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19 Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
20 Karlsruhe Institute of Technology, Karlsruhe, Germany
21 Frankfurt Institute for Advanced Studies, Frankfurt, Germany

Received 12 August 2024 / Accepted 29 November 2024
© The Author(s) 2024

Abstract Given the urgency to reduce fossil fuel energy production to make climate tipping points less
likely, we call for resource-aware knowledge gain in the research areas on Universe and Matter with emphasis
on the digital transformation. A portfolio of measures is described in detail and then summarized according
to the timescales required for their implementation. The measures will both contribute to sustainable
research and accelerate scientific progress through increased awareness of resource usage.

1 The challenge

Climate change is real. What statistics have been showing us for years is becoming more and more tangible with
events such as extreme weather conditions, floods and forest fires occurring with increasing frequency. This makes
it increasingly difficult to ignore the consequences that our actions have on the life-sustaining conditions of the
planet, including those affecting our own species.

a e-mail: erdmann@physik.rwth-aachen.de (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-024-01436-4&domain=pdf
http://orcid.org/0000-0002-1479-2112
http://orcid.org/0000-0001-6804-6513
http://orcid.org/0000-0002-7756-7801
http://orcid.org/0000-0002-6066-4744
http://orcid.org/0000-0001-9494-4317
http://orcid.org/0000-0001-5246-1624
http://orcid.org/0000-0002-8073-2740
http://orcid.org/0000-0002-1653-1303
http://orcid.org/0000-0003-4932-7162
http://orcid.org/0000-0003-3746-213X
http://orcid.org/0000-0002-3900-3482
http://orcid.org/0000-0003-1832-4129
http://orcid.org/0000-0002-2012-0080
http://orcid.org/0000-0003-1125-5677
http://orcid.org/0000-0001-8663-6461
http://orcid.org/0000-0002-2000-3159
http://orcid.org/0000-0001-7394-2718
http://orcid.org/0000-0001-6251-8049
http://orcid.org/0000-0002-5480-3576
http://orcid.org/0009-0000-3599-8577
http://orcid.org/0000-0001-6685-674X
http://orcid.org/0000-0002-3238-8586
http://orcid.org/0000-0002-7239-9888
http://orcid.org/0000-0003-3659-6718
http://orcid.org/0000-0002-1733-8388
http://orcid.org/0000-0002-0800-2743
http://orcid.org/0000-0002-5065-469X
http://orcid.org/0000-0002-6237-5209
http://orcid.org/0000-0001-8535-4809
http://orcid.org/0000-0001-7936-0057
http://orcid.org/0000-0001-8563-0412
http://orcid.org/0000-0001-9859-1758
mailto:erdmann@physik.rwth-aachen.de


Eur. Phys. J. Spec. Top.

Fig. 1 Graph based on the evolution of the worldwide energy production by sources [9] and projection with required
savings according to the Paris Agreement by [10]

The discussion often centers around an increase in average temperature of 1.5 or 2 ◦C, but this figure alone
does not adequately reflect the extent of climate change. Every human-induced change increases the probability
of reaching a tipping point that leads to irreversible and uncontrolled developments. An underestimated risk
associated with global warming-induced weather extremes—such as droughts, heatwaves and torrential rains—is
the potential decline in global food production, which could lead to an expansion of regions affected by hunger,
migration and conflict [1–3].

We are faced with the choice of accepting these risks or mitigating them by drastically reducing greenhouse gas
emissions. Integrated emissions drive the evolution of the climate; therefore differential emissions per year must
disappear. Time is thus vital.

To meet the goal of the Paris Agreement [4] and reduce the risk of reaching tipping points, it is imperative to cut
greenhouse gas emissions by 50% within the next meanwhile 6 years. This urgency is illustrated in Fig. 1, which
shows projections for worldwide energy production. Notably, data centers are estimated to account for about 1%
of this consumption [5].

In particular, the curve labeled Fossil holds significant relevance for ErUM-Data,1 which focuses on the digitiza-
tion of research on Universe and Matter in Germany [6, 7]. A substantial portion of the CO2e2 footprint in ErUM
sciences stems from energy consumption required for processing and storing data, as well as the CO2e embedded in
the accompanying hardware production. This demand is continuously growing across many of our research fields.

If we accept the responsibility arising from our actions and take the Paris Agreement seriously, it is essential
that we as a community develop a plan to reduce the fossil fuel-generated fraction of energy consumed by our
research at a rate comparable to that shown in Fig. 1. The general transition from fossil fuels to renewable energies
will be beneficial, and over the next decade or two, there may be an abundant supply of renewable and affordable
energy. However, additional savings will be required in the short and medium term, which can be achieved through
technological innovations and changes in attitudes and behaviors. By addressing these transformations, we can not
only contribute to research for sustainability , but also advance our own research methods to make them sustainable.

The German government aims to achieve greenhouse gas neutrality by 2045 [11]. While this is an ambitious goal,
it presents significant challenges regarding the remaining emissions until that year. To illustrate these challenges,

1ErUM: Research on Universe and Matter.
2Several greenhouse gases including CO2, CH4, N2O, HFCs, PFCs, SF6, and NF3 contribute to climate change. Their

varying impacts are normalized to that of CO2, with the total effect reported as CO2-equivalent ‘CO2e’ [8].
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Fig. 2 Shares of the yearly electricity production in Germany [9] together with a possible extension scenario approximately
following expectations in [11–13]

Fig. 2 shows the time evolution of the energy mix with a focus on electricity production in Germany. It also outlines
a potential future development based on the targeted expansion of renewables [11–13], taking into account both
the end of nuclear energy in 2023 and the phase-out of coal by 2038.

The challenge of sustaining both our own research and the conditions for life on our planet is immense, pos-
ing significant difficulties for the ErUM communities and others. An extensive compilation of generally relevant
aspects for ErUM-related sciences can be found in reference [14]. In this work, we will focus on aspects of digital
transformation.

Remarkable advances in compute power, data storage, and algorithm development have catapulted the capa-
bilities of modeling, analysis, and simulations to unprecedented levels. Additionally, the ’fourth paradigm’ [15],
with its data-centric methodology combined with new artificial intelligence (AI) methods, enables researchers to
tackle and decipher major scientific challenges. Furthermore, there is an increasing sensitivity of experimental
instruments leading to higher data rates and volumes. In light of all these advancements, ideas are emerging on
how to address the seemingly contradictory challenge of preserving both nature and research-driven knowledge
gain.

In this document, we present practical measures in the areas of data and software management, algorithms
and artificial intelligence, as well as computing infrastructure. These measures were discussed at a workshop of
ErUM-Data scientists [16]. To guide the discussions and structure the work, 12 key questions were formulated in
advance (see Appendix A). Based on these questions, we developed a portfolio of measures encompassing six key
topics. We also considered that specific actions have varying lead times and can be implemented on short- (S),
medium- (M), and long-term (L) scales. The measures are numbered consecutively later in Table 2 according to
their timescale abbreviations S, M and L. The aim of all these measures is not to hinder research advancement,
but to gain momentum in research through conscious action.

The six topics are briefly introduced here and then elaborated upon in the following sections. Topic 1 involves
proactive data transformations to avoid or reduce unnecessary computations, which particularly requires FAIR3

data [17]. Topic 2 focuses on software development and data analysis practices within the conceptual framework of
FAIR research software [18]. Topic 3 addresses algorithms, including artificial intelligence, which play a significant
role in energy efficiency due to the processing of Big Data in our research. Topic 4 turns to computing and
infrastructure powered by renewable energy as a drastic measure to reduce CO2e emissions. Topic 5 pertains
to education and training in sustainable research as part of a cultural change process where the connection

3FAIR: findable, accessible, interoperable, reusable.
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between knowledge acquisition and resource consumption guides actions. Finally, Topic 6 discusses the necessary
collaboration among various stakeholders including funding and institutional support.

The acceptance and execution of both technical and non-technical measures in everyday scientific research will
demand a challenging, yet unavoidable transition period. To ensure the success of this transition, awareness at all
levels is a critical prerequisite.

2 Smart data transformation

Data transformation constitutes an essential aspect of empirical sciences, and advancements in technology enhance
both its capabilities and complexities, alongside resource utilization. We refer to transformed data as smart data if
it is designed to facilitate the access to the scientific value in a resource-efficient and sustainable manner. As exper-
iments achieve higher resolutions, larger sample sizes or sample quantities, the volume of raw data necessitating
processing and analysis increases.

An example is high-energy particle collider experiments, where permanent storage of all raw data has not been
feasible for several decades. Automated algorithms (‘trigger’) are designed to identify the raw data with most
scientific value and only retain this data for storage. Nevertheless, current technical and economical boundaries
are exploited to maximize the scientific revenue. For example in case of experiments at the Large Hadron Collider
at CERN in Geneva, this results in the order of 100PB of data being stored per year.

In the field of astrophysics, all data taken by telescopes were archived traditionally and evaluated repeatedly. As
computing and algorithms evolved, sensitivity to previously unnoticed features improved such that breakthroughs
have appeared from reprocessing of archival data (e.g., [19]). Such research with archived data may be particularly
resource efficient. In the future, storing all data will no longer be possible as newer and more sensitive state-of-
the-art facilities such as the Square Kilometre Array Observatory will produce data rates in the range of terabits
per second that can no longer be stored, but must instead be analyzed immediately and deleted after processing.

In photon and neutron sciences, fast automated sample exchange and qualitatively improved detectors cause
similar effects. As pioneering examples, ‘stream-based models’ are explored by not storing raw data at all, and
performing all processing online [20].

Dealing with such large amounts of data naturally requires significant compute resources with non-negligible
footprints in energy consumption (see Sect. 5). Hence, smart data transformation becomes increasingly important,
especially in view of further envisioned detector upgrades and new science facilities.
To achieve our sustainability goals, teams with in-depth knowledge of the relevant experiments are needed to

develop comprehensive data management strategies. Their efforts are in direct relation to the goals of the NFDI
consortia [21–23]. The teams need to provide a data life cycle with different phases of data use, from instant
analyses after data recording to completely new analyses at a much later time (long-term archiving). In the
early stages, storage capacities could be substantial to maintain some level of data redundancy for backup and
convenient access. In later phases, the volume of data retained could be gradually reduced over specified time
intervals. Compression and reduction can even imply that part of the scientific potential may be lost.

For the content assessment of the data, far-reaching expertise is needed to define the exact objectives of the
data storage. The spectrum ranges from timely thorough data analyses, to reproduction of analyses, later cross-
verification or subsequent use in completely new contexts. For the latter, potential future use cases should be
anticipated as best as possible.

It is thus mandatory to define which data should be stored in which formats. The criteria under the overarching
FAIR data principle [17] for data preservation should also be followed in Universe and Matter research.

For data to be reused, their meaning must be self-explanatory to scientists and convey information about the
conditions under which the measurement data were obtained. Such metadata on location, time, device, operating
conditions, instrument calibrations, etc. play a critical role in understanding and processing the data in subsequent
phases.

Another aspect of discoverability concerns the descriptive language of the data. Within individual research
communities, there are often specific terminologies and vocabularies whose linguistic nuances evolve over time
and thus can present significant obstacles to the use of archived data. In some research areas, ontologies have
been developed to describe preserved data. This approach creates a standardized lexicon and thus simplifies the
matching between the description provided with the data and a search query.

Finally, workflows are important for smart data transformation, referring to software and algorithms as well as
processes involving humans. In several areas of the ErUM community, it has become common practice to take
snapshots of processed data at intermediate stages in workflows throughout the data processing chain and store
them temporarily. This approach allows for later extensions and repetition of subsequent steps without having
to reinitiate the entire data processing sequence. This efficient strategy saves time and computational resources,
albeit at the cost of temporarily increased storage requirements.
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With the goal of achieving scientific results as soon as possible, there is an immediate motivation for the efficient
choice of such snapshots, and they should improve energy efficiency. Orchestrations of workflows are also being
tried in large collaborations where the same data on different aspects are analyzed by individual research teams.
However, it requires a strong commitment and dedication to collaborative efforts to prioritize resource efficiency
through joint action, especially in highly competitive contexts.

As a summary, we note these actions for the topic of smart data transformation:

• Make data FAIR to promote reuse, which can be particularly resource efficient (M1 in Table 2).
• Reduce and compress data, having the anticipated scientific value of the retained information and the resource

requirements in mind (M2).
• Optimize the choice of storing intermediate results against re-calculating them (M3).
• Optimize job orchestration and scheduling in workflows (M4).

3 Software engineering and data analysis

The relevance of human resources invested in software development is increasing in view of the ever-growing
volumes of data and the corresponding computing power required. Once written, code is applied to increasingly
more data. Therefore, prioritizing software optimization is more than justified.

A common practice in dealing with research data is to code an exploratory analysis that investigates the poten-
tial of the data with respect to a scientific question. In case of success, a re-engineering of the used software into
a professional structure is mandatory to consolidate and enable the possibilities of enhancing the code base. Fur-
thermore, especially in the case of complex data analyses with many intermediate steps, it is essential to introduce
a workflow management system to ensure both the reproducibility of the analysis and to avoid unnecessary recal-
culations [24]. Often, this revising step is skipped and it remains with what is popularly known as ‘spaghetti code’
together with the researcher who has memorized the order of the calculations for himself, inevitably leading to
‘abandonware’. Experience shows, however, that a solid structure of the research software and the use of workflow
managers accelerates iterative review processes and thus the publication of the results.

Accordingly, adherence to good software development practices has the potential to save human and energy
resources through excellent code quality. The FAIR research software seal [18] now exists in this area as well.
Community-maintained, easily accessible open source code is generally more efficient than local stand-alone imple-
mentations. Effective coding practices of jointly developed software include tracking systems, version control,
rigorous testing, and benchmarking (see, e.g., energy per luminosity in GWh/fb−1 which is particularly suited for
particle physics [25]). Furthermore, modularization and reuse of code, possibilities for parallelization of computa-
tions (vectorization), comprehensive documentation, and continuous integration are important.

Generally, energy efficiency should play a central role in software development, along with broadly accepted
software quality metrics. First of all, unnecessary computations should be avoided. This is helped not only by
workflow managers, but users can also execute initially small-scale validations and monitor execution for early
detection of software or parameter problems. Code developers can implement sanity checks to detect problems
with configuration and input data. In this way, wasting energy consumption by large, unsuccessful runs can be
avoided.

Great help in conserving resources comes from using established runtime optimization techniques through auto-
mated parallelization, adaptation to new CPU architectures (i.e., ARM, RISC-V, etc.) and GPUs, vectorization,
memory layout optimization, and the use of special compiler flags. All such measures generally lead to more
energy-efficient code and are also being further developed in expert groups in the Universe and Matter research
area [26].

To intensify the necessary awareness for resource consumption, tools for monitoring of resource consumption,
trainings on the conscious use of resources (see Sec. 6), practical optimizations of code, as well as their computa-
tional processes need to be developed and made available.

Ultimately, given the pivotal role of high-quality scientific software in the research landscape, its development
and maintenance should receive increased and appropriate valuation. This could encompass recognition through
publications and citations, funding allocation, enhanced access to infrastructure resources, and the establishment
of dedicated career paths.

Summarizing practices of software engineering, we note these actions:

• Use workflow management to make processing FAIR (M5).
• Make software FAIR and reliable by following good software development practices and ensuring sustainable

support (M6).
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• Design software for optimized energy consumption (M7).
• Continue research on potential of new technologies for efficient use of resources (M8).

4 Algorithms and artificial intelligence

The energy efficiency of algorithms is crucial for the reduction of computing resources and obviously closely linked
to adherence to the above-mentioned good software development practices. Often, there are already optimized
algorithms in open-source standard libraries or domain-specific libraries that can be utilized. A recent example
is experiments with Big Data in the form of millions of events, in which the formerly sequential event loop has
been replaced by parallel processing of large event chunks [27–29]. Beyond this, new challenges may soon arise
from dynamic sustainable energy supply of computing centers, to which algorithms may also have to be optimally
adjusted.

The rapid progress in the field of artificial intelligence (AI) is opening up completely new possibilities. Machine
learning is already accelerating ErUM research in theoretical predictions, in simulations, and in the analysis
of experimental data. Moreover, innovative data analyses are becoming possible via these data-driven modeling
techniques, in which the physics potential of an experiment is exploited to a much greater extent than originally
expected (e.g., [30, 31]).

From many more examples, we mention here also closed-loop experiments in X-ray and neutron sciences with
their direct feedback after data taking from quasi-instantaneous data analysis and control of the experimental
parameters in film growth [32], and more efficient searches in a dedicated phase space for dispersion relations of
phonons or magnons [33]. Finally, we expect that in the near future, more and more tasks will be performed by
scientists using AI tools.

We argue that the full potential of machine learning algorithms should be prioritized, for the benefit of reducing
energy consumption in ErUM research. The focus should therefore be on developing and deploying models to
perform tasks that have the potential of great benefit to scientific progress, or are particularly expensive in terms
of computational resources. Given the limited time window for reducing the CO2e footprint of ErUM computing,
developments in areas with high potential for reducing energy consumption must be advanced early.

However, since training machine learning models also leaves a CO2e footprint, the resources consumed in training
should be evaluated and documented for transparency. This should include all training performed, including those
to optimize the models. Energy consumption during the inference period is likely to be low in comparison, but
should also be documented and compared to the consumption of established alternative solutions.

One such example is the training of surrogate models (also known as fast simulations or emulators) that are
based on recent breakthroughs in generative models. In fields of ErUM that rely on large samples of simulated
data, the deployment of these machine learning solutions, hence, has large potential. At the ATLAS experiment
at the LHC, for example, the detector simulation consumed 38% of the total CPU resources in 2018 [34]. The
deployment of a deep generative model turns out to be O(500) faster than the simulation with Geant4 [35].
Given the large number of simulated events (tens of billions of events), the energy consumption during training
(approximately 2,400 GPUh) is almost negligible compared to the savings during inference.

Another promising area is the use of large models that are pre-trained for a broad range of ErUM applications
and which are then only refined for the specific applications (“foundation models”). Thus, refining such pre-trained
models would not only require less computational resources in training, but also enable smaller ErUM training
datasets. In general, the reusability of previously trained machine learning models has the potential for more
efficient training in ErUM research.

Pre-trained models include recent AI developments in terms of large language models, which are available to
the general public as new and powerful AI tools. These tools have great potential to increase work efficiency in
ErUM research, for example, by helping with documentation tasks. This includes computer code documentation,
which is time-consuming and therefore often neglected. Good code documentation has the potential to increase the
reusability of code in general and of efficient code in particular. However, large language models can also be used
to directly suggest more energy-efficient algorithms. These new capabilities are directly related to the identified
needs in Sect. 3.

It can hardly be overemphasized that scientists have a key role in the choice of algorithms. Their decisions on
the use of self-coded algorithms, library algorithms, or artificial intelligence algorithms are crucial to the runtime
of the jobs and their resource consumption. Considerable expertise is required especially for successful deployment
of new AI algorithms, i.e., deployment that is energy efficient and leads to scientific progress.

Therefore, the strategic use of AI tools in the scientific workflow needs prioritization between the use of human
and computer resources and in the expected value of knowledge gain. As a consequence, it needs to be decided
where AI should be used sensibly and where not. For example, for some problems, comparable performance could
be achieved by human reasoning instead of resource-intensive machine learning training. When AI-generated code
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or machine learning is used for ErUM research, it always requires extremely careful validation by scientists. Thus,
it is clear that human interaction will remain a pillar of scientific progress.

We see the following measures to be central in the area of algorithms and artificial intelligence:

• Continue research on potential of AI or other new technologies (M8).
• Include particularly promising applications of generative and pre-trained models (M8).
• Expand detailed monitoring and documentation of energy consumption and CO2e footprint in training and

inference (M9).
• Use already optimized algorithms in open-source standard libraries or domain-specific libraries (S6).

5 Computing and infrastructures

In this section, we focus on sustainability related to computing hardware and its operation. Discussions of practical
measures involve adjusting computing in space and time to the availability of renewable energy, reusing the gener-
ated heat, and extending the operating lifetime of hardware. Implementing such measures requires a comprehensive
information flow between the stakeholders involved.

Greenhouse gas emissions are widely classified in so-called scopes (e.g., [36]). There are no directly produced
emissions from computing for research on the Universe and Matter (scope 1). However, indirect emissions are
produced by operating the data centers with electricity that is not produced from renewable sources (scope 2).
Finally, indirect emissions arise from the entire value chain, starting with the production of buildings and computer
systems and later with their disposal (scope 3).
Renewable energy (scope 2): First, with regard to scope 2, an essential component of sustainable data processing is

a detailed overview of the power consumption of the various systems and services, as well as a detailed accounting of
past or planned activities. Data centers generally have detailed measurements and records of the power consumption
of their various systems, although this information is generally only available upon individual request and is not
yet directly accessible online in a comparable format.

For the annual electricity consumption of large German data centers, we refer to the compilation results in
Table 1. For comparison, 1 GWh roughly equals the electricity demand of 1, 000 single households per year in
Germany.

An example of the approximate breakdown of energy consumption among the major components of the CERN
data center is 55% data processing, 21% disk storage, 2% tape storage, 5% network, and 17% services [41]. Details
of these numbers can be found in the Appendix B. During the 13-year operation of the Large Hadron Collider,
power consumption has been fairly constant, although computing capacities have increased by a factor of 6 from
2012 to 2023. The high service share comes about because of the special role of the CERN computing center in
the interconnection of about 170 computing centers in the Worldwide LHC Computing Grid ‘WLCG’ [41], where
CERN operates a large part of the central services.

A next big step toward sustainable computing would be to place data centers near sustainable energy sources.
Renewable energy supplies generally consist of solar panels and wind farms, but also biogas power plants.

Practical approaches with data centers directly at the producers already exist in Texas in the USA, whose
renewable energy capacity will reach approx. 70 GW by the end of 2023 [42]. Transporting electricity is a major
problem due to lengthy permitting processes for transmission lines. So the idea of moving electricity consumers
to the point of generation was born. While this is difficult for most industries, scientific computing is an ideal
candidate for this relocation. On the hardware side, data centers only need power and fiber for the network.
The user side of scientists typically computes in batch mode, usually considering temporary interruptions due to
insufficient sun or wind and thus moderate delays in the computations acceptable.

For Germany, a comparable data center scenario could be built near the North Sea, where most of the wind is
available and most offshore wind farms have either been built or are in the planning stages. Substantial computing
infrastructure could be built as green-field sites, as is already explored commercially [43]. It is advisable to keep

Table 1 Annual electricity
consumption of large
computing centers

Computing center Electricity/GWh References

MPCDF Garching (2022) 43 [37]

LRZ Garching (2021) 33 [38]

HLRS Stuttgart (2021) 32 [39]

JSC Julich (2012/13) 34 [40]
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sufficient storage data capacity along with the computing resources to reduce network latency issues when data
throughput is large.

Since in many communities experiments are carried out worldwide and as international collaborations, data of
interest to scientists working in Germany could be relocated to such data centers in the north. The cost and effort
of laying the required fiber optic cables for the networks likely do not dominate. Transformed data with lower
volumes could optionally go to the universities for further processing.

Overall, it makes sense to establish a joint ErUM science cloud initiative timely, starting with moderate equip-
ment and scaling up once significant funding has been successfully acquired. Even in the initial pioneering phase,
there are many aspects to develop and explore, as we will discuss below.

When setting up a data center near the power producers, the following criteria should be taken into account.
Since the energy comes from renewable sources, the performance of a processor per invested units of electricity
(flops per watt) plays a subordinate role. Thus, initially hardware could be operated that does not belong to the
latest generation and can therefore be obtained at relatively low cost.

The key challenge for data centers is the dynamics in supply from renewable energies [42, 44, 45]. Data centers
must be able to dynamically ramp up or down computing resources or shift workflows as needed. Importantly, cen-
ters must be equipped with valid forecasts of weather conditions and expected energy supply (see below paragraph
on information flow and middleware).

There are two relatively straightforward ways to dynamically reduce power consumption in a data center: First,
one can reduce the clock rate of CPUs and GPUs. In principle, this can be done immediately; jobs are only slowed
down, but continue to run. Studies show that power consumption of compute nodes can be reduced by up to 50%,
with a corresponding application-dependent slowdown in processing [46–48].

Second, one can hibernate or power down entire nodes. The order of nodes could follow a prioritization list
based on the operating age of the hardware and thus their efficiency. Shutting down CPUs works within seconds,
while restarting can take several minutes depending on the memory requirements and the speed of the IO system
[42].

However, it must be ensured that running jobs are stopped properly without losing the results achieved up
to that point. Ideally, this can be achieved by so-called checkpointing, i.e., the entire program state is stored on
disk and can be resumed later. In practice, this feature is challenging for data processing jobs with many open
connections to external services. If the processing consists of repetitive, independent steps, as is the case with
event processing in particle physics, an alternative is event-level check-pointing, i.e., after each processing step,
the output is stored in its entirety. In case of an interruption, processing can be resumed after the last processed
event, so that only little CPU time is lost.

However, a minimum energy supply to the data center must be guaranteed at all times. The servers and network
switches of the data center should run continuously. A data center with CPU and storage as in use for WLCG
requires about 25% of power for hard-disk drive storage (HDD). To avoid damage, these servers should not be shut
down frequently, resulting in a continuous power requirement. Therefore, energy storage options should also be
planned for the data center from the beginning. Depending on the environment, these could be accomplished for
example by batteries, water storage, energy to gas plants, flywheels, and bidirectionally charging electric vehicles.

Efforts to optimally use the supplied energy for computing centers are rated by power usage effectiveness (PUE)
which describes the total amount of energy used by a center compared to the energy delivered to the computing
equipment. For research infrastructures such as CERN in Geneva, the Prevessin Site reaches PUE=1.1 [46], the
National Renewable Energy Laboratory in Boulder (USA) reported annualized PUE=1.036 [49], and the German
HPC center LRZ measured a PUE of 1.06 for the SuperMUC-NG system [50]. Beyond energy-supply discussions,
modern computer chips have very high heat output per unit area, exceeding that of a conventional induction
stovetop [51]. In terms of sustainability, it is imperative to use the dissipated heat, for example, to provide heating
and hot water for the nearby buildings. Also, residential units can be combined with data centers. Best PUE values
were achieved for new residential buildings (PUE=1.024), but also far-reaching improvements were obtained in
conversions of, e.g., high-rise buildings from PUE ∼ 2 to PUE=1.27 (both in [51]).

Hardware lifetime (scope 3): A topic of its own is the sustainability issues for the above-mentioned scope 3,
which takes into account the CO2e footprints during manufacturing and disposal. It is not easy to get exact data
for individual hardware components. There are studies that put the manufacturing CO2e footprint at 20−30% of
the total CO2e footprint [52, 53]. Improvements in hardware design for repairability and maintainability can only
be achieved by the hardware vendors themselves, but could be increasingly motivated by purchasing decisions.
Obtaining corresponding numbers for e-waste turns out to be challenging.

At this scale, hardware lifetime is a relevant issue. Complementary variables are power consumption and lifetime.
Data center equipment runs 24×7 continuously for approximately 5 years, containing the aforementioned approx-
imately 25% of fixed carbon. Extended life in certain mission areas—i.e., larger science centers with dedicated and
experienced staff could explore more versatile life extension options that result in 7–10—or even more—years of
operation which is worth when using renewable energies.

However, there is also a finger pointing at typical personal devices such as desktops, laptops, smartphones, etc.
Because of the much shorter, integral operating times and sophisticated energy efficiency, the CO2e footprint of
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manufacturing here goes in at about 75% bound carbon. Accordingly, life extension for devices for individual use
needs to be seriously considered.

Recent announcements indicate that industry is now putting a stronger focus on energy efficiency in data center
devices as well [54]. The corresponding component-based replacement and operation of data center devices with
renewable energy are clearly going in the right direction to address the challenges of sustainability scopes 2 and 3.
Information flow and middleware: Successful sustainable computing in the area of research on Universe and

Matter requires comprehensive information flows between energy providers, data centers, and users. Furthermore,
conceptually new middleware tools are needed for dynamic operation of the data centers. These issues are addressed
here.

First, monitoring of resource consumption is central to further advancing energy efficiency. What is the con-
sumption per job, per user, per publication, or the entire data center? Details such as the resource profile within a
computing job are also required. With such tools, cost–benefit analysis and optimization efforts are made possible
in the first place.

Today, only a few researchers, groups, and departments receive information on the resource usage of their
computations. One example is the National Analysis Facility (NAF) at DESY, which recently set up a monitoring
service to determine the energy consumption of a job in the central processing system and record this information
in the log file. The service also provides a CO2e estimate based on the current energy mix at the data center site.
Such systems need to be transferred to provide every scientist with comprehensive energy and CO2e reporting.

The development of easy-to-use tools for explicit measurement and profiling of energy usage and CO2e footprint
for developers and end users is non-trivial. First, the CO2e footprint depends on the energy resource used, which
is known to the energy provider only. The relation between energy consumption and program runtime is not
necessarily strictly linear, since modern architectures have dynamic power and frequency scaling. In addition, a
poorly optimized GPU implementation may run faster but consume more energy than a CPU version due to
differences in thermal design performance.

A bidirectional flow of information between users and the data center is also necessary. Users should be able to
estimate the requirements of their job types, at least approximately. Detailed accounting information about the
energy consumption and CO2e of each data processing job, production task, or data transfer would be important
and useful information. Similarly, users should be able to provide information about what specifications their
algorithms tolerate and the dynamics with which their algorithms can respond to power shortage situations.
Furthermore, it should be possible to define whether certain delays in batch jobs or even reduced job numbers are
compatible with their quality-of-service requirements. An example is high-throughput computing applications of
WLCG data processing, which are—within boundaries—less time-critical. In other words, for a major campaign
that lasts many days, delays of a few hours are not critical.

Conversely, users need information from the data center on what the supply situation is—whether, for example,
computing resources will be slowed down or even temporarily shut down—and, finally, what the forecasts are for
job completion. In general, one can expect downtime to be acceptable as long as it is predictable on a daily basis.
Users would not submit jobs that cannot be completed in the foreseeable future.

Second, we can expect that in the medium term, consumer energy prices will be time-variable, and will depend
on the availability of renewable energies and on the overall energy demand. In order for data center operators
to perform energy-dependent work planning, it is important to obtain information from energy providers about
current pricing and availability of renewable electrical energy, e.g., whether there is an oversupply or undersupply.
In addition, forecasts for supply, including weather information and price stability, are needed. Conversely, the
energy provider needs the requirements of the data center for its own work planning in a timely manner.

To enable overall asynchronous communication flows, one possible approach to the required information exchange
between all stakeholders could be to set up a centralized and scalable or distributed monitoring infrastructure where
data is collected in real time and where everyone can query the required information using standard protocols and
APIs as well as standardized communication content.

Beyond the aforementioned information flows, data centers require conceptually new middleware tools that
enable efficient energy-aware scheduling [55] based on the overall situation of user demand and energy availability
and implement dynamic CPU/GPU power modulation and load limitation on existing systems. Good results can
be achieved with applications that adapt to changes in resource availability (so-called malleable jobs [56]). Also
users need new middleware tools to hand in their job requirements and receive reports.

For longer-term periods of low sun or low wind, energy storage technologies must also be developed and deployed.
A scenario must be developed on how to react in such situations. Historical weather data could be used to define
storage capacities: how often and for how long do such situations occur.

A possible contingency procedure could be to first use up the energy storage, then freeze jobs or only run high
priority jobs for a certain period of time, and finally use non-renewable energy. The guiding principle should be
to keep the CO2e footprint of data center operations as minimal as possible [45].

From the topic of computing with renewable energies we summarize the following demands:
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• Monitor and report energy consumption at job level including resource profiling within the job (S3).
• Monitor and report energy consumption at site and project level, and provide information of the individual use

per scientist/project/publication (M10).
• Extend monitoring of resources beyond CO2e (water, material etc., M11).
• Consider carbon footprint for all planned investments and project plans (S4).
• Adjust computing in space and time to the availability of renewable energy, e.g., computing centers close to

off-shore wind parks with a job scheduling using only or mainly the surplus of renewable energy available at a
given time (L1).

• Develop software and middleware that can respond dynamically to the availability of energy (L2).
• Optimize power usage effectiveness (L3).
• Reuse produced heat (L4).
• Adjust hardware lifetime considering emissions due to procurement and operation (L5).

6 Developing a culture for sustainable science in the ErUM communities

There is no disputing that remarkable advances in computing power, data storage, and algorithm development
have greatly accelerated the capabilities of modeling, analysis, and simulation to unprecedented levels. This trans-
formation has opened new frontiers of scientific understanding and progress that were impossible at the turn of
the century. Especially data-centric methodology has revolutionized numerous scientific fields, enabling researchers
to tackle and decipher grand challenges by studying systems at multiple levels with unprecedented precision (see
Sect. 4).

However, as a result of this development, there has been a significant increase in energy consumption, which needs
to be accounted for in relation to scientific progress, so there is an urgent need for comprehensive, strategically
designed education that covers all of these areas.

Since the early 2000s, academic discussions and surveys [57] have already underscored the importance of
sustainability-focused education and the vital skills needed to equip the next generation of scientists with sus-
tainability awareness and the aptitude necessary for innovative research and development. In addition, UNESCO
describes the World Programme of Action on Education for Sustainable Development (2015–2019, 2020–2030) [58]
and offers detailed recommendations and strategies on how to effectively integrate AI into education systems in
its comprehensive guide [59].

New university courses and workshops designed to empower students and researchers with the knowledge and
skills to conduct sustainable digital research can help create a responsible approach to knowledge gain in conjunc-
tion with resource usage. Together with the portfolio of measures described in this publication, these educational
tracks have the potential to promote informed decision-making about the use of computing resources and to
support more sustainable practices in scientific research.

Especially when using data-driven methods, a commitment to sustainability is essential. To balance and monitor
the seemingly inexhaustible potential of AI, researchers and students must have deep domain-specific knowledge.
A solid foundation in mathematics and computation paves the way for the deliberate integration of efficient
computation and algorithms, streamlined models, and conscious decision-making throughout the research process.
This is where it makes sense to inject one’s own intelligence first, rather than reflexively increasing computational
power. A further temptation notes that efficiency improvements trigger a rebound effect that increases the demand
for computing resources. Thus, regular reviews and controls may be needed to mitigate this phenomenon. This and
other incentives under development (e.g., [60]) can certainly be beneficial. Even more robust measures such as
CO2e-based fairshares, CO2e budget allocations, and specific reduction commitments (‘carrot and stick’ strategy)
are conceivable.

Thus, for early-career researchers, knowledge transfer, mentorship, resource allocation, and networking are cen-
tral to cultivating their skills, deep understanding, and effective use of AI tools. For experienced scientists in leading
positions, it is an important task to assess the CO2e footprint of their current research, to develop, implement, and
monitor plans to reduce CO2e emissions, and to consider CO2e emissions in future investments and project plans.
With these approaches and balance between innovation, awareness, and responsibility, we can continue pushing
the boundaries of human understanding while preserving the resources we depend on for a sustainable future.

Overall, there are many technical aspects, guidelines, developments, and scientific measures to improve the
current scientific work in our research field with respect to the urgency of climate change. However, the success
depends on the implementation in the daily work of individual scientists and therefore requires an urgent change
in awareness and responsibility of every scientist and science manager.

For the development of educational concepts and to raise awareness, we summarize here key concepts that should
serve to refine priorities for performing research sustainably:
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1. Balance the knowledge gain of any (computational) work against the resources it needs.
2. Attention to reliability helps in avoiding unnecessary repetitions.
3. Thought-through, well-documented workflows and standardization guarantee reliable results and their reuse.

A further periodically appearing challenge of working sustainably in ErUM sciences results from project-oriented
organization of the funding schemes. The sustainable use of invested resources requires improvements in the long-
term organization of knowledge transfer and the exchange of results and methods. For this continuous support,
sufficient resources in the areas of software, algorithms, and computation need to be allocated.

For developing a culture for sustainable science in the ErUM communities, we summarize the following measures:

• Raise awareness of the climate challenge at all levels (S1).
• Disseminate knowledge of measures to address the challenge. (S2)
• Train scientists in good practices (M12).
• Strive to become a role model at all levels and help to establish sustainability in everyday life (M13).
• Enhance awareness of the trade-off between research benefit and climate impact (S5).
• Perform first, rough energy audit and develop an initial CO2e reduction plan (S4).
• Regularly review and update the CO2e reduction plan (M14).
• Consider carbon footprint for all investments and project plans (S4).
• Include the resources needed for continuous IT support into project planning (L6).

7 Funding and institutional support

From the perspectives of the federal and state ministries as well as the top management of universities and research
centers, there is a great deal of attention being paid to the issue of sustainability. This involves the development
of strategic concepts, reporting, measures and funding.

At the level of the German Federal Government, the United Nations Agenda 2030 [61] has been transferred into
a national strategy named German Sustainable Development Strategy 2021 [62]. A comprehensive general work
on the Digital Strategy Germany was published subsequently [63, 64] which concerns science and research among
many other aspects and is closely linked to the sustainability goals. In more specific contexts, the Federal Ministry
of Education and Research (BMBF) developed sustainability measures, e.g., which for science is called Research
for Sustainability (FONA) [65].

Within the framework programme ErUM [6], the BMBF has strengthened the aspect of sustainability in research
on Universe and Matter in their calls for proposals. For example, technological and methodological development
work that contributes to climate- and resource-friendly operation of large-scale facilities and experiments can be
funded alongside projects (e.g., [66]).

In view of all the initiatives and activities to date, however, major and urgent tasks remain for all stakeholders
to be mastered together. The many measures described in this work require appropriate support mechanisms and
structural alterations, some of which themselves must be sustainable. For example, computing facilities localized at
power generators need infrastructure and personnel. Furthermore, an expert group to advise and support scientists
for digital transformation measures in ErUM could be implemented, e.g., in a new phase of the ErUM-Data-Hub
[67]. In any case, a sustainable impact can definitely be achieved by creating appropriate long-term positions in
research data, software, and computing.

Efforts to lower bureaucratic and legal hurdles for the implementation of sustainable dynamic power generation
and transfer are most welcome. They are needed along with new communication channels between power compa-
nies, data centers, and scientists as consumers to enable practical and pragmatic solutions for the sustainable use
and operation of computing infrastructures.

8 Conclusions

Based on a 3-day workshop on sustainability in the digital transformation, interested colleagues from the ErUM-
Data community have compiled a portfolio of measures to reduce the greenhouse gas emissions and to increase
the usage of renewable energy within our research area. In doing so, we are planning for a transitional period until
sufficient renewable energy capacity is installed and electricity will once again be available in abundance.

In light of the dramatic increase in data rates from new or upgraded instruments and the enormous potential
for new knowledge gains from developments in data-driven, AI-assisted methodologies, the awareness of each of
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Table 2 Call-to-action in digital transformation: portfolio of measures to be taken, ordered in terms of effort and time
they take

Item Call-to-action

Immediately or on short timescale with little effort these measures can be implemented:

S1 Raise awareness of the climate challenge at all levels.

S2 Disseminate knowledge of measures to address the challenge.

S3 Monitor and report energy consumption at job level.

S4 Consider carbon footprint for all investments and project plans.

S5 Enhance awareness of the trade-off between research benefit and climate impact.

S6 Use already optimized algorithms in open-source standard libraries or domain-specific libraries.

On a medium timescale of a few years the following measures can be realized:

M1 Make data FAIR to promote reuse.

M2 Reduce and compress data having the anticipated scientific value of the retained information

and the resource requirements in mind.

M3 Optimize the choice of storing intermediate results against re-calculating them.

M4 Optimize job orchestration and scheduling in workflows.

M5 Use workflow management to make processing FAIR.

M6 Make software FAIR and reliable by following good software development practices

and ensuring sustainable support.

M7 Design software for optimized energy consumption and provide tools to measure it.

M8 Continue research on potential of AI, in particular generative and pre-trained models,

or other new technologies for efficient use of resources, but balance gain of research action

against resource consumption of these developments.

M9 Expand detailed monitoring and documentation of energy consumption and CO2e footprint

in AI training and inference.

M10 Monitor and report energy consumption at site and project level, provide information of the

individual use per scientist/project/publication.

M11 Extend monitoring of resources beyond CO2e (water, material etc.).

M12 Train scientists in good practices.

M13 Strive to become a role model at all levels and help to establish sustainability in everyday life.

M14 Regularly review and update the CO2e reduction plan.

A longer term coordinated planning is required for the following measures:

L1 Adjust computing in space and time to the availability of renewable energy, e.g., computing

centers close to off-shore wind parks with a job scheduling using only or mainly the surplus

of renewable energy available at a given time.

L2 Develop software and middleware that can respond dynamically to the availability of

renewable energy.

L3 Optimize power usage effectiveness.

L4 Reuse of produced heat.

L5 Adjust hardware lifetime considering emissions due to procurement and operation.

L6 Include the resources needed for continuous IT support into project planning.
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our scientists is critical during this transition period. Already by applying the portfolio of targeted sustainability
measures described in this publication and consciously balancing prospective knowledge gain and resource usage,
we expect to achieve efficiency gains that will ultimately accelerate our fields of research.

In the portfolio, we see six areas: (1) considering sustainability as an important factor in the planning of
measurement data transformation, (2) good practices in software development and data analysis, (3) use and
development of renowned and efficient algorithms including AI, (4) data center locations at sustainable energy
providers along with lifetime extension of hardware, (5) education and training in a responsible approach of
balancing knowledge gain and resource usage, and (6) targeted efforts of all stakeholders including funding and
institutional support.

Our ErUM community can respond now and develop a realistic plan for the required reduction of CO2e emissions.
We have the tools at hand or can develop them. In Table 2, the portfolio of measures has been ordered according to
the timescales required for their implementation. Various measures can be launched by us immediately or realized
within a medium time period. The third category requires our strategic preparations, which involve coordinated
efforts with additional stakeholders.

Overall, the commitment and joint effort of all stakeholders—funding agencies, institutional bodies, computing
centers, science managers, faculty, scientists, students—are needed to master the challenges of sustainability in
digital transformation in Universe and Matter research.
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Appendix A Twelve guiding questions

The workshop on Sustainability in the Digital Transformation of Basic Research on the Universe and Matter was
structured around twelve prepared questions, listed below [16].

Hardware and research data

1. Footprint: Constructing a comprehensive picture of the footprint of all ErUM-Data related activities. Where
does quantitative knowledge exist, where is it lacking? What resource needs do you see, what opportunities for
savings? What innovations are needed to keep sustainable use of resources in balance with demands? To what
extent does continuing education play a role? How can feedback reduce a footprint through machine learning
methods?

2. (Dynamic) Energy supply: Where to locate and operate computing systems including storage? How could a
dynamic energy supply look like, which largely covers the needs of ErUM-Data related activities with renewable
energies? What information flows would be required for this? What mechanisms and what dynamics are
required on a supra-regional basis to create compensation possibilities for windless/sunless periods?

3. Hardware lifetime: How could prolonged/optimized usage of hardware resources in view of technology evolution
be modeled beyond their usual lifetimes? What short- and medium-term monitoring would be required to
signal indispensable replacements on the one hand, and to execute computing jobs matching their algorithmic
requirements on prolonged or current hardware on the other?

4. Hardware and algorithms: Which adaptive measures for hardware and algorithms could have a decisive impact
on ErUM-Data? Which types of hardware (including, e.g., GPU, TPU, FPGA, neuromorphic computing) could
be considered and which automated mechanisms exist for adapting algorithms to non-specific or dedicated
hardware?
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5. Smart data: Deciding when and how to discard information without losing scientific value, based on learning
from nature and experiment. What mechanisms for transforming data to smart data can be envisioned, and
how can evaluation and control of information gain or loss be accomplished? How can archiving and retrieving
data be managed?

6. Cultural change: What could a comprehensive educational area for rethinking, among other things, the use
of computer hardware, actually required information (smart data), preparation of data packages (event loops
versus event chunks), etc. look like? How can we change to a culture of data reuse? Assessment of ethical
implications and risk assessment.

Algorithms and mindset

7. Autonomization: We witness the transformation from the era of automation to an era of autonomization
(e.g., unsupervised learning). Where will ErUM-Data benefit from autonomization, which innovations are
necessary and how can the reliability of the autonomously obtained results be ensured?

8. Inquiries and dynamics: How can input questions be posed to generate the best possible output from the
machines? What relevance will dynamic learning algorithms and machines have for the field of ErUM-Data?

9. Algorithmics and software: Our thinking in algorithms and software has a direct impact on resource require-
ments. What can sustainable algorithm and software engineering and an associated educational program in
algorithm and software development look like to get ErUM-Data to the forefront of developers?

10. Machine models: Pre-trained and generative models have a high potential for energy savings in both their
creation and usage of machine learning. What innovations are needed to achieve a reliable routine operation?

11. Injected intelligence: How can reasoning by the physicist, mathematician, or any other kind of intelligence
speed up the processes of learning or make them more energy efficient? What measures can we apply to avoid
constantly reinventing the wheel? What can knowledge discovery of work already performed look like?

12. Workflow and stakeholders: How can well-defined, reproducible workflows with high user dynamics (data
analyses) be captured that remain functional in the long term? How can an overall picture be created
with all stakeholders working together on a large-scale project for the benefit of sustainability across their
departmental boundaries?

Appendix B WLCG energy consumption and CO2e reduction scenario

Hardware power consumption

For data centers as used in the Worldwide LHC Computing Grid (WLCG), typical numbers for power consumption
of modern computing hardware in 2023 are:

• CPU Modern CPUs have power consumption in the region 3–8 W per core, e.g., dual AMD EPYC 7513 node
with 480 W for 64 cores [68] and about 1700 HS23 (HS23-table) or 280 W/kHS23.4 Extrapolated to the whole
available WLCG computing capacity (used by the four LHC experiments) of about 14 MHS23, this would
correspond to 3.8 MW (in reality, consumption is presumably larger since average CPU hardware is older).

• Disk storage Modern storage servers have a power consumption around 1–2 W per TB, e.g., HP Raid-6 server
with 14 × 16 TB HDD and usable capacity of 192 TB consumes 240 W (= 1.2 W/TB). Extrapolated again to
full WLCG disk capacity of 870 PB, this would correspond to about 1.1 MW.

• Tape storage Estimates for power consumption for tape storage are typically factor 10 lower than disk stor-
age [41], i.e., around 0.1 W/TB.

• Networking Power consumption of network routers and services are rather small, typically at the level of 2–3%
for a WLCG data center

There is an additional overhead for cooling ranging from 10% for highly optimized sites with direct warm-water
cooling to 40% for traditional air-cooled systems.

CO2e reduction scenario

Sketch of a possible scenario of CO2e reduction until 2030 for WLCG data centers in Germany:

4HS23 is standard CPU benchmark used in WLCG, see (HS23).
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1. Transition to renewable energies for electricity production as envisioned for Germany would reduce fossil share
from about 40% (2023) to 20% (2030) [11], roughly corresponding to a 50% CO2e reduction.

2. Setup a computing and data center in northern Germany with dynamic CPU provisioning synchronized with
availability of renewable power and extend hardware lifetime from 5 to 8 years. Assuming the center covers
70% of CPU requirements, this would yield a 40% CO2e reduction. Such a ’load-shaping’ operation has been
tested for WLCG applications [46] and is also investigated by large commercial cloud providers [69].

3. Technological progress in hardware typically results in 15–20% energy savings per year (long-term average).
Experience in WLCG shows that increased savings balances increasing demand due to higher data volumes,
etc [41] (no net savings).

4. Software progress (compilers, algorithms, replacing full simulation with ML models,...) has large potential: 50%
savings are assumed in HL-LHC5 planning scenarios [34, 41]. However, this is a dedicated effort in preparation
for the huge increase in data volume with the HL-LHC phase, and it remains to be seen whether net savings
for computing resources remain.

Of course, all of the above contributions have considerable uncertainties. Depending on the details of progress in
each part, an overall reduction of the CO2e footprint in the range between 70 and 85% by 2030 might be achieved
for WLCG operation in Germany.

References

1. IPCC, Climate change 2023: synthesis report. in Contribution of Working Groups I, II and III to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change (2023). https://doi.org/10.59327/IPCC/AR6-9789291691647.
https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_FullVolume.pdf

2. IPCC, Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. in Contribution
of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge
University Press, Cambridge and New York, 2014), p. 1132. https://www.ipcc.ch/site/assets/uploads/2018/02/WGII
AR5-PartA_FINAL.pdf

3. K. Kornhuber, C. Lesk, C.F. Schleussner et al., Risks of synchronized low yields are underestimated in climate and crop
model projections. Nat. Commun. 14, 3528 (2023). https://doi.org/10.1038/s41467-023-38906-7

4. United Nations, Paris Agreement. Treaty Series, vol. 3156 (2015). https://treaties.un.org/Pages/ViewDetails.aspx?src=
IND&mtdsg_no=XXVII-7-d&chapter=27&clang=_en. Accessed: 11-Sep-2023

5. International Energy Agency IEA, Tracking data centres and data transmission networks. (2022). https://www.iea.org/
energy-system/buildings/data-centres-and-data-transmission-networks. Accessed: 29-Oct-2023

6. Bundesministerium für Bildung und Forschung (BMBF), Rahmenprogramm ErUM: Erforschung von Univer-
sum und Materie. (2020). https://www.bmbf.de/SharedDocs/Publikationen/de/bmbf/7/31339_Erforschung_von_Univ
ersum_und_Materie.pdf?__blob=publicationFile&v=4. Accessed: 17-Jul-2023

7. Bundesministerium für Bildung und Forschung (BMBF), Aktionsplan ErUM-Data. (2020). https://www.bmbf.de/Shar
edDocs/Publikationen/de/bmbf/7/31640_Aktionsplan_ErUM-Data.pdf. Accessed: 12-Oct-2023

8. Stiftung Allianz für Entwicklung und Klima, CO2e und GWP. (2023). https://allianz-entwicklung-klima.de/toolbox.
Accessed: 29-Oct-2023

9. H. Ritchie, M. Roser, P. Rosado, Our world in data: energy. (2022). https://ourworldindata.org/energy. Accessed:
10-Sep-2023

10. J. Ullrich et al., Nicht-fossile Energie: Eine Globale Herausforderung für den Klimaschutz. Physikkonkret (66) (2023).
https://www.dpg-physik.de/veroeffentlichungen/publikationen/physikkonkret

11. Bundesministerium für Wirtschaft und Klimaschutz (BMWK), Fakten aus Eröffnungsbilanz Klimaschutz. (2022).
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