrication effects. Lubrication, however, is

inconsequential for charge-stabilized particles where near-

contact configurations are unlikely.

Different from Hd(q), the accuracy of the dg scheme is less

good for charged particles regarding the self-part, dS, of d
S
C in

eqn (18).26,66 To remedy this deficiency, we use a hybrid method,

referred to as the self-part corrected dg scheme, in which dS is

calculated using the PA expression in eqn (17). It has been shown

both for charged colloids8,26,66 and Apoferritin protein
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solutions,73 that this hybrid method works well at fluid state

concentrations.
High-frequency viscosity

The high-frequency viscosity, hN, linearly relates the average

suspension shear stress to the average rate of strain in a low-

amplitude, high-frequency oscillatory shear experiment. While

this short-time quantity has been rather routinely determined for

micron-sized charge-stabilized colloids,25,74 a direct mechanical

measurement of hN for BSA solutions is difficult, since the

required frequencies u [ s�1
I are in the MHz regime. We are

interested here in hN since, according to eqn (1), it is an impor-

tant contribution to the static viscosity h. The latter has been

determined experimentally in the present work.

In PA approximation, hN is given by26,75,76

hN

h0

¼ 1þ 5

2
fð1þ fÞ þ 60f2

ðN
1

dxx2gðxÞJðxÞ; (19)

where the rapidly decaying shear mobility function J(x), with

J(x) ¼ 15/128 x�6 + O(x�8) for stick boundary conditions,

accounts for two-body HI effects. In performing the integral over

g(x), the leading-order long-distance contribution is dominating

for x > 3. Accurate numerical tables,71 where the lubrication

effect for x z 1 is included, are used for x < 3.

The dg scheme of Beenakker and Mazur can be also used for

calculating hN. Similar to the dg-scheme expression for dSC, the

standard (2nd order) dg scheme result for hN consists of

a microstructure-independent self-part, and a distinct part given

in form of an integral over S(q).68 In recent work, two of the

present authors have shown that a self-part corrected version of

the original dg scheme expression for hN gives results for charged

particles in very good agreement with Stokesian Dynamics

simulations.8 This self-part corrected dg scheme for hN is used in

the present work.
Static shear-viscosity

In long-time rheological measurements on protein solutions

under steady shear, there is an additional shear–stress relaxation

part, Dh, contributing to the static viscosity h ¼ hN + Dh. This

contribution is influenced both by HIs and direct interaction

forces. It can be calculated approximately within the mode-

coupling theory (MCT) of Brownian systems. While a version of

MCT for Dh with far-field HI included has been discussed in

earlier work together with an extension to multicomponent

systems,77 for analytical simplicity we use here the standard one-

component expression

DhMCT ¼ kBT

60p2

ðN
0

dt

ðN
0

dq q4
�
Sðq; tÞ
SðqÞ

d

dq
logSðqÞ

�2
; (20)

which has been obtained, e.g. in ref. 77, under the neglect of HIs.

In principle, DhMCT should be calculated self-consistently by

a numerically expensive algorithm in combination with the cor-

responding MCT memory equation for S(q,t).78 However, the

BSA solutions explored here are rather weakly coupled particle

systems, with structure factor maxima S(qm) < 1.2. Thus, as we

have thoroughly checked in comparison to fully self-consistent

MCT calculations, DhMCT can be obtained more simply in a first
This journal is ª The Royal Society of Chemistry 2012
iteration step where S(q,t) in the integral of eqn (20) is approx-

imated by its short-time form S(q,t)/S(q) ¼ exp[�q2d0t/S(q)],

valid without HI. The difference to the fully self-consistent result

for DhMCT is at most a few percent, even for the most concen-

trated systems considered.

Moreover, again due to the only moderately strong interpar-

ticle correlations, Dh augments hN by at most ten percent.

Therefore, the neglect of HI in DhMCT can be expected to be

rather insignificant for the systems considered since the dominant

effect of HI is included already in hN. Theoretical results for h

shown in this paper are all based on the first iteration solution

for DhMCT, and on hN calculated using the self-part corrected

dg or PA schemes. For all explored systems, the difference in

hN between the PA and corrected dg scheme is at most two

percent.
4 Static properties: experiment and theory

4.1 Form factor fit

In Fig. 1, SAXS intensities for BSA solutions of very small

protein weight concentrations, cp ¼ 1 and 2 mg ml�1, and 150

mM of added NaCl, are shown along with the best-fit spheroid

form factor. Note that our form factor fit relies on a simplified

shape model, so that some controlled systematic deviations from

experimental data are to be expected. To check for a residual

effect of interparticle correlations on I(q), S(q) was calculated for

the present two systems to first order in f using the full DLVO

potential, with |Z| � 30 and a Hamaker constant of 3kBT.
79 The

so-obtained structure factor deviates only very little from unity

with S(q / 0) z 0.99.

Thus, to fit the measured intensity in Fig. 1, we have used eqn

(8) for I(q) with Sm(q) set equal to one. Using an automatic

weighted least-squares minimizer, the spheroid semi-axes a and

b entering into Pell(q) were varied to achieve a best fit intensity for

a given prefactor A in eqn (8). This fitting procedure was iterated

for different values for A, until optimal agreement with the

SAXS intensities within the range 0.3 nm�1 < q < 1.15 nm�1 was

achieved, resulting in a ¼ 1.75 nm and b ¼ 4.74 nm. These values

for the spheroid semi-axes are in good accord with previously

reported values, and in reasonable agreement with the linear

dimensions of the reported heart-shape like crystal structure of

albumins.42–44,46 In a related, recent study by some of the present

authors,17 similar values a ¼ 1.80 � 0.05 nm and b ¼ 4.60 � 0.15

nm have been determined, which are in decent agreement with

the values obtained here. The optimized value for A, denoted by

A0, has been also used in our SAXS intensity fits for systems

without added salt, which will be discussed in the following

subsection.

The best-fit form factor, Pell, depicted in Fig. 1 deviates

from the SAXS intensities outside the fitted q-range. For

qT 1.15 nm�1, corresponding to length scales 2p/q( 6 nm(s,

the complex internal structure of BSA is probed, which is not

accounted for in our simplified SY model. The deviations visible

for q( 0.3 nm�1, corresponding to distances of roughly 20 nm or

larger, are likely due to additional scattering species made up of

larger particles such as BSA oligomers or impurities. Since the

size-, form-, and charge-distributions of oligomers and impurities

are unknown, our choice of the lower q-boundary in fitting I(q) is
Soft Matter, 2012, 8, 1404–1419 | 1411



somewhat more ambiguous than the upper boundary. Therefore,

we have repeated the intensity fitting for various low-q bound-

aries, finding that the weighted least squares deviation increases

dramatically if the boundary is selected below 0.3 nm�1. More-

over, the fit values for a and b remain essentially constant when

the lower q-boundary is chosen larger than 0.3 nm�1.

The fit parameters of a spheroid form factor to SAXS data of

proteins in general depend slightly on the measured q range, the

prepared protein concentration, solvent and salt conditions, and

background subtraction. In the context of the present study, the

related changes of the spheroid model parameters are small

compared to the experimental error bars and will be discussed in

the next section.
4.2 Concentration series of scattered intensities

Fig. 2 includes the SAXS intensities for all explored BSA solu-

tions without added salt that could be fitted using the decoupling

approximation expression in eqn (8), for S(q) calculated in MPB-

RMSA using the screened Coulomb potential in eqn (11). In

order to emphasize the shape differences across the data set, the

intensities are divided by their respective fitted amplitudes A, and

by the protein concentrations cp. The most concentrated solution

shown here is the one for cp ¼ 90 mg ml�1. Two even more

concentrated systems for cp ¼ 180 and 270 mg ml�1 are not
Fig. 2 SAXS intensities from BSA solutions at various cp, without

added salt, divided by Acp. From top to bottom: cp ¼
0.9,1.8,4.5,7.2,9,13.5,18,45,and 90 mg ml�1. The intensity curves are

displaced in steps of 0.1 along the vertical axis for better visibility. The

SAXS-data for the extended range q( 4 nm�1 were taken into account in

all fits, but shown here only up to q ¼ 1.2 nm�1. Red solid lines: best fits

according to eqn (8) with S(q) calculated in MPB-RMSA. The fit

parameters are listed in Table 1.
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depicted in the figure since their intensities could not be fitted

reasonably well by the SY model.

In order to fit the experimental intensity data using eqn (8),

some deviations of the prefactor A from the optimized form

factor fit value A0 have to be allowed for (see Table 1). The fit of

each individual intensity curve in Fig. 2 was made as follows:

After dividing the SAXS intensity byA0 and cp, the weighted sum

of quadratic deviations between SAXS data points and the

intensity according to eqn (8) was minimized by an automatic

three-dimensional weighted least-squares minimizer with respect

to the fitting parameters {|Z|,ns,f}. For each concentration, the

whole experimental data set was used, for wavenumbers from

0.07 to about 4 nm�1. If the fit was unsatisfactory, the prefactor

A was slightly altered, and the optimization with respect to

{|Z|,ns,f} was repeated. This procedure was iterated until

convergence in all fit parameters was achieved. For all considered

concentrations, LB ¼ 0.711 nm, s ¼ sB2
¼ 7.40 nm, a ¼ 1.75 nm,

and b ¼ 4.74 nm were kept fixed. Table 1 summarizes the

obtained best fit parameters.

While the overall intensity fits for the two lowest concentra-

tions, cp ¼ 0.9 and 1.8 mg ml�1, look reasonably good, they

contain some peculiarities. A shoulder is present in the fit

intensity extending from q z 0.3 to 0.8 nm�1, overshooting the

experimental data by several standard deviations. Moreover,

the prefactor A is substantially larger than A0 in both cases, and

the fitted effective charge number |Z| assumes a questionably

large value of 34.5 for cp¼ 0.9 mgml�1. These peculiarities can be

attributed to impurity contributions neglected in eqn (8). Note

that the maximal intensities in both systems occur at wave-

numbers well below the value 0.3 nm�1, where impurities are

found to obstruct also the form factor fit in Fig. 1.

All our attempts to remedy these fitting problems for the two

most dilute samples failed. Lacking information about the shape

and size distribution, and the interactions of the impurities, we

cannot improve on eqn (8). Restricting the wavenumber interval

in the fitting procedure to qT 0.3 nm�1 leads to no improvement,

either. While eqn (8) is expected to be accurate in this restricted

q-range, the maximum in I(q) is not included. The intensity for

q > 0.3 nm�1 is a monotonically decaying curve, almost

completely determined by the form factor. It therefore lacks

distinct features coming from particle correlations, rendering the

fit with respect to {|Z|,ns,f} into an overdetermined problem. For

all these reasons, our fit parameters in Table 1 for cp ¼ 0.9 and

1.8 mg ml�1 should not be considered as quantitatively accurate.

Except for the two most dilute systems, all other systems with

concentrations from cp ¼ 4.5 to 90 mg ml�1 included in Fig. 2 can

be excellently fitted by eqn (8). The obtained effective charges,

salt concentrations, and volume fractions all assume reasonable

values, showing systematic dependencies on the BSA concen-

tration. Note, however, that for cp ¼ 45 and 90 mg ml�1, the SY

model is pushed to its limit. On assuming a Hamaker constant of

3 kBT,
79 the repulsive barrier height of the DLVO potential

becomes very small, with values of 1.3 and 0.5 kBT at cp ¼ 45 and

90 mg ml�1, respectively. The contact value of g(x) at x¼ 1 is just

barely zero for the more dilute system, whereas g(x¼ 1+)z 0.9 in

the more concentrated system. Obviously, the SY model with

purely repulsive, spherically symmetric pair interactions is bound

to fail when the particles are allowed to come into hard-core

contact. Thus, the system with cp¼ 45 mgml�1, and fitted volume
This journal is ª The Royal Society of Chemistry 2012



Fig. 3 Top panel: Inverse zero-wavenumber limiting static structure

factor of BSA solutions, obtained from SLS (connected black circles) and

our MPB-RMSA scheme (red solid lines). Number concentrations, ns, of

added NaCl as indicated. Bottom panel: Fast mode coefficient, D1 ¼ dLC,

obtained from the discussed double-exponential fit to the DLS data of

BSA solutions (connected black circles), and dSC calculated by the self-

part corrected dg scheme (red solid lines), and the PA approximation

(blue dotted curves). All theoretical curves are based on input parameters

f(cp) and Z(cp) interpolated from Table 1. In the zero added-salt case, the

ns(cp) values were also interpolated using Table 1. Theoretical results for

added NaCl are obtained using fixed salt concentrations of ns ¼ 5 and
fraction f ¼ 8.19%, is clearly on the borderline of the SY model.

Somewhat unexpectedly, and probably fortuitously, the system

with cp ¼ 90 mg ml�1 can still be fitted with good accuracy.

Summarizing, the fit values for the most concentrated systems

with cp¼ 45 and 90 mgml�1 in Table 1 should be interpreted with

caution, since the fit parameters might be significantly distorted

by the discussed deficiencies of the SY model. An indication for

this could be the obtained fit values for f (cp), which for the two

most concentrated samples clearly overshoot the linear depen-

dence on cp found approximately for the lesser concentrated

systems (see Table 1).

In closing our discussion of the static scattered intensities, we

note that fit parameters slightly different from the ones in Table 1

are obtained, when in place of the BSA model spheroid axes

(a,b) ¼ (1.75 nm, 4.74 nm), the values (a,b) ¼ (1.80 nm, 4.60 nm)

given in ref. 17 are used. For instance, at cp¼ 4.5 and 18 mg ml�1,

the best-fit values for |Z| change to 18.4 and 10.7, respectively.

Note that, in comparison to ref. 46, where the RMSA was

employed in fitting I(q), we use here the improved MPB-RMSA

integral equation scheme for S(q), resulting in more precise fit-

values. Moreover, different from the earlier intensity fitting

described in ref. 46, the dephasing influence on I(q) originating

from the particle asphericity is accounted for approximately in

the decoupling approximation used in the present study. The

slightly different spheroid semi-axes (a,b) ¼ (1.80 nm,4.60 nm),

and the corresponding, slightly changed fit-parameters, do not

cause appreciable changes in the dynamical properties. For

instance, the collective diffusion coefficient changes by no more

than 3%, and the changes in the static- and high-frequency

viscosities are less than 0.1%. Note that the somewhat smaller

spheroid causes changes of the fitted volume fraction of about

5% which does not change absolute values but slightly rescales

the protein concentration axis for the theoretical predictions.
150 mM. The input parameters LB ¼ 0.711 nm, s ¼ sB2
¼ 7.40 nm, a ¼

1.75 nm, b ¼ 4.74 nm, and d0 ¼ dell0 (a,b) ¼ 5.82 �A2 ns�1 are kept fixed

throughout. For the zero added-salt case, the green vertical line segment

at cp z 34 mg ml�1 marks the protein mass-concentration where the

surface-released counterion contribution to k2 in eqn (12b) is equal to the

co-ion contribution.
5 Dynamic properties: experiment and theory

In the following, we compare the DLS data for the collective

diffusion coefficient of BSA solutions, and the static shear

viscosity measured in our suspended Couette-type rheometer, to

the results of the dynamic schemes discussed in Sec. 3. Moreover,

we assess the accuracy of a generalized Stokes–Einstein relation

connecting the viscosity to the collective diffusion coefficient and

the isothermal osmotic compressibility. We reemphasize here

that the employed theoretical schemes use S(q) and g(r) as the

only input. With S(q) and g(r) determined from the fits to the

SAXS-intensities, all theoretical results for dC, hN and h are thus

obtained without any additional adjustable parameters.
5.1 Collective diffusion coefficient

Fig. 3 includes our SLS/DLS data for 1/S(q / 0) (upper part)

and dLC ¼ dC (lower part), for aqueous BSA solutions in

comparison with the theoretical predictions. Systems without

added salt, and for concentrations ns ¼ 5 and 150 mM of added

NaCl, are considered. Additional measurements using 500 mM

of added NaCl (data not shown) agree almost perfectly with the

data for ns ¼ 150 mM, indicating that electrostatic repulsion is

fully screened already at ns ¼ 150 mM. As the input to the

dynamics schemes, S(q) and g(r) were generated by the
This journal is ª The Royal Society of Chemistry 2012
MPB-RMSA, using concentration-interpolated input parame-

ters f(cp) and Z(cp) based on Table 1. For no added salt, ns(cp)

was interpolated using Table 1, while ns ¼ 5 and 150 mM were

kept fixed (independent of cp) in the corresponding theoretical

calculations. The value dell0 ¼ 5.82 �A2 ns�1 of the spheroid

translational free diffusion coefficient was used to obtain dC in

the experimental units from the dimensionless results for dC/d0
obtained by both theoretical schemes.

For no added salt, the experimental dc(cp) assumes a maximum

at cp z 10�20 mg ml�1. This maximum is qualitatively repro-

duced by both theoretical schemes (corrected dg and PA), but its

location is predicted to occur at somewhat larger concentrations

cp z 20�30 mg ml�1. For BSA concentrations larger than the

concentration at the maximum value for dC, the PA-predicted

dc(cp) reduces strongly, eventually reaching non-physical nega-

tive values for cp T 110 mg ml�1. This illustrates the expected

failure of the PA scheme at higher concentrations, indicating that

three-body contributions to HI, totally left out in the PA, but not

in the dg scheme, come into play for cp T 30 mg ml�1. Up to the
Soft Matter, 2012, 8, 1404–1419 | 1413



Fig. 4 Static relative (top panel) and reduced (bottom panel) viscosity

for T ¼ 25 �C as function of cp. Theoretical curves are based on input

parameters f(cp) and Z(cp), concentration-interpolated using Table 1.

Symbols: experimental data without added salt (black circles) and with

ns¼ 150mM (red diamonds). Lines: theoretical results without added salt

(black solid line, ns(cp) interpolated using Table 1) and with a fixed salt

concentration of ns ¼ 150 mM (red dashed curve). Note the different cp-

ranges in the two panels of the figure.
concentration value at the maximum of dC, both schemes agree

very well, with residual differences not visible for cp ( 20 mg

ml�1 on the scale of Fig. 3. Despite its residual small inaccuracies,

the self-part corrected dg expansion will therefore be used in the

following calculations of dC.
The physical origin of the non-monotonous concentration

dependence dc(cp) at low concentrations of salt can be under-

stood on the basis of eqn (16), rewritten using dC z dSC as

dC

d0
¼ lim

q/0

HðqÞ
SðqÞ ; (21)

with H(q) ¼ ds/d0 + Hd(q). The ratio in eqn (21) consists of two

competing factors. The factor 1/S(q/ 0), inversely proportional

to the isothermal osmotic compressibility of ideally mono-

disperse particles, increases monotonically as a function of the

BSA concentration. Owing to the larger coupling constant g in

eqn (12a), a much steeper initial increase of 1/S(q / 0) is

observed for weakly screened systems than for systems with

added salt (cf. the top panel of Fig. 3). As cp is further increased,

the amount of surface-released counterions increases corre-

spondingly, leading to an enhanced electrostatic screening. As

a consequence, the rate of change of 1/S(q / 0) with cp reduces

significantly at a colloid concentration roughly set by the crite-

rion, k2c(cp) ¼ k2s , of equal surface released counterion and salt-

co-ion contributions to the screening parameter in eqn (12b).

The nominator in eqn (21) is the reduced sedimentation

velocity, H(q / 0), which is known from theory and experi-

ment66 to decrease monotonically, for not too large concentra-

tions and low salinity according to 1 � asedf
1/3, with ased ¼

1.6�1.8 in the case of highly charged particles, and as 1� 6.546 f

+ 21.918 f2 + O(f3) for neutral hard spheres.80 For strongly

correlated particles, the competition between decreasing

compressibility and decreasing sedimentation coefficient with

increasing cp leads thus to a maximum in dc(cp), at a concentra-

tion roughly determined from k2c(cp) ¼ k2s .

The DLS-measured values for dC are not quantitatively

reproduced by the self-part corrected dg scheme. Both in the

zero added-salt case, and for ns ¼ 150 mM, dC is underestimated

by the corrected dg scheme prediction by about 25%. The

difference might be simply due to the complex-shaped BSA

proteins having a translational free diffusion coefficient larger

than the value dell0 ¼ 5.82 �A2 ns�1 used in the SY model. In fact,

an extrapolation of the experimental data for dC to zero

concentration leads to a larger value for d0 in the range of

6�7 �A2 ns�1, which can completely explain the differences in dC
between experiment and theory. However, this low-concentra-

tion extrapolation should not be over-interpreted as being

conclusive, since the experimental data are rather noisy for low

concentrations.

While the agreement between the theoretical and the experi-

mental dC’s is overall rather satisfying for very low and very high

salt content, strong differences are found for the intermediate

added NaCl concentration of 5 mM. This is not surprising,

however, since already the zero added-salt experiments led to fit

values for ns of 1 to 3 mM. Therefore, ns is most probably

a function of cp also in the 5 mM added NaCl case, instead of

being constant as assumed in the calculations. Moreover, there is

no obvious reason to expect that the relation Z(cp), interpolated

from Table 1, remains valid at arbitrary added salt
1414 | Soft Matter, 2012, 8, 1404–1419
concentrations. Additional future SAXS measurements at 5 mM

added NaCl are necessary to determine, for this case, the precise

dependence of ns and Z on cp.
5.2 Static viscosity

The rheometric results for h without added salt, and with

150 mM of added NaCl, are plotted in Fig. 4 as a function of cp,

and compared to the theoretical predictions. Apart from

pronounced differences at lower concentrations, discussed in

detail further down, the experimental data agree overall decently

well with the theoretical predictions. Due to the rather weak

microstructural ordering of the BSA proteins, characterized by

structure factor peak heights less than 1.2 even for the most

concentrated samples, the shear-stress relaxation term Dh

contributes only little to h, with a maximum relative contribution

of about 10% near cp ¼ 100 mg ml�1. The dominant contribution

to h is given by hN, which is predicted to good accuracy both by

the PA scheme and the corrected dg scheme, with practically

equal results. The PA scheme is applicable to the whole experi-

mentally probed concentration range of cp ( 100 mg ml�1, since

three-body and higher order HI contributions affect hN to

a lesser extent than dC (cf. here Fig. 3, showing the failure of the

PA prediction for dC already for cp ( 50 g/l).
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The addition of larger amounts of salt lowers the values for h,

as can be noticed from the two experimental data sets depicted in

Fig. 4. The reason for this is the enhanced electrostatic screening,

causing Dh to decrease with increasing salinity in going from

strongly structured, charged spheres to basically neutral hard

spheres. In contrast, hN is known from theory and experiment8,26

to increase upon the addition of salt, due to the enlarged influ-

ence of near-field HIs when the particles are allowed to get closer

to each other in electrostatically screened systems. Thus, hN and

Dh have opposite trends in their dependencies on the concen-

tration of added salt. These competing trends are the reason for

the weak crossover in the two theoretical curves for h, noticed in

the top panel of Fig. 4 at cp z 67 mg ml�1. For particle

concentrations larger than this cp value, the increase of hN
overcompensates the decrease in Dh when, in place of the zero

added-salt system, a system with ns ¼ 150 mM is considered.

That such a weak crossover is not observed in the experiment

data in Fig. 4, points to an underestimation of the crossover

concentration by our simplifying theories for h, possibly due to

the neglect of HIs in the Dh calculation.

A remarkable feature is noticed from the bottom panel of

Fig. 4, where we plot the so-called reduced viscosity,

hred

�
cp
� ¼ h

�
cp
�� h0

h0cp
; (22)

as a function of cp. The concentration-dependent function cphred/

f reduces to the intrinsic viscosity, [h], defined in eqn (6), in the

limit of vanishing concentration. The single-particle property [h]

is a viscometric measure of the particle non-sphericity. Note here

that features of dilute systems are more clearly revealed in hred
than in h.

Both experimental data sets in the bottom panel of Fig. 4 show

a local maximum of hred at low cp values, which for the zero

added-salt system (black open circles) is visible as a weak non-

monotonicity near cp z 3 mg ml�1. For the system with 150 mM

added NaCl (red open diamonds), the experimental maximum is

represented essentially by a single data point at cp ¼ 1 mg ml�1,

where hred z 6.5 ml g�1, whereas the remaining data points

describe a nearly constant plateau value of 4.5 ml g�1. This

plateau value is in good overall agreement with reported values

for hred at low cp, in the range 3.8 to 4.9 ml g�1.12,81–83

Regarding the large experimental error bars at very low cp,

from the figure, we can not attribute physical significance to the

single-point maximum in the ns ¼ 150 mM system. A more

refined data resolution in a future experimental study is clearly

needed here. Even the maximum in hred for the zero added-salt

case might be disputable on basis of the experimental data alone.

However, the existence of such a maximum in hred draws its

credibility from the comparison to the theoretical results,

showing a maximum in hred(cp) at a slightly lower value of cp. A

similar non-monotonic behavior of hred(cp), with a pronounced

peak at low cp, has been measured also in polyelectrolyte

systems,84–86 in low-salinity suspensions of charged silica

spheres,87 and in microgels.88 The effect has been described

theoretically by scaling arguments,89 by the Rice–Kirkwood

equation90 for the shear viscosity in combination with a screened

Coulomb potential,91 and for rod-like particles using a MCT

scheme similar to ours.92 In these earlier treatments, HI has been
This journal is ª The Royal Society of Chemistry 2012
disregarded altogether. In our approach, HI is included in hN
which is the dominant part of h in the considered systems.

To rule out that the non-monotonicity of the theoretical

hred(cp) is caused by BSA-specific dependencies of |Z| and ns on

cp, (cf. Table 1), we have investigated additionally a purely

theoretical HSY model system for fixed |Z| ¼ 20 and ns ¼ 1 mM.

Here, we find again a maximum in hred(cp). Thus, the maximum

in hred(cp) is a generic effect in weakly screened HSY fluids. It is

entirely due to the shear–stress relaxation term Dh, for (hN� h0)/

(h0cp) increases monotonically in cp at arbitrary salt concentra-

tion. Since the HIs are neglected in our MCT treatment of the

shear–stress relaxation part Dh, we conclude that the local

maximum in hred is basically a non-hydrodynamic effect, arising

from electrostatic repulsion. We point out that the discussed

physical mechanism underlying the non-monotonic behavior of

hred(cp) is different from the one causing the maximum in dC as

a function of cp. The latter maximum originates from a compe-

tition between electrostatic repulsion and hydrodynamic slowing

in crowded systems. It is therefore not surprising that the

maxima in hred and dC are located at considerably different

protein concentrations. Whereas the maximum of dC occurs at

cp z 30 mg ml�1 (cf. Fig. 3), the maximum in hred is observed at

cp ( 5 mg ml�1.

The theoretical values for hred in Fig. 4 underestimate the

experimental data by a factor of about 1/2. In the low-concen-

tration regime, the theoretical result for hredcp/f approaches [h]¼
2.5 owing to the underlying effective sphere model. The intrinsic

viscosity of BSA modeled as a spheroid is [h]ell ¼ 3.25, which is

larger than the value for a sphere by a factor of 1.3 only.

Therefore, this can not be the only cause for the observed devi-

ation. However, the actual intrinsic viscosity of a heart-like

shaped BSA protein is neither equal to that of a spheroid nor to

that of an effective sphere.We recall here our discussion of Fig. 3,

where we argued that d0 for a BSA protein might well be about

25% larger than the free diffusion coefficient, dell0 , of the model

spheroid. We can similarly argue that the observed differences

between the experimental and theoretical hred may be largely due

to a value for the intrinsic viscosity of BSA of about 4–5, which is

20–50% larger than [h]ell, and about twice as large as the [h] value

of spheres. This could explain the observed difference.

We note here that electrokinetic contributions to h, dC, and to

the long-time self-diffusion coefficient dS, originating from the

non-instantaneous response of the microion-clouds around each

protein, are not included in our theoretical treatment. Microion

electrokinetics has the effect of lowering somewhat the values of

dC and dS,
73,93 while enlarging the viscosity h.94,95 These effects

can be expected to be stronger when k�1 is approximately equal to

the particle radius. Electrokinetic contributions to dS have been

shown to be less significant at higher macroion (protein)

concentrations.96,97

The slowing electrokinetic effect on dC can be very roughly

estimated on basis of the so-called coupled mode theory (CMT),

which has been applied, e.g., to peptide solutions by Egelhaaf

et al.,98 to lysozyme solutions by Retailleau et al.,93 and to apo-

ferritin protein solutions by Gapinski et al.73 The work by

Gapinski et al. includes a thorough theoretical discussion of the

assumptions and approximations going into CMT, and it is

outlined how this method can be improved in future work. Using

the CMT expression in eqn (21)–(23) of ref. 73 for dc, we find that
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dC(cp) is electrokinetically reduced by 6%, 10%, and 5%, at cp ¼
0.9 mg ml�1, 18 mg ml�1, and 90 mg ml�1, respectively. The

respective values for the added salt concentration and protein

effective charge entering into the CMT electrokinetic correction

to dC are taken from Table 1. The microionic Stokes–Einstein

free diffusion coefficient appearing in the CMT expression was

set equal to 1.45 � 102 �A2 ns�1, corresponding to a microion

radius of 1.5 �A. For the free diffusion coefficient of BSA, the

ellipsoid value of 5.82 �A2 ns�1 was used. The electrokinetic

reduction of dC is thus rather weak for the considered BSA

solutions.
Fig. 5 Test of the long-time and short-time KD-GSE relations in eqn

(23), with h* ¼ h and h* ¼ hN, respectively. Results for BSA solutions

without added salt (upper data sets), and with 150 mM of added NaCl

(lower data sets) are shown. Red symbols: combination of dLC from DLS,

h/h0 from suspended Couette rheometry, and S(q / 0) from SLS. Black

lines: Theoretical results, combining dSCzdLC and hN calculated from the

self-part corrected dg scheme with S(q / 0) from the MPB-RMSA

scheme. For the long-time GSE version, h ¼ hN + Dh, with Dh from

MCT is used. Lower boundaries of the theoretical curves correspond to

the short-time GSE, upper boundaries to the long-time version. The

theoretical curves are based on S(q)-input with f(cp) and Z(cp) concen-

tration-interpolated using Table 1. For zero added salt, ns(cp) was also

interpolated on basis of Table 1. The parameters LB ¼ 0.711 nm and

s ¼ sB2
¼ 7.40 nm are kept fixed.
5.3 Relation between viscosity and collective diffusion

Kholodenko and Douglas(KD)28 have proposed the approxi-

mate generalized Stokes–Einstein (GSE) relation

dCðfÞhðfÞ
d0h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðq/0;fÞ

p
z1; (23)

between collective diffusion coefficient, (static) viscosity and the

square-root of the isothermal osmotic compressibility coefficient

S(q / 0,f). If this relation was exactly valid, the dimensionless

function on the left-hand-side (lhs) of eqn (23) would be

a constant equal to one. The (approximate) validity of a GSE

relation is very useful from an experimental viewpoint, since it

allows to infer viscoelastic properties such as hN and h from

a dynamic scattering experiment where diffusion coefficients are

determined. This is of particular relevance when the amount of

protein available is too small for a mechanical rheometer

measurement. Since we have experimental data sets for h, dC, and

S(q/ 0) for BSA solutions with low and high salt content at our

disposal, together with theoretical tools to calculate these prop-

erties, we are in the position to scrutinize the accuracy of the KD-

GSE relation. We can do this not only for the special case of BSA

solutions, but with our theoretical methods more generally for

arbitrary spherical colloidal particles interacting by the HSY

potential in eqn (11).

In their discussion of the GSE relation in eqn (23), based on

mode-coupling theory like arguments, Kholodenko and Douglas

have considered explicitly a dilute suspension of colloidal hard

spheres to first order in f only, where hN and h are identical,

since Dh ¼ Oðf2Þ. For high concentrations, we test now the

accuracy of both the long-time and short-time versions of the

KD-GSE relation, on recalling that different from hN and h, dSC
and dLC are practically equal even at high concentrations. In ref.

28, it was argued that for uncharged hard spheres (HS) the KD-

GSE relation is valid to linear order in f. We can check this

statement analytically using numerically precise 2nd order virial

expansion results for dHS
C ¼ (dSC)

HS, hHS
N , hHS,80,99,100 and with

SHS(q / 0,f) calculated from the precise Carnahan–Starling

equation of state. In this way, we obtain

dHS
C hHS

N

d0h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SHSðq/0Þ

p
¼ 1� 0:046fþ 1:3713f2 þ O

�
f3
�
; (24a)

dHS
C hHS

d0h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SHSðq/0Þ

p
¼ 1� 0:046fþ 2:282f2 þ O

�
f3
�
: (24b)

The short- and long-time versions of the KD-GSE relation for

hard spheres are identical to linear order in f, with a coefficient,
1416 | Soft Matter, 2012, 8, 1404–1419
�0.046, which is not precisely vanishing but close to zero.

However, to quadratic order in f already, where particle corre-

lations come into play and hN needs to be distinguished from h,

both GSE variants have distinctly non-zero virial coefficients.

Since precise values for the higher-order virial coefficients are not

known to date, an assessment of the accuracy of eqn (23) for

larger f can be made only using simulation and experimental

data for dC(f), hN(f) and h(f). This assessment has been per-

formed in ref. 8, where it is shown that for neutral hard spheres,

both variants of the KD-GSE relation apply decently well

for f ( 0.3.

It still remains to be investigated in which concentration range

the two KD-GSE relations are significantly violated when,

instead of neutral hard spheres, weakly screened, charged

HSY-like particles such as charged proteins are considered. Note

here that a virial expansion cannot be reasonably applied to

charged particles at lower salinity, since the pair structure func-

tions and thermodynamic properties in these systems depend on

f, g and k in a non-analytical way.

In Fig. 5, we plot the left-hand-side function in eqn (23), both

in its short- and long-time form, as a function of cp. Both BSA

solutions without added salt, and solutions with ns¼ 150 mM are

considered. Apart from a constant factor, which is related to the

actual value of d0 in BSA solutions discussed earlier, the theo-

retical curves compare reasonably well to the experimental data.

There are only small differences in the short-time and long-time

GSE curves in the case of BSA solutions.

With the hard-sphere-like behavior of the particles practically

reached for ns ¼ 150 mM, in the added-salt system the two KD-

GSE variants apply for concentrations up to cp z 50 mg ml�1,
This journal is ª The Royal Society of Chemistry 2012



corresponding to f z 0.1. For more concentrated systems, the

lhs function in eqn (23) increases initially, going trough a shallow

maximum near cpz 90 mgml�1. For zero added salt, violation of

the KD-GSE relations is observed theoretically at all non-zero

concentrations, and can be noticed in our experiment already

for cp ( 1 mg ml�1.

In our discussion of the KD-GSE relation, we proceed now by

characterizing the crossover behavior in going from the low-salt

to the high-salt regime. To this end, in Fig. 6, we plot the lhs of

eqn (23) as a function of f for various salt contents, using the

parameters LB ¼ 0.711 nm, s ¼ 7.40 nm, and |Z| ¼ 10. These

parameters are typical of aqueous solutions of small globular

proteins such as BSA, Lysozyme20 and Apoferritin.73 The charge

number Z is kept constant here for simplicity. Theoretical results

are plotted as a function of f instead of cp. In lowering the salt

content in Fig. 6 stepwise by factors of 0.1, starting from

a maximal value of ns ¼ 100 mM, we find that the maximal

(positive) deviation from one of the lhs function in eqn (23)

increases roughly logarithmically. For low salt content,

ns ( 1 mM, the physical origin of the maxima in Fig. 6 is

understood from comparing the theoretical results for dC and h

in Fig. 3 and 4, respectively: the maximal violation of the

KD-GSE relations occurs roughly at a volume fraction where

dC(f) attains its maximum, i.e. for f determined approximately

from k2c(f) ¼ k2s . Recalling that k2c f f and k2s f ns, this explains

why the f-location of the maxima in Fig. 6 shows a power-law

dependence on ns for ns(1 mM. For larger ns, a crossover to

hard-sphere-like behavior occurs.

6 Conclusions

We have investigated static and dynamic properties of aqueous

BSA solutions in an integrated conceptual framework,

combining SLS/DLS, SAXS, and rheometric measurements with

analytical colloid theory. Solutions with physiological concen-

trations of added NaCl have been studied, as well as low-salt

solutions showing distinct features in the concentration-
Fig. 6 Accuracy assessment of the short- and long-time versions of the

KD-GSE relation in eqn (23) for volume fractions from very dilute values

to f ¼ 30%, and various salt concentrations as indicated. The collective

diffusion coefficient, dSC/d0 z dLC/d0, and high-frequency limiting

viscosity, hN/h0, are obtained from the self-part corrected dg scheme. The

static viscosity, h ¼ hN + Dh, is calculated using MCT for Dh. Values for

S(q / 0) are obtained from the MPB-RMSA method. Input parameters

LB ¼ 0.711 nm, s ¼ 7.40 nm, and |Z| ¼ 10 are kept constant.
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dependence of the collective diffusion coefficient and the

(reduced) viscosity. In our analytical theoretical approach, we

have used a simple spheroid-Yukawa model of BSA with

isotropic, repulsive pair interactions to calculate the static scat-

tered intensity using the efficient MPB-RMSA method in

combination with the orientational-translational decoupling

approximation. The form factor fit has been kept intentionally

simple, without expecting extreme accuracy. The resulting S(q)

has been used without any further fitting, in calculating dC, hN,

and h on basis of our well-tested theoretical methods.

The measured static and dynamic properties of BSA are

captured reasonably well in our simplifying SY model, with at

least semi-quantitative accuracy, for mass concentrations up to

cp z 100 mg ml�1. In the range 2 mg ml�1 (cp ( 50 mg ml�1,

reliable values for the effective protein charge number, and the

residual electrolyte concentration, have been obtained from the

fits to the SAXS intensities. The SAXS fits are considerably

obstructed for cp ( 2 mg ml�1 by the presence of scattering

impurities, and by the breakdown of the decoupling approxi-

mation for cp T 50 mg ml�1.

A well-developed maximum in the concentration dependence

of the collective diffusion coefficient of BSA was found at low

salinity. This behavior is seen also in charge-stabilized colloidal

suspensions. It is caused by the competition between electrostatic

repulsion and hydrodynamic slowing down in crowded systems.

Moreover, a non-monotonic concentration dependence of the

reduced viscosity of low-salinity BSA solutions was predicted

theoretically, and to some extent also seen experimentally. We

have explained the local maximum in hred(cp) as a basically non-

hydrodynamic effect caused by electric repulsion. A non-mono-

tonic concentration-dependence of hred, with a pronounced peak

at low concentration, is observed also in polyelectrolyte solu-

tions. Thus, the low-cp peak in hred is a generic feature of charge-

stabilized dispersions at low salinity.

An essentially concentration-independent underestimation of

the experimental dC and hred by about 25% and 50%, respectively,

is made in the theoretical predictions. Possible reasons for this

are impurity effects, and an underestimation of the correspond-

ing single-particle coefficients d0 and [h] through our disregard-

ing of the complex protein shape and hydration shell

morphology.

We have analyzed the accuracy of a GSE relation by Kholo-

denko and Douglas,28 which connects the collective diffusion

coefficient to the shear viscosity and to the isothermal osmotic

compressibility. Despite its appealing simplicity, the KD-GSE

relation fails to capture the essential richness of macromolecular

collective diffusion. It applies to decent accuracy to electrostat-

ically screened solutions at high salinity, for volume fractions up

to about 0.3. However, it is violated for more crowded high-salt

solutions, basically for all non-zero volume fractions under low-

salt conditions.

The spheroid-Yukawa model for I(q), and the related effective

sphere-Yukawa model for the dynamic properties, were used as

a minimal model, without including additional protein-specific

features such as the complex, non-spherical protein shape, and

the non-isotropic distribution of hydrophobic surface patches

and surface charges. The overall applicability of this simplified

model to describe in particular collective diffusion does not imply

that protein-specific properties are of no dynamic relevance.
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Indeed, the anisotropic protein–protein interaction caused by the

non-spherical protein shape and surface patchiness has

a tendency to significantly slow the (long-time) translational and

rotational self-diffusion in crowded protein solutions, due to the

strong, in comparison to isotropic colloidal spheres, direct and

hydrodynamic translational-rotational coupling of neighboring

particles. The strong effect of the translational-rotational

coupling on self-diffusion has been experimentally shown

recently for dispersions of charged gibbsite platelets, also in

comparison to predictions by the effective sphere model.101 The

gibbsite platelets have an average thickness to diameter aspect

ratio of 1 : 11. For the less non-spherical BSA proteins, the

translational-rotational coupling effect on the self-diffusion

coefficients, and on the viscosity, should therefore be substan-

tially less pronounced. As discussed in ref. 101 in relation to the

gibbsite platelets, the effect of translational-rotational inter-

particle coupling is substantially less severe regarding the

collective diffusion coefficient, with its practically equal short-

time and long-time values. Different from self-diffusion, where

the translational/rotational motion of a tagged particle relative

to its next-neighbor dynamic cage is probed, collective diffusion

describes the cooperative (mean) motion of particles in the

direction of a long-wavelength, thermally induced density

gradient. The latter type of diffusion is obviously less affected by

the translational-rotational coupling. In addition, we note here

that attractive inter-particle force contributions such as the van

der Waals attraction tend to slow self-diffusion, sedimentation

and collective diffusion, and to enlarge the viscosity.

We have commented here only on the general trends expected

for non-isotropic and attractive interactions, which have been

left out in the present HSY model. For a more detailed analysis,

a more refined future modeling of BSA solutions is required.

Possible extensions of the present work, which allow to main-

tain analytical simplicity to some extent, are the inclusion of

short-range attractive interactions for suspensions of larger salt

content using, e.g. a two-Yukawa pair potential,102,103 and the

inclusion of a mean surface patchiness.20 For the static viscosity

of more strongly concentrated protein solutions than considered

in the present work, the shear stress relaxation contribution, Dh,

can become large in comparison to hN. In calculating Dh, one

needs then to account for HI contributions which tend to

further enlarge its value. Such an inclusion of HI effects into Dh

can be accomplished on basis of an extended MCT scheme

discussed in ref. 77, 78. These extensions will be the subject of

a future study.
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