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Lattice gas study of thin-film growth scenarios and transitions between them: Role of substrate
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Thin-film growth is investigated in two types of lattice gas models where substrate and film particles are
different, expressed by unequal interaction energy parameters. The first is of solid-on-solid type, whereas the
second additionally incorporates desorption, diffusion in the gas phase above the film and readsorption at the
film (appropriate for growth in colloidal systems). In both models, the difference between particle-substrate and
particle-particle interactions plays a central role for the evolution of the film morphology at intermediate times.
The models exhibit a dynamic layering transition which occurs at generally lower substrate attraction strengths
than the equilibrium layering transition. A second, flattening transition is found where initial island growth
transforms to layer-by-layer growth at intermediate deposition times. Combined with the known roughening
behavior in such models for very large deposition times, we present four global growth scenarios, charting out
the possible types of roughness evolution.
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I. INTRODUCTION

The evolution of structure in thin-film growth is a topic
of broad interest, both from the perspective of nonequilib-
rium statistical mechanics as well as from an applied point
of view where certain properties such as, e.g., a smooth film
with minimal roughness may be desirable. For homoepitaxial
growth, quantitative and detailed insight has been reached
[1]. For growth of a substance on a substrate consisting of
a different material the phenomenology is broader. If both the
substrate and the film material are crystalline with different
equilibrium lattice parameters, then one speaks of genuine
heteroepitaxial growth. However, substrate or film may be
amorphous in which case heteroepitaxial effects (such as
residual stresses) are absent, but effects of different surface
energies are still present. The experimental systems of in-
terest encompass metal or semiconductor growth (which is
in most cases heteroepitaxial and in which the film particles
can be considered as isotropic) [2] as well as the growth of
organic semiconductors on varying substrates where the film
molecules are mostly anisotropic [3,4]. For organic semicon-
ductor growth, genuine heteroepitaxy may occur (e.g., for
growth of Pentacene on C60 crystal layers) but, on the other
hand, may also be absent (e.g., when using amorphous silica
substrates, which are of enormous practical importance and
probably the most popular material).

Typically, one distinguishes between layer-by-layer (LBL)
growth, Vollmer-Weber or island (ISL) growth and Stranski-
Krastanov (SK) growth which is characterized by initial LBL
growth changing to ISL growth [5]. The latter is often char-
acterized as a transition from two-dimensional (2D) growth to
3D growth (see Ref. [6] for an early experimental and sim-
ulation study with organic molecules). These growth modes
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can be distinguished using the film roughness σ [root-mean-
square (rms) deviation from the average film height h̄] as an
observable, which is easily accessible in both experiment and
simulations. LBL growth is characterized by oscillations in
σ (h̄), and ISL growth is reflected in a quick rise in σ (h̄),
stronger than in statistical (Poisson) growth [σ (h̄) ∝ h̄1/2].
SK growth shows initial roughness oscillations, which sub-
sequently change to a monotonic rise of σ with h̄. The latter
may be described with a power law, σ (h̄) ∝ h̄β where β is the
roughening exponent [7].

In explaining the occurrence of LBL vs. ISL growth or
near-equilibrium conditions, it is common practice to invoke
equilibrium surface free energies (interface tensions), in par-
ticular the ratio r = (γsv − γsf )/γ . Here, γ is the interface
tension between film and vapor, γsv the one between substrate
and vapor and γsf the one between substrate and film (see,
e.g., Ref. [8]). The vapor usually has a very low density and
corresponds to the vacuum in typical deposition experiments.
If r = 1, then equilibrium wetting occurs (the free energy
is lowest when a thick film is inserted between substrate
and vapor), which is understood as the condition for LBL
growth. If |r| < 1, then partial wetting occurs with droplets of
film material appearing, whose contact angle θY = arccos(r)
varies between 0◦ and 180◦. This is understood as a condition
for ISL growth. (The case r = −1 is not relevant to film
growth as it refers to equilibrium drying, the formation of
a thick film of vapor between substrate and film material.)
By the use of surface free energies, this argument for the
distinction between LBL and ISL growth is an equilibrium
one. However, in a real system kinetics will enter the picture,
and may invalidate the use of equilibrium arguments. We will
address this point by studying growth in a simple lattice model
where the equilibrium properties are known and can be used
to gauge the results for growth.

Computational studies of film growth generally invoke one
of two widely used simulation methods: kinetic Monte Carlo
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FIG. 1. Snapshots of the system at ε = −3, εsub = −1.33, � =
104 after deposition of 5 MLs in the CGM (left) and the SOS model
(right). Since particle moves are not restricted in the CGM, we can
see in the CGM snapshot (i) the formation of a gas phase above the
film and (ii) more pronounced partial wetting of the substrate

(KMC) and molecular dynamics (MD). KMC simulations can
be lattice-based or off-lattice [9] and are characterized by
local, discrete “moves” of particles with no explicit memory
of past ones. Each “move” occurs at a rate that adheres to
the instantaneous energy (barrier) encountered at the current
configuration. The simplicity of especially lattice-based KMC
simulations allows to study large systems and thick films
[10,11]. On the other hand, MD simulations of growth in-
corporate the full particle dynamics, but studying multilayer
growth for reasonably large systems is only practically possi-
ble for isotropic particles (see, e.g., Refs. [12,13]). All–atom
simulations of organic semiconductor growth can model faith-
fully the growth process of a specific molecule. Examples
are Pentacene (PEN) growth on C60 (Refs. [14,15]), reversely
the C60 growth on PEN [16] or silica [17] and 6T mono-
layer growth on SiOx (Ref. [18]). These models are, however,
generically limited by the small number of particles for com-
putational reasons. Therefore, lattice-based KMC simulations
are more suited to study the multilayer regime and to explore
the parameter space more thoroughly.

In this paper, we investigate dynamic transitions between
different growth modes using KMC simulations. We both
quantify these transitions as well as map out the conditions
under which they occur. We adopt the well-known lattice gas
model for particles with nearest-neighbor interactions living
on a simple cubic (SC) lattice. Particles at the substrate and
in the film are treated differently by means of their interaction
energies, i.e., the interaction strength between two film parti-
cles is different from the interaction strength between a film
and a substrate particle. However, in our modeling genuine
heteroepitaxy is absent since the lattices of the substrate and
the film are assumed to be equivalent. The modeling should
thus actually correspond nicely to the growth on amorphous
substrates such as the very commonly used oxidized silica
wafers. Both a solid-on-solid (SOS) model and a second, more
general model are investigated. Within both, deposition of
particles and diffusion occurs at the film surface. However,
in the second model, arbitrary desorption and readsorption
of particles can occur, along with diffusion in a gas phase
hovering above the film (in Fig. 1 we show snapshots of thin
films comparing both models). The CGM is less restrictive
in local transport than the SOS counterpart (its catalog of
possible local “moves” is broader), and is novel (to our knowl-
edge) in the KMC literature for thin-film growth. We call this
version of the model the colloidal growth model (CGM) since

it is describing a typical setup for the growth of colloidal
crystalline films. Colloidal particles are immersed in a solvent,
generally rendering their bulk and surface dynamics purely
diffusive. Inspired by sedimentation-diffusion [19], deposition
on top of a substrate proceeds by drift diffusion.

As a main result, we identify two dynamic transitions in
both models: (i) between ISL and LBL growth (“dynamic lay-
ering transition”) via a novel order parameter that quantifies
the difference in coverages of the first and second layers and
(ii) a “flattening transition” of the ISL growth mode back to
(near-)LBL growth at intermediate times—after a total depo-
sition of a few monolayers—the onset of which can be shown
to be the moment the first layer becomes completely filled.
The possible occurrence of these transitions gives rise to cer-
tain global growth scenarios (characterized by the roughness
evolution with time) when observing the film evolution over
long deposition timescales.

The paper is structured as follows: Section II introduces
lattice-based KMC simulations, in particular the two variants
studied here. In Sec. III the two dynamic transitions men-
tioned above are characterized, and additionally the global
growth scenarios are discussed. In Sec. IV we relate our obser-
vations to existing experimental results for thin-film growth,
and in Sec. V we provide some conclusions and an outlook.

II. KMC LATTICE SIMULATIONS

A. General considerations

KMC SOS lattice models have a venerable history in the
study of film growth [1]. In the easiest realization on a cubic
lattice, each particle must be supported, i.e., has a particle
or substrate below it (no overhangs) and particles are not
allowed to be located in the vapor phase (in some models,
particles are allowed to desorb from the film, but are then
consequently removed from the simulation [20]). This leads
to films that exclude vacancies and overhangs and imposes
an imminent vacuum above the film. In many experimental
scenarios, this is a reasonable approximation, since desorption
is often negligible.

In the simplest realization of this model (stochastic
growth), new particles are deposited at random sites on top of
the growing film and stick there without diffusing any further
[21]. In this model, the film grows in a stochastic manner
driven by the deposition process only, and its roughness will
behave as σ ∝ �β with β = 1/2, where � is the number of
deposited monolayers (MLs) and

σ =
√√√√1/N

N∑
i=1

(hi − h̄)2 (1)

is the rms of the deviation from the mean height, with hi being
the film height (in lattice units) at lattice site with label i and
h̄ the mean film height.

Surface diffusion can be incorporated into the simulation
in the following most intuitive way: During each time step
either a new particle is inserted at a random site with prob-
ability f or an existing particle is moved to a neighboring
site with probability 1 − f (Refs. [22,23]). Here it is crucial
how one handles interlayer diffusion: If it is forbidden, then
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particles will always remain in the layer into which they were
deposited, and the roughness will show the same σ ∝ �1/2

behavior seen in the stochastic growth models. If interlayer
transport is allowed, then it can occur either at the same rate
as diffusion within a layer, or one can assign an energy cost to
this layer change (the so-called step edge or Ehrlich-Schwöbel
barrier). Mound formation in epitaxial growth with an ensu-
ing roughening exponent β �= 1/2 is strong evidence for the
effects of such a barrier, see Refs. [7,21] for an overview.

This simple model has been modified in various ways over
the years. One early modification of the stochastic growth
model was the Wolf-Villain model [24,25]. Here particles will
diffuse immediately after deposition before becoming immo-
bilized forever. More recently, the quantitative accuracy of the
SOS model has been improved by implementing fluctuating
interparticle attractions [26]. Other modifications include a
first-passage time approach [27] (which can lead to a sig-
nificant acceleration of simulations), and the introduction of
anisotropic interactions [28].

In other lattices, e.g., face centered cubic, one finds
additional effects: Since each particle now needs multiple
occupied sites in the layer below to be supported, one has to
consider what happens if not all supporting sites are occupied.
A frequently invoked mechanism is downward funneling [29],
where particles will “fall” into lower layers until they have
reached a fully supported position. This leads to films growing
in a much smoother fashion than in an SC lattice but is also a
strong simplification of the processes occurring during film
growth [1]. A somewhat more sophisticated approach is to
modify this downward-funneling behavior by trapping new
particles at the sides of protrusions, leading to overhangs and
consequently voids inside the film [30].

A number of studies addressed the evolution of 3D struc-
ture in homoepitaxial growth, see, e.g., [10,31] for recent
examples with large substrates and rather thick films. Previous
KMC works on genuine heteroepitaxial growth focused on
the problem of SK growth by incorporating strain and stress
release [32–34], or on simulating the behavior of specific
systems (e.g., C60 on Pentacene [16]) by fitting the corre-
sponding KMC parameters from atomistic calculations.

B. Solid-on-solid model

The simulation is divided into discrete but variable time
steps, which are Poisson distributed. During each of these
time steps exactly one event occurs [35,36]. Such events can
be, e.g., particle moves or insertions. Each event occurs with
an average rate ki, which is a parameter specified a priori.
In general, KMC being event-driven means that the algo-
rithm is “rejection-free,” since one tracks all events that are
possible in each step and then chooses one of these events.
Our simulations entail attractive interactions between neigh-
boring particles ε and particles on top of the substrate εsub.
All energies are given in units of the thermal energy kBT .
These affect the rates at which events occur depending on
the local environments of the respective particles. We realize
this by introducing a Metropolis step, accepting each move
with a probability p = min(1, exp(−	E )) depending on the
change in internal energy this move would cause. Hence our
algorithm is “rejection-free” regarding steric repulsions only.

FIG. 2. Schematic 2D drawings showing (a) the diffusion moves
which are allowed in the SOS model (note that neither overhangs nor
desorptions are possible) and (b) additional moves which are allowed
in the CGM.

While this of course leads to some moves being rejected,
this hybrid method [37] significantly reduces the overhead of
keeping track of state changes. After each move attempt, we
then increase the time by a random 	t = − ln(r)/ktot where
ktot = ∑

i ki is the total rate of possible events at the current
state and r ∈ (0, 1] is a random, uniform number. The aver-
age length of these time steps is 1/ktot. This procedure leads
to more accurate dynamics (incorporating more fluctuations)
than using a fixed-length time step of length 1/ktot (Ref. [38]).

In the SOS version, we consider insertion moves at random
lateral positions (x, y) on top of the growing film with rate
kins = F , diffusion moves to lateral next-neighbor positions
with 	z = 0, where z is the vertical coordinate, with rate
khop, and layer–changing moves to lateral next-neighbor po-
sitions with 	z = ±1 with rate kES = khop exp(−EES) where
EES is the (dimensionless) Ehrlich-Schwöbel barrier, which
effectively leads to a rescaling of the acceptance probability p
to p = min(1, exp(−	E )) exp(−EES). We chose this imple-
mentation in order to ensure that detailed balance is obeyed.
All these moves have to respect the SOS condition of no
vacancies or overhangs in the film; see Fig. 2(a) for a sketch
of all possible diffusion moves.

The 2D diffusion constant (in lattice units) of a free film
particle on top of the substrate or on top of a completely filled
layer is simply D = khop. Thus, the four parameters of the
model are � = D/F and the energies ε, εsub, EES. To provide
an experimental context [39,40], note that, e.g., for room
temperature growth of C60 on C60 one may estimate dif-
fusion coefficients D = O(108) nm2/s, and with fluxes F =
0.001 · · · 0.1 monolayers/s one finds � = O(109) · · · O(1011)
(lattice units)−4 where a real C60 lattice unit is approximately
1 nm. Furthermore, using the Girifalco potential [41], one can
estimate the interaction between two neighboring C60 parti-
cles at room temperature as ε ≈ −10 in units of kBT , where kB

is the Boltzmann constant and T is the (room) temperature. At
this point we can remark that simulating such high values of �

and |ε| is challenging, see Ref. [42] for a recent, state–of–the
art example examining few layer growth with C60. We will
return to this problem below.

C. Colloidal growth model

In the second version of the model, we relax the restriction
on the next-neighboring site diffusion moves. Any such move
is now allowed if it is not blocked by another particle or the
substrate. In addition to the moves allowed in the SOS model,
this allows for desorption from the film, diffusion in the vapor
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FIG. 3. Different methods of inserting new particles into the
simulation box in the CGM. Red particles are part of the film, blue
particles are not, and the green particle is the newly inserted particle.
(a) The newly inserted particle diffuses downwards until it touches
any other particle (including particles in the gas). This leads to the
formation of large clusters in the gas phase. (b) The new particle is
inserted on the topmost film particle at the chosen lateral position.
(c) The new particle is inserted at the topmost position with a film
particle at a neighboring site (if that height is larger than the posi-
tion of the topmost film particle). This is most similar to colloidal
deposition.

phase and readsorption at the film. Therefore, the growing film
is covered by a dynamically changing gas “cloud” and new
particles are incorporated into the film through possibly direct
deposition and also adsorption from this gas layer. A layer-
changing particle move still requires a support particle around
which the particle moves up or jumps down one layer. See
Fig. 2(b) for a sketch of all possible diffusion and evaporation
moves in the CGM.

The insertion move now requires more discussion. In gen-
eral, the film contains cavities and there is an adjacent gas
phase with freely floating particles. Thus there are several sen-
sible ways to insert new particles into the system, depicted in
Fig. 3. One natural implementation would be to insert particles
at the top of the box and letting them sediment downwards
until they meet any other particle [Fig. 3(a)]. However, this
leads to the formation of large clusters inside the gas phase
which do not dissolve during the simulation and consequently
block most new particles from ever reaching the substrate
or film. Since we have not implemented cluster moves, the
clusters themselves are stationary and thus the blockage for
newly deposited particles persists and leads to unphysical
growth behavior.

More similar to insertion in the SOS model, we first define
as “film” the set of particles which are connected via next
neighbors to the substrate. We can choose a random position
of the substrate and insert a new particle on top of the highest
particle there which is part of the growing film (i.e., not in the
gas phase [Fig. 3(b)]. Last, and closer in spirit to colloidal
growth, we relax this SOS like condition insofar, as parti-
cles can also get “caught” at a certain height by neighboring
particles which belong to the growing film, leading to the
formation of overhangs [Fig. 3(c)]. We choose this insertion
method for all results shown below. All in all, this model is
similar in spirit to colloidal deposition experiments in solution
[43], hence we call this model a CGM.

The definition and calculation of the rates is unchanged
compared to the SOS model. The particles can desorb into
the gas phase with an attempt rate D. The dynamics in the gas
are modeled by nearest-neighbor hops with rate D. The CGM

obeys detailed balance (including with the gas) completely if
the explicit insertion event is turned off. We remark that the
difference between the CGM and the SOS model lies in the
catalog of allowed particle moves. Sometimes, a difference
between atomistic and colloidal growth is discussed with re-
spect to the differing interaction range in atomic or molecular
systems and colloidal systems, see, e.g., Ref. [44].

We note that the CGM is a very generic extension of
the SOS model without unphysical restrictions but it leads
to a substantial amount of simulation time being spent on
simulating diffusion moves inside the vapor, of particle des-
orption and readsorption, and necessitates more bookkeeping.
However, in contrast to SOS models, there is a well-defined
equilibrium limit for the CG, since the whole phase space can
be explored.

Most of the results in the CGM will be for a box size L ×
L × Lz with L = 64 and Lz = 200. The upper boundary of the
box is a hard wall, while the lower boundary is the attractive
substrate. For the SOS model, only the lateral extension is im-
portant, here we use L = 32 · · · 300. The main computational
observable is the roughness σ [defined in Eq. (1)] as a function
of time. The time is proportional to the amount of deposited
material (total coverage) � (in units of filled monolayers).
We will also employ the layer coverage 
i = Ni/L2, where
Ni is the number of particles in layer i. The rather moderate
lateral system sizes are sufficient for studying the roughness
behavior, as evidenced by the results below.

As an example for configurations occurring in growth, in
Fig. 1 we show a comparison of snapshots from the CGM and
the SOS model for parameters corresponding to initial island
growth. The relaxed restrictions on diffusion moves in the
CGM compared to the SOS model lead to a more pronounced
formation of islands.

III. RESULTS

As we noted earlier, simulations using realistic values for
� and ε fitting actual growth experiments are numerically
challenging. Nevertheless we conjecture that results from cal-
culations at lower �, |ε| can be extrapolated to larger values
using the following scaling arguments.

For homoepitaxial submonolayer growth, such a scaling
relation can be derived. In a one-component system, it has
been shown [21] that the island density in the submonolayer
at low densities scales with

n ∝
exp

[ − ε0
kBT (i∗+2)

]
�i∗/(i∗+2)

, (2)

where ε0 (with proper energy units) is the interaction strength
between nearest neighbors and i∗ + 1 is the size of the small-
est stable cluster. If we now assume that i∗ = 1 (i.e., that
dimers are stable, corresponding to large |ε0|), the island den-
sity is constant if:

|ε0|
kBT

− log � = const, (3)

i.e., a simulation with a � < �′ would yield the same results
as one with �′, as long as one would use an appropriately
scaled |ε0| < |ε′

0|. For the example above (C60 growth), island
densities at the physical values ε′

0 ≈ −10 kBT and �′ ≈ 109
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FIG. 4. Evolution of roughness in the CGM and the SOS model for � = 104 and different substrate strengths εsub, averaged over five runs.
(a) ε = −3, CGM; (b) ε = −3, SOS; (c) ε = −5, CGM; (d) ε = −5, SOS. The legend in (d) also applies to (a)–(c). Vertical lines indicate
statistical errors, deduced from five independent runs for each parameter set.

should correspond to island densities at ε ≈ −3 kBT and
� ≈ 106.

For the more general case considered here, we are treating
multilayer growth, and the two additional energy parameters
(εsub, EES) presumably enter a possible scaling relation. How-
ever, except for film-roughness scaling in the epitaxial case
with no ES barrier (see below), scaling relations have not yet
been identified for multilayer growth.

In Sec. III A and III B below, we consider a vanishing ES
barrier EES = 0.

A. Dynamic layering transition

In Fig. 4 we show the roughness evolution up to a total
coverage θ = 3 both for the SOS model and the CGM, for
ε = −3 and −5, respectively, each for a range of substrate
attractions εsub. We found that in the CGM and for very
weak particle-substrate interactions |εsub| � 0.8, the initially
deposited particles will form floating clusters which then co-
alesce into a film which might or might not be connected
to the substrate, which yields strongly varying results for
σ . Hence we only consider values of |εsub| � 0.9. For both
models it is seen that on increasing the magnitude of εsub, the
system will go from an evolution with increasing roughness
to an evolution with oscillating roughness, which indicates a

transition from islands forming on top of the substrate to LBL
growth. This transition (abbreviated as ISL ↔ LBL) can be
considered as a dynamic layering transition.

Layering transitions can also be found in equilibrium sys-
tems as a particular form of a wetting transition. It is useful to
recall the equilibrium wetting and layering behavior of the lat-
tice gas model before discussing further the dynamic layering
transition. Wetting transitions are conveniently discussed in a
diagram with temperature and the reduced substrate attraction
strength ϒ = εsub/ε as axes. For the lattice gas, here we use
a ε–ϒ diagram which corresponds to a 1/T –ϒ representa-
tion. Wetting transitions can only occur for particle–particle
interaction strengths |ε| > |εc| where εc ≈ −0.89 is the bulk
critical attraction strength for the gas-liquid separation. Here,
we interpret the high-density liquid phase as the condensed
(solid) phase in the growing film. One studies the system
at the substrate at coexistence conditions such that far away
the system is in the gas phase. The equilibrium net adsorp-
tion at the substrate displays a characteristic behavior near
a critical reduced strength ϒc(ε): It may diverge continu-
ously to infinity as ϒ → ϒc (critical wetting), it may jump
discontinuously to infinity (first order wetting), or it may
jump discontinuously to a value corresponding to a net cov-
erage of n layers (nth layering transition). The lattice gas
model as used here is equivalent to the Ising model on a few
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FIG. 5. (a) Schematic equilibrium wetting phase diagram for the
lattice model in 3D for ϒ ≡ εsub/ε vs. ε. The critical point for liquid-
vapor phase separation is at ε = εc. The curve originating at |εc| is
the line of the wetting transition (thin films of adsorbed liquid at sub-
strates with attraction strength εsub below that line, thick films for εsub

above that line). This is second order until ε = εrough ≈ −1.64, which
denotes the critical attraction strength for roughening. For |ε| >

|εrough| layering transitions occur (indicated with 1 and 2) where the
effective thickness of the adsorbed film jumps to values close to 1 or
2 lattice units. The explicit data points are from simulations [45], for
more details and discussion see Ref. [46]. (b) Schematic equilibrium
adsorption � as function of ϒ for the path marked by the blue dashed
line in (a).

redefinitions (summarized in Appendix A), its wetting behav-
ior has been studied in Refs. [45,46]. The schematic wetting
phase diagram [i.e., the curve ϒc(ε) for wetting transitions] is
sketched in Fig. 5(a). A second interaction strength relevant
for the wetting transition is the roughening point εrough ≈
−1.64. For |ε| < |εrough|, steps on the film surface can be
created with no free energy cost whereas for |ε| > |εrough| the
step free energy is finite. The line ϒc(|ε|) for |εc| < |ε| <

|εrough| describes critical wetting. For |ε| > |εrough| layering
transitions occur [the lines labeled with 1 and 2 for the first
and second layering transition in Fig. 5(a)]. In Fig. 5(b),
we show the characteristic behavior of film adsorption on
varying the control parameter ϒ when it crosses two layering
transitions [blue dashed line in Fig. 5(a)]. It is important for
the subsequent discussion of the dynamic layering transition
that for the high attraction strengths considered there (|ε| �
3), all equilibrium layering transitions occur very close to
ϒc = 1 (which is the intuitive zero temperature, or ε → −∞,
limit).

In the case of film growth, it is not clear a priori how
to determine the substrate attraction strength εsub,crit for the
dynamic layering transition. From the roughness behavior
in Fig. 4 it can be deduced that at rather early stages of
growth (i.e., at or below monolayer deposition) the transition
from ISL to LBL is decided. We have investigated various
observables (roughness, coverages of the first and second
layer, antiphase Bragg intensity and growth number) and
found that in particular for � = 1 (i.e., after deposition of
one monolayer), all these quantities show a pronounced qual-
itative change in behavior when plotted as functions of εsub

(see Appendix B). Furthermore, we find a very suitable or-
der parameter, namely the observable 
1-2 = 
1 − 
2, with

i, i ∈ {1, 2} quantifying the net occupancy or filling of the
first or second layer. In an LBL scenario 
1-2 will be 1,
whereas in an island forming scenario its value will be close to
0. If dynamic layering is connected to the sharp equilibrium

layering transition one would expect its value to jump from
0 to 1 at εsub,crit ≈ ε, and that the transition is rounded by
finite-size effects. In our simulations we have found that the

1-2(εsub) can be fitted quite well with a tanh curve (this is
similar to the behavior of an order parameter for an equilib-
rium transition): We determined εsub,crit as the inflection point
of the fitting curve (see Fig. 6: There we only show data for the
CGM since the results for the SOS model are very similar).

The dependence of the critical ratio ϒc = εsub,crit/ε on |ε|
(shown in Fig. 7) demonstrates (i) that there is only a small
difference between the CGM and the SOS model and, more
importantly, (ii) that the difference to the equilibrium value
ϒ = 1 increases with increasing ε at fixed �. This corresponds
to an increasing “dynamic gap” in the onset of layering with
increasing attraction strength.

The tanh fits for 
1-2(|εsub|) (see Fig. 6) show that the width
is increasing for increasing |ε| (i.e., for increasing “distance to
equilibrium,” since a stronger ε leads to a slower exploration
of the phase space). This finite width is not a finite-size effect
as in equilibrium transitions, it is largely independent of the
size of the lattice. This is illustrated in Fig. 8 which demon-
strates that both in the SOS and the CG model for L � 64
there is no significant change in 
1-2(|εsub|) when increas-
ing L, which might be surprising considering that L = 64 is
comparatively small. For L � 32 the data are very noisy and
cannot be fitted very well.

The proximity of the dynamic layering transition for the
CGM and the SOS models appears surprising at first glance,
considering that in the CGM particles can desorb from the
substrate which should be a non-negligible process at lower
ε. From the roughness evolution in Fig. 4 we see, however,
that the behavior of σ (�) is very similar for both models for
substrate attraction strengths around the transition value. We
rationalize this by studying in the CGM the fraction rnc, the
number of particles not connected to the substrate divided by
the total number of deposited particles (in the SOS model,
rnc = 0 by definition). Figure 9 shows this for exemplary
parameters: While during the very early stages of growth rnc

is substantial, it quickly drops to zero when enough material
is deposited for one monolayer, i.e., when � → 1. Consider-
ing only disconnected particles in the first two layers (these
contribute to the order parameter 
1-2), we see that the corre-
sponding ratio is small from the start of growth and essentially
zero at � = 1 (inset of Fig. 9). Therefore, we can expect that
the occupation in the first two layers of the growing film is
very similar for the CGM and the SOS models, resulting in
similar roughness and order parameters.

We have analyzed the dynamic layering transition using
the control parameter ϒ = εsub/ε, in particular to facilitate a
comparison to the equilibrium wetting transition of the lat-
tice gas model. In the dynamic model, the critical ratio most
generally depends on three parameters, ϒc = ϒc(ε, �, EES).
Experimentally, the substrate attraction strength εsub appears
to be difficult to tune for locating the transition. Within certain
limits, it is easier to tune � by changing the deposition rate,
but seeing the transition would require that the chosen sub-
strate is not too deep in the LBL or the ISL regime. It is quite
easy to control the substrate temperature T ; however, chang-
ing T influences all three variables: ε, EES ∝ 1/T and � =
D/F ∝ T exp[−ED/(kBT )] where ED is an energetic barrier
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FIG. 6. 
1-2 after deposition of 1 ML in the CGM with corresponding fits for (a) � = 104 and (b) � = 105, averaged over five runs. The
critical substrate attraction strength for the dynamic layering transition is determined by the x coordinate of the inflection point (dotted lines for
|ε| = 7 as an example). The legend in (a) also applies to (b). We only show data for the CGM since those of the SOS model are very similar.

for surface diffusion.1 Therefore, temperature variations are
not very suitable for locating the transition.

B. Flattening transition

In Fig. 10 we show the roughness evolution up to a total
coverage � = 50 both for the SOS model and the CGM, again
for ε = −3 and −5, respectively, and each for a range of
substrate attractions εsub. For weaker εsub (initial growth in the
ISL mode), after an initial increase of the roughness (reflect-
ing the island formation), it then decreases for intermediate
times and reaches σ � 1, indicating a change to growth in
LBL fashion. This behavior can be seen in both the CGM and
the SOS model; however, we will see that in the SOS model it
can only occur at sufficiently weak ε and strong εsub.

Reduction of the roughness occurs due to a “flattening”
of the film and can be explained in simple terms by the
following picture: Initial island growth at a certain deposition
rate results in a finite coverage of the substrate with islands.
Newly arriving particles “see” an effective substrate which is a
mixture of the original one and the islands with a correspond-
ingly increased effective εsub. This triggers dynamic layering,
eventually leading to the substrate being completely covered
in particles. For any particles arriving afterwards, growth con-
tinues as it does in a homoepitaxial system. However, this can
only occur if the effects of 3D growth at short times are weak.

We call this transition ISL → LBL. In the CGM it can be
seen for all combinations of ε and εsub for which the system
initially shows island formation. In the SOS model, however,
we see that at these parameters [Fig. 10(b)] the roughness will
(after the initial increase) decrease toward a constant value
larger than 1. We call this transition ISL → CONST. The
appearance of this transition is a consequence of the restric-
tions in the layer-changing move in the SOS model which
can only proceed one layer up or down. At weak εsub, the
particles will initially form islands on the substrate. At later

1For colloidal diffusion, one typically assumes D ∝
T exp[−ED/(kBT )]. In contrast, for metal-on-metal diffusion,
one assumes D ∝ exp[−ED/(kBT )].

times these will start to merge, but do so only incompletely.
Trenches of depth >1 remain between them, which can only
be filled with deposition moves. This is different in the CGM
where height differences (such as in the trenches) can be
compensated more easily due to particles desorbing into the
gas phase and statistically readsorbing at the film at positions
with higher binding number. For weak εsub this has the dual
effect of initially forming larger and fewer islands compared
to the SOS model (with ensuing higher roughness) and later
on smoothening the film of merged islands, resulting in LBL
growth.

To quantify the times at which these transitions will oc-
cur, we found the behavior of the minimum film height or
of the kurtosis of the height distribution (fourth normalized
moment), depending on εsub, to be effective. For quantitative
analysis, we use the minimum height, since this yields clearer
results than the kurtosis (see Appendix C). In Fig. 11 we show
examples for the evolution of the minimum film height over-
laid with that of the roughness. In the CGM, the minimum film
height jumps at the point where the roughness drops to values
<1 (indicating LBL behavior) and then increases linearly. In
the SOS model, the minimum film height changes from being
flat zero to a linear increase near the corresponding roughness

FIG. 7. The critical ratio ϒc(|ε|) for the dynamic layering transi-
tion at � = 104 and 105 in both the CGM and the SOS model. The
dashed line is the approximate value 1 for the equilibrium layering
transition.
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FIG. 8. The behavior of 
1-2(|εsub|) at � = 104 and ε = −7 for different system sizes. (a) CGM and (b) SOS. Data are averaged over five
runs.

drop. In order to obtain numerical values for the transition
time (coverage �trans), we used different methods for the
two models. For the SOS model, we average min. {h(�)} of
several runs, fit a line to the region where it increases and
extract the intersection of this line with the x axis. For the
CGM results, we define a fit function of the form

f (�) =
{

0, if � < �trans

a� + b, else , (4)

where �trans is the transition point ISL → LBL. Here a, b,
and �trans are free parameters which we fitted for each run.
The final result for the transition time is the average over the
different runs. Examples for these fits are shown in Fig. 12.

FIG. 9. The fraction rnc of particles not connected to the substrate
vs. � (total amount of deposited MLs) at � = 105, ε = −3, εsub =
−2. The inset shows the corresponding fraction, if only disconnected
particles in the first two layers are considered. We see that at � = 1
all particles within the first two layers are in some way connected to
the substrate.

The variation of the transition time �trans with εsub reveals
interesting behavior As can be seen in Fig. 13, �trans in the
SOS model changes rather abruptly from a value around 10
to a value below 2. �trans ∼ 10 is connected to the occurrence
of the ISL → CONST transition, whereas �trans < 2 is con-
nected to the ISL → LBL transition. The abrupt change thus
means that there is a “transition (on substrate change) between
transition scenarios (in temporal roughness evolution).” For
ε = −3, the change in �trans occurs at a |εsub| < |εsub,crit|,
i.e., at a substrate attraction strength weaker than the critical
attraction strength for the dynamic layering transition. Con-
sequently one observes the sequence in growth modes ISL
→ CONST to ISL → LBL to LBL on increasing |εsub| [see
Fig. 10(b), going from the top curve to the bottom curve].
For ε = −5, the change in �trans occurs at a |εsub| ∼ |εsub,crit|.
This leads to a disappearance of the ISL → LBL transition
(which is “swallowed” by LBL growth from the start), i.e.,
one observes only the sequence ISL → CONST to LBL on
increasing |εsub| [see Fig. 10(d)]. In the CGM, there is only
one transition scenario (ISL → LBL), and the variation of
�trans with εsub is smoother (although a drop with increasing
substrate attraction strength is seen as well).

C. Asymptotic growth behavior

We have analyzed quantitatively the dynamic layering
transition and the flattening transition for vanishing Ehrlich-
Schwöbel barrier. If � is not too small, then film growth in the
CGM will always return to LBL growth at intermediate times,
and in the SOS model there will be a finite intermediate time
when the first layer is fully covered. This means that we return
to homoepitaxial growth where substrate and film material are
the same. In this case, we expect that the film will always
roughen for very long deposition times, although for EES = 0
the effect is quite weak. This has been recently studied for
the SOS model [10], and the following approximate scaling
relation has been found:

σ ∝ �β/(�3/2[exp(−|ε|) + a]), (5)
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FIG. 10. Roughness evolution for deposition up to 50 ML for � = 104 and different substrate strengths εsub. (a) ε = −3, CGM; (b) ε = −3,
SOS; (c) ε = −5, CGM; (d) ε = −5, SOS. The legend in (a) also applies to (b)–(d). Note that the maximum roughness on the y-axis differs
between the CGM and the SOS model. The CGM data are averaged over 3 independent runs, the SOS data over 5.

with β ≈ 0.2 and a = 0.025. For |ε| < − ln a ≈ 3.7 this im-
plies equivalent roughness evolution if

|ε| − 3
2 log � = const, (6)

which should be compared to Eq. (3) for the scaling of the
island density in the submonolayer regime where the factor
3/2 is absent.

The limit � → 0 in the SOS model corresponds to stochas-
tic growth (β = 1/2). Thus, for small �, there is roughening
or 3D growth from the start which on increasing � crosses
over to the scenario described above.

A nonvanishing Ehrlich-Schwöbel barrier modifies these
scenarios quantitatively but not qualitatively. For a given
EES > 0 and for very small � (fast deposition), we start with
stochastic growth. The gradual crossover to either ISL or LBL
growth on increasing � is shifted to larger � compared to the
case EES = 0. In the homoepitaxial case with ε = εsub, the
gradual crossover to LBL growth has been studied in the ana-
lytic rate equation model by Trofimov et al. [47] and shows the
continuous shift to higher �. This corresponds very well to the
SOS simulation phenomenology. It is also clear that the ISL
→ LBL transition at intermediate times still exists. It possibly
occurs at larger �, since the necessary interlayer transport for
this transition is slowed down by a nonzero Ehrlich-Schwöbel
barrier, which can be compensated by larger a diffusion con-
stant. In general, for EES > 0 the CGM and SOS model should
also show the same qualitative phenomenology but there is

an interesting difference for large ES barriers (EES → ∞).
In the CGM, there is always a net interlayer transport even
if EES = ∞ due to desorption or readsorption processes and
this leads to the phenomenon of another transition, namely
between LBL growth and stochastic growth. This is discussed
in Appendix D.

Putting all these findings together, we have the following
global scenarios for the roughness evolution in the CGM
and SOS model studied here (see Fig. 14). In all scenarios,
there is 3D growth for asymptotic times. For small � (very
high deposition rates) one finds 3D growth from the start,
see Fig. 14(a). For larger �, one must distinguish between
|εsub| > |εsub,crit(ε, �, EES)| and |εsub| < |εsub,crit(ε, �, EES)|.
In the first case, one finds LBL → 3D [initial LBL growth,
followed by 3D growth, see Fig. 14(b)]. In the second
case, island formation occurs from the start. For interme-
diate �, the transition from ISL back to LBL growth does
not happen and the growth sequence is ISL → 3D [see
Fig. 14(c)]. For high �, this transition does happen and
the growth sequence is ISL → LBL/CONST → 3D [see
Fig. 14(d)]. In Sec. III B we have discussed (for EES = 0) un-
der which condition the intermediate LBL or CONST regime
occurs.

The schematic roughness evolution of Fig. 14 is illustrated
by simulation examples using the SOS model, see Fig. 15.
Here we have chosen EES = 0, but, as discussed before, the
same scenarios can also be found for a finite ES barrier.
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FIG. 11. Minimum film height and roughness vs. � in the CGM and the SOS model for [(a) and (b)] εsub = −0.89 and [(c) and (d)]
εsub = −2.67. For εsub = −0.89 we see that in the CGM the min. height will be 0 and then show a large jump around � = 20, while in the
SOS model there is no jump, and the min. height increases continuously after a certain point. For εsub = −2.67 we can see such a continuous
increase in both models from an early time on.

IV. COMPARISON TO EXPERIMENTAL RESULTS

In order to put the theory in a broader perspective, we
shall discuss experimental results from different areas, namely
“molecular thin films” and “atomic thin films.”

Growth of thin films in both categories differ strongly,
since, in comparison, molecules are generally anisotropic with
comparably weak interaction strengths (dominantly of van-
der–Waals type), whereas atoms are isotropic and typically
exhibit stronger, covalent or ionic, interaction. For the com-
parison with experimental systems, an obvious choice would

also be heteroepitaxial growth of metallic thin films. There are
indeed many studies (see, e.g., Refs. [53,54] for an overview
and general considerations), but of course in these the evolu-
tion of elastic strain usually plays an important role.

Since the lattice parameter is an intrinsic property of the
materials involved, which will generally differ, the role of
strain cannot easily be “switched off” in the experiment. This
applies in a similar and indeed more serious manner to clas-
sical semiconductor systems, for which lattice strain and the
elastic response is typically much stronger than for molecular
systems (see below). Our theoretical considerations might be

FIG. 12. Examples of fitted �trans for ε = −3, εsub = −0.89, � = 104 in (a) the CGM and (b) the SOS model. The plots show the data and
the fit used to determine the respective �trans.
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FIG. 13. �trans plotted vs. εsub in the CGM and SOS model respectively for [(a) and (b)] ε = −3 and [(c) and (d)] ε = −5. For ε = −3
we see that in the SOS model there is a jump in �trans at an εsub which is lower than that of the dynamic wetting transition, while for ε = −5
this jump is at a |εsub| ≈ |εsub,crit|, causing the ISL → LBL transition to disappear. In the CGM we see a smooth decrease of �trans with an
increasing εsub. The CGM data are averaged over 3 runs, while the SOS data are averaged over 10 runs.

employed for systems which incidentally have the same lattice
parameter for substrate and film, such as, e.g., Au and Ag.
Unfortunately, studies of this type are rare, and of course they
would also not allow any tuning of the substrate energies.

Nevertheless, some of the general scenarios of Fig. 14 are
also found in systems in which strain is part of the picture. For
example, Al grown on sapphire shows a transition from 3D
to 2D growth [Fig. 14(d)] after several hundred monolayers
[55]. In contrast, Al grown on Si(111) at high deposition rates
shows LBL growth followed by a slow roughening transition
[Fig. 14(b)] [56]. These growth modes can also be found in
systems with metals evaporated onto soft and disordered sub-
strates, where strain is expected to be less important [57–59].

Molecular thin films frequently are more tolerant against
mechanical strain, which makes a comparison to theory with-
out considerations of epitaxy potentially very suitable. In fact,
all of the growth scenarios depicted in Fig. 14 can be real-
ized. Pure 3D growth or strong islanding without coalescing
[Fig. 14(a)] is regularly observed for growth on 2D materials,
e.g., diindenoperylene on MoS2 [60] and pentacene or olig-
othiophenes on graphene [61,62]. In addition, it is found that
substrates strongly interacting with the deposited molecules
often exhibit a strongly bound wetting layer which saturates

the reactive surface. In the subsequent multilayer regime,
again, pure 3D growth is found.

Since the first strongly bound monolayer has usually a
different molecular orientation and features a completely dif-
ferent interaction, we have to distinguish this from classical
Stranski-Krastanov growth, with a transition from LBL to
3D growth [Fig. 14(b)]. Instead, we regard the first bound
monolayer here as a surface modification that induces 3D
growth of the same material in the multilayer regime. Typical
examples for this type of growth are pentacene on Au [63] or
diindenoperylene on Au [64].

A transition from LBL growth to 3D growth is typically
observed for growth on weakly interacting substrates like
SiO2. Well-studied examples are the growth of pentacene
[50,65], perfluoropentacene [66] and PTCDI-Cx [67,68] or
α-sexithiophene[69] which all feature the transition from LBL
to 3D within a few closed layers. The dependence of the
LBL-to-3D transition on growth rate and temperature was
studied for diindenoperylene [70–72] and tetracene [48]. The
latter example also demonstrates that by tuning growth rate
and temperature the transition of LBL to 3D can be below one
monolayer changing the growth behavior effectively to pure
3D [Fig. 14(a)]. Also surface modification by self-assembled
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FIG. 14. Schematic representations of possible transitions. (a) Three-dimensional growth from the start for small � (very high deposition
rates). (b) Initial LBL growth, followed by 3D growth for larger � and |εsub| > |εsub,crit|. (c) Initial ISL growth, followed by 3D growth for
intermediate � and |εsub| < |εsub,crit|. (d) Initial ISL growth, intermediate LBL or CONST growth, followed by 3D growth for high � and
|εsub| < |εsub,crit|. The intermediate growth modes can be summarily termed as 2D growth.

monolayers may modify the transition thickness from LBL to
3D [73,74].

Rod-like compounds which feature an LB-to-3D transi-
tion are mostly those growing in an upright-standing mode
on weakly interacting substrates. In that case the molecule–
molecule interaction in the plane (π -π overlap) is stronger
than the substrate–molecule interaction resulting in LBL
growth. In contrast, growth of such a material on a reactive
metal surface usually results in 3D growth as explained above.
Exceptions are either compounds with a strong tendency to
lie flat on the substrate such as PTCDA, which features an
LBL-to-3D transition on Ag [6] or the spherical compound
C60 which has an isotropic potential [39].

Coalescing of islands at later stages with a clearly observed
subsequent LBL mode [Fig. 14(d)] is observed rarely. One
example are nearly amorphous thin films of rubrene on SiO2

were the coalescing starts after approximately 5–10 mono-
layers [51]. In addition, for crystalline films of picene the
island coalescing was observed at approximately 20–40 layers
depending on growth conditions [75–77].

For the sake of a final quantitative illustration summarizing
this overview, in Fig. 16 we show experimental roughness
data from the growth of molecular thin films on amorphous
substrates. These correspond to three of the four growth sce-
narios of Fig. 14. For the ISL → 3D growth scenario, we
were unable to find experimental data covering the range of
film heights needed to detect the transition from island to 3D
growth. However, we think that the growth of C60 on SiO2

and the growth of picene at ambient temperatures are good
candidates for this scenario. It is known that C60 is a strong
island former. For picene the coalescing of islands is demon-
strated in Refs. [75–77]. However, no continuous data set for

all thicknesses is available. Due to limitations of the x-ray re-
flectometry methods quantitative results for the roughness are
available at intermediate time (where it is larger than expected
from Poisson growth hence supporting the island picture). It
is not possible to extract the roughness of such films at very
short times nor at long times where the film is very rough.
At long times, AFM pictures show significant roughening but
post growth effects would need to be considered. We remark
in passing that quantitative roughness data are only available
for a fraction of the plethora of thin-film studies.

V. SUMMARY AND CONCLUSION

In this work we have investigated thin-film growth in sim-
ple lattice gas models where the substrate is energetically
different from the film, and substrate and film phase are
defined on the same simple–cubic lattice (no genuine het-
eroepitaxy, i.e., no strain effects). The investigated models are
a SOS model (with no vacancies or overhangs in the growing
film) and a CGM where particles can desorb from the film,
diffuse in the gas phase above the film, and readsorb again
on the film. The latter is suitable for describing colloidal film
growth in solutions.

For small to intermediate deposition times (up to an equiv-
alent of about 10–20 monolayers) and not-too-fast deposition
rates, the growth modes are ISL and LBL growth. In both
the CGM and the SOS model, we have identified two dy-
namical transitions in this regime of small to intermediate
deposition times. The first (“dynamic layering transition”)
describes a transition from ISL to LBL growth as a func-
tion of the reduced substrate strength ϒ = εsub/ε and can
be viewed as the dynamical counterpart of the equilibrium
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FIG. 15. Examples for the growth modes presented in Fig. 14, all for the SOS model. Vertical lines indicate statistical errors, deduced from
5 independent runs for each parameter set. (a) Three-dimensional growth at � = 103, ε = −3, εsub = −3.56; (b) LBL → 3D at � = 104, ε =
−5, εsub = −3.56; (c) ISL → 3D at � = 103, ε = −5, εsub = −2.22; (d) ISL → LBL → 3D at � = 104, ε = −4, εsub = −2.22. Above each
roughness plot are three height maps of representative runs at � = 1, 10, 100

wetting transition. The latter can only depend on the par-
ticle interaction strength ε, and is nearly independent of it
for larger |ε| [located at ϒ(ε) ≈ 1]. The dynamic transition,
however, depends in general on the three parameters ε, �

(ratio of diffusion to deposition rates) and EES (Ehrlich-
Schwöbel barrier for interlayer diffusion). It is found at lower
values of ϒ compared to the equilibrium transition, and
the difference increases with increasing ε and decreasing �.

FIG. 16. Experimental in situ measurements of roughness vs. coverage showing different growth modes (a) tetracene on SiO2 showing 3D
growth [48] (1 ML ≡ 13.4 Å [49]), (b) pentacene on SiO2 showing LBL → 3D behavior [50] (1 ML ≡ 15.4 Å), (c) rubrene on SiO2 showing
ISL → LBL → 3D behavior [51] (1 ML ≡ 13.4 Å in an orthorhombic polymorph crystal [52]. Note, however, that in these experiments the
rubrene films were amorphous)
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FIG. 17. Values of several eligible observables after deposition
of 1 ML in the CGM. Plotted are the antiphase Bragg intensity
Ianti, the filling of the first layer 
1, the film roughness σ , and the
difference of the filling of the second and first monolayer 
1-2. All
these observables show a change in behavior roughly at the same εsub;
however, 
1-2 varies smoothly around this point and allows us to fit
a tanh to the values and extract the inflection point.

The second transition (“flattening transition”) describes the
transition from initial ISL growth back to LBL growth at
an intermediate transition time. Physically, the transition is
connected with the coalescence of islands and manifests itself
in a drop in film roughness at the transition time. In the SOS
model and depending on the specific parameters, the rough-
ness occasionally only drops to a constant value, reflecting
island coalescence with residual trenches which can be filled
only by deposition.

For very long deposition times, film growth will always
show roughening (3D growth) which has been already studied
earlier (see, e.g., Ref. [1] for an overview). Combined with
the results for small to intermediate deposition times, we have
identified four global scenarios for the evolution of rough-
ness, which are depicted in Fig. 14. These are [Fig. 14(a)]
3D growth for all times, [Fig. 14(b)] initial LBL growth fol-
lowed by (weak) 3D growth, [Fig. 14(c)] initial ISL growth

followed by 3D growth, and [Fig. 14(d)] initial ISL growth
with a transition to intermediate LBL growth (or growth with
trenches) and followed by 3D growth. Interestingly, scenario
(b) is akin to SK growth. SK growth is commonly related to
genuine heteroepitaxy: The incommensurability of the sub-
strate and film lattices leads to the build-up of mechanical
stress in LBL growth, which is released after deposition of
a few layers, causing the smooth film to break-up into islands
(Refs. [32–34]). Our results suggest that SK growth can also
occur in growth on amorphous substrates where strain would
be absent.

We have discussed these results with respect to existing
experimental findings. In thin-film molecular growth (with
weaker interparticle interactions), the four growth scenarios
can all be identified, and these also depend on the sub-
strate interaction energy and growth kinetics. This points to
a relative unimportance of molecular anisotropy with regard
to the global roughness evolution. The epitaxial growth of
strongly interacting compounds like metals and inorganic
semiconductors depends critically on the lattice matching of
substrate and thin-film- and strain-related issues, which are
not incorporated in our simple approach. Nevertheless, there
are several examples in the literature, which exhibit 3D to
2D or 2D to 3D growth mode transitions similar to our
description.

While the dynamic transitions and the global growth sce-
narios are very similar for the CGM and the SOS model,
differences can be found in cases where desorption and read-
sorption are important. As an example, we discussed the
case of infinite Ehrlich–Schwöbel barrier (no direct interlayer
changing moves). In the SOS model, this leads to stochastic
growth, while in the CGM interlayer diffusion is still possible
as a multistep process via the gas phase. In the CGM this leads
to the appearance of another transition for strongly attractive
substrates: For low interaction strengths |ε| there is initial
island growth which rather abruptly changes to stochastic
growth on increasing |ε|.

The “dynamic gap” between the dynamic and equilibrium
layering transition also implies that monolayer films can be
prepared by deposition, but would be subject to dewetting if
deposition was stopped. This process has been studied, e.g.,
in Refs. [78,79]. Likewise, smooth multilayer films may be
subject to strong postgrowth roughening. This is known for
the growth of rubrene films: As discussed, these show the ISL

FIG. 18. Comparison of Min. height and kurtosis of the height distribution, characterizing the flattening transition, at � = 104,

ε = −3, εsub = −0.89 in (a) the CGM and (b) the SOS model.
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FIG. 19. Evolution of roughness in the CGM εES = ∞ at � = 104 and for different εsub. (a) ε = −3, (b) ε = −5. The black line denotes
the statistical roughness evolution σ = √

�.

→ LBL → 3D growth mode [see Fig. 16(c)] when measured
in real-time, but strong dewetting of the smooth film into
a variety of patterns is observed on the timescale of a few
days to a month [80]. Leaving the subject of one-component
films, one can expect that the phenomenology of dynamic
transitions and dewetting behavior becomes much richer when
going to growth in binary systems [81,82]. With regard to
growth with organic molecules, an extension of the lattice
models to anisotropic interactions would also be desirable
which can be accomplished by using anisotropic, energetic
interaction parameters or using lattice rods to capture steric
effects [83–85].
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APPENDIX A: ISING MODEL AND LATTICE GAS

The Ising model in 3D on a semi-infinite SC lattice
bounded by a planar substrate is defined by the Hamiltonian

HIs = J
∑
〈i j〉

σiσ j + H
∑

i

σi + H1

∑
surf,i

σi, (A1)

where σi = {1,−1} is a spin variable, J is the nearest neighbor
coupling strength (〈i j〉 label nearest neighbor sites), H is
a bulk (magnetic) field and H1 is a surface field (the sum
over spins in the corresponding term only extends over spins
adjacent to the substrate).

On the other hand, the Hamiltonian of the lattice gas (as
used here, with a bulk external field V ext/(kBT ) ≡ −μ) is
defined by

Hlg

kBT
= ε

∑
〈i j〉

nin j − μ
∑

i

σi + εsub

∑
surf,i

σi, (A2)

where ni = {1, 0} is a lattice site occupation variable. On
defining σi = 2ni − 1, both Hamiltonians are equivalent (up
to an unimportant constant) if the following identifications are

made:

ε = 4J

kBT
, εsub = 2J + 2H1

kBT
, μ = −2H + 12J

kBT
. (A3)

Using these identifications, the wetting diagram of
Ref. [46] [Fig. 1(C)] corresponds to Fig. 5 in the present work.

APPENDIX B: COMPARISON OF POSSIBLE ORDER
PARAMETERS FOR LOCATING THE DYNAMIC

LAYERING TRANSITION

In order to quantify the critical εsub for the dynamic lay-
ering transition, we compared the values of several possible
observables after deposition of 1 ML. These observables in-
cluded among others the roughness σ , the layer filling 
i of
the first and second layer, the growth number [21]

g =
∑∞

n=1 |�n − �n,LBL|∑∞
n=1 |�n,stat − �n,LBL| (B1)

(where �n is the measured coverage in layer n, �n,LBL is
the coverage at this height assuming perfect LBL growth,
and �n,stat is the coverage at this height assuming completely
statistical growth), and the antiphase Bragg intensity, which is
defined [21] as

Ianti(�) =
∣∣∣∣∣

∞∑
i=0

(−1)i[
i(�) − 
i+1(�)]

∣∣∣∣∣
2

(B2)

(where i = 0 denotes the substrate layer, i.e., 
0 is always 1).
The growth number g is a measure of whether a film grows
in an LBL fashion (g = 0), in a Poisson manner (g = 1) or
in an intermediate manner. The antiphase Bragg intensity is
the intensity of, e.g., reflected x rays at the anti-Bragg point,
where reflections from neighboring layers interfere destruc-
tively. This leads, e.g., to Ianti(�) showing oscillations when
observing films growing in an LBL fashion [86].

All of these show a change in behavior around the same
εsub; however, in Fig. 17 we can see that the behavior of 
1-2 is
most intuitive for signaling a transition: We may comfortably
fit a tanh to the data points. Hence we chose to use this
observable to quantify the dynamic transition point.
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FIG. 20. 
1-2(|ε|) after deposition of 1 ML in the CGM at
εsub = −106. The dashed lines indicate the inflection points at the
respective �.

APPENDIX C: COMPARISON OF MULTILAYER
ORDER PARAMETERS

To quantify where the ISL → LBL and the ISL → const
transition occur, we considered the minimum height of the
film and the kurtosis which is the normalized fourth moment
of the height distribution.

In Fig. 18 we can see that both observables show a change
in behavior at the same coverage �. However, only the mini-
mum height allows us to clearly pinpoint the exact transition
time (the earliest time at which min h > 0), while the change
in behavior of the kurtosis is, e.g., not easily quantifiable in
the SOS model.

APPENDIX D: INFINITE EHRLICH-SCHWöBEL BARRIER

As discussed in Sec. III C the generic growth modes for
both the CGM and the SOS model at not too small � are as
follows: At short times, both systems will show either island
growth or LBL growth, while at long times, they will both
show 3D growth. We can, however, already see a deviation at
short times in the special case of an infinite ES barrier. In the

SOS model, this means that interlayer diffusion is prohibited,
which leads to the well known roughening behavior of σ ∝
�1/2.

On the other hand, interlayer diffusion is still possible in
the CGM, albeit as a multistep process in which particles will
first detach from the film, perform diffusion moves inside the
gas phase, and later reattach to the film, possibly in a different
layer. This means that the ES barrier in this system is effec-
tively lowered to a finite value, leading to a strong deviation
from the behavior in the SOS model. In Fig. 19 this is illus-
trated for two interparticle attraction strengths ε = −3 and −5
and for a range of substrate attractions εsub. For small |εsub|,
the roughness grows faster than in stochastic growth, reflect-
ing island formation. For larger |εsub| the roughness decreases.
For lower ε it can go significantly below the roughness from
stochastic growth, reaching σ � 1 as in LBL growth. For
larger ε it saturates near the σ ∝ �1/2 curve from stochastic
growth. Other observables, such as the filling of each layer
vs. time also confirm the saturation in the stochastic growth
mode.

To study the transition from LBL-like behavior to stochas-
tic growth for very attractive substrates, we compute 
1-2(|ε|)
after deposition of 1 ML (as in Sec. III A) and again find a
tanh-like behavior of the observable, as shown in Fig. 20. Here
we set εsub = −106, i.e., quasi-infinite, so particles which
reach the substrate will stay within the first layer.

At low |ε|, 
1-2 is close to 1, i.e., almost all particles are
confined to the first monolayer. This is expected, since parti-
cles in the second layer may step down at these parameters via
a multistep process. On increasing |ε|, 
1-2 goes to exp(−1)
which is the value corresponding to stochastic growth when
no interlayer diffusion is possible. This indicates that here the
interparticle attraction is too strong for a significant amount of
particles to desorb from the film.

The shape of 
1-2(|ε|) again allows to fit a tanh curve and
identify the inflection point as the critical ε above which the
system will grow via stochastic growth. This critical attraction
strength increases with increasing � and should disappear for
� → ∞. In this limit (growth rate going to zero) the particles
will always be able to desorb into the gas and then attach to
the substrate in the first layer where they will be effectively
trapped, i.e., the stochastic growth mode will never occur.
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