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Two time scales for self and collective diffusion
near the critical point in a simple patchy model
for proteins with floating bonds†

J. Bleibel,ab M. Habiger,a M. Lütje,a F. Hirschmann,a F. Roosen-Runge, c

T. Seydel,d F. Zhang, a F. Schreiber a and M. Oettel *a

Using dynamic Monte Carlo and Brownian dynamics, we investigate a floating bond model in which

particles can bind through mobile bonds. The maximum number of bonds (here fixed to 4) can be tuned

by appropriately choosing the repulsive, nonadditive interactions among bonds and particles. We

compute the static and dynamic structure factor (intermediate scattering function) in the vicinity of the

gas–liquid critical point. The static structure exhibits a weak tetrahedral network character. The inter-

mediate scattering function shows a temporal decay deviating from a single exponential, which can be

described by a double exponential decay where the two time scales differ approximately by one order

of magnitude. This time scale separation is robust over a range of wave numbers. The analysis of clusters

in real space indicates the formation of noncompact clusters and shows a considerable stretch in the

instantaneous size distribution when approaching the critical point. The average time evolution of the

largest subcluster of given initial clusters with 10 or more particles also shows a double exponential

decay. The observation of two time scales in the intermediate scattering function at low packing fractions

is consistent with similar findings in globular protein solutions with trivalent metal ions that act as bonds

between proteins.

1 Introduction

Patchy particles represent an attractive model for the equilibrium
and dynamical properties of protein systems.1 One reason for
their great success is that these models, on the one hand, access
general soft matter properties shared by proteins but, on the other
hand, are able to also adapt to the complexity of protein structure
in a versatile way. Evidence for patchy interactions in protein
systems is vast, starting from the general consideration of non-
spherical shape and inhomogeneous surface pattern of charge
and hydrophobicity. Numerical calculations based on real protein
structures show that few highly attractive relative orientations
dominate the protein interaction.2 While the existence of
the metastable liquid–liquid phase separation points to overall
short-ranged attractions in the pair potential,3,4 the shape and
location of the binodal points indicate an additional influence

of patchy attractions.5,6 The existence of protein crystals at
relatively low packing fractions indicates the importance of
patchy attractions.7 The notion of patches is also supported by
the effects of point mutations in the protein sequence that do
not alter the protein shape, but significantly vary the protein
solubility and crystallization pathway.8–13 Patchy interactions in
nature thus effectively allow for a ‘‘negative selection pressure’’, as
many proteins would disfavor agglomeration and crystallization.

Patchy interactions in protein solutions can also be induced
or enhanced. Examples are solutions of several globular pro-
teins in electrolytes with trivalent metal ions.14–22 The existence
of a liquid–liquid phase separation (LLPS) and its reentrant
character with changing salt concentration can be explained
semiquantitatively using a colloidal model with ion-activated
patches.19 Here, ‘‘empty’’ patches (negatively charged surface
spots) become activated by the binding of a cation and
may bind to a second empty patch on a different protein,
i.e. forming an ion bridge. Indeed, ion bridges have been
observed in protein crystals with multivalent cations,23 and
the cation binding to acidic residues and the resulting
charge inversion have been confirmed in experiment and
simulation.24,25 In addition to the liquid–liquid phase separa-
tion, the experimental system shows more features in the phase
diagram, most notably lines away from the LLPS region in the
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cp–cs plane (protein and salt concentration, respectively), which
divide clear and turbid states. In static light scattering experi-
ments at quite small protein packing fractions of a few percent,
these lines show up as apparent or pseudo-spinodal lines with
diverging scattering intensity.17

A general feature of attractive and charged particles is the
formation of equilibrium clusters, which has been predicted by
a simple argument:26–28 if particles exhibit a short-ranged
attraction and a long-ranged (Coulomb) repulsion, single
particles attach until the repulsion of the cluster is strong
enough to destabilize further attachment. Computer simula-
tions support this notion of cluster formation due to competing
interactions.28–35 Colloidal clusters have been observed experi-
mentally in colloidal solutions,36 and predictors for structural
signatures of an intermediate-range order peak have been
suggested.37 The nature of these clusters is not always clear,
though.

As expected from this colloidal picture, clusters are also
observed in protein solutions. Most prominently, the formation
of equilibrium clusters was evidenced in concentrated protein
solutions of lysozyme.38 As reversible clustering of proteins is
promising for improved drug delivery of antibodies at elevated
volume fractions,39 a characterization of the nature of clusters,
i.e. static and irreversible or transient and reversible, is of great
importance. For lysozyme, the combination of small-angle
scattering techniques, nuclear magnetic resonance, neutron
spin echo spectroscopy, and dynamic light scattering suggests
that the protein clusters are rather dynamic and transient
instead of static and irreversible.37,40–44 Similarly, b-lactoglobulin
was found to form small clusters at elevated concentrations
that appear static on time scales of several nanoseconds,22 but
transient on longer time scales.45 Large metastable clusters of
proteins have been studied experimentally by light scattering and
microscopy for various proteins such as hemoglobin, lumazine
synthase, lysozyme and monoclonal antibodies.39,44,46–50

In these cases, the possible degree of patchiness in the
protein attractions could not be addressed, since a direct experi-
mental signature is not obvious. A recent study suggested that
patchy interactions could be addressed using the translational–
rotational diffusional coupling in concentrated solutions,51 as
apparent from the full dependence on volume fractions, which
requires extensive experiments. A different, more pragmatic
approach can be based on the expectation that for patchy
particle systems in the vicinity of a liquid–vapour transition
(corresponding to a LLPS on protein systems), the directional
attraction is strong enough to promote the formation of
(non-static) clusters. This is supported by simple mean-field
arguments similar to Flory–Stockmayer theory (see e.g. ref. 19).
Such clusters would manifest themselves in at least a second
relaxation time. Indeed, in solutions of bovine serum albumin
(BSA) in the presence of yttrium cations, a second relaxation
time in the dynamic structure factor measured by dynamic light
scattering was found,17 implying an additional channel of
relaxation for long-time gradient diffusion at length scales of
many protein diameters, i.e. at length scales of extended
clusters. As a different apparent signature of clusters in the

same experimental system,20 the short-time self diffusion was
found to be reduced as a function of the salt/protein ratio
(i.e. the strength of patchy attractions according to the model in
ref. 19) but did not show significant deviations from a single
decay on nanosecond time scales. We remark that these two
limiting cases do not contradict, but complement each other
(again, clusters could be rigid on the short time scales of typical
neutron scattering experiments and transient on longer time
scales), and further experiments as well as theoretical and
simulation results are needed to provide a comprehensive
multi-scale picture of cluster effects. This necessity is supported
by apparent, but not comprehensively understood, cluster
signatures in other experimental systems. An early study52

investigated the dynamic structure factor near the critical point
in bovine gB-crystalline solutions and found the appearance
of two characteristic time scales roughly differing by a factor of
10. In contrast, a recent study on the same protein stressed that
both gradient diffusion around the critical point and cage
diffusion on the scale of the protein diameter were consistent
with a single decay,53 and could be linked to the cluster formation
of patchy particles, which eventually cause a dynamical arrest at
comparably low volume fraction.54 These results resemble the
phenomenology of lysozyme, where clusters with an intermediate
lifetime are formed with increasing volume fraction, but do not
show additional relaxation phenomena.41,43 Based on these
experimental studies, it is of importance to develop an under-
standing of how clusters of patchy particles would impact the
experimental observables such as correlation functions probed
in scattering techniques.

In this context, it is important to stress that proteins are
comparably flexible, and patches might not be small spots on
the surface, but rather large areas with mutual interactions.
A rigid crosslinking between two proteins in fixed orientation
seems improbable, which also has to be considered in the
choice of the patchy model to be explored. The types of patchy
models studied in the literature address these considerations
differently. Models with fixed, sticky spots on the surface of
particles lead to rather rigid bonds. Kern–Frenkel models55

(with fixed conical attraction sites) allow an independent
tuning of the range and the angular flexibility of bonds. On
the other hand, models with floating bonds may entirely discard
fixed surface positions for attraction spots. These basic types
of models are discussed briefly below. Beyond these simple
models, the charged nature of patches and possibly also counter-
ions can be taken into account explicitly.56–58

In this work, we choose the floating-bond type of the simple
models in order to avoid an explicit and computationally
demanding description of electrostatics and investigate a
simple, patchy-like colloidal model that consists of particles
(colloids, proteins) and bonds (binding agents such as the
trivalent cations in the experiments of ref. 17). The model
shows a liquid–gas phase separation (equivalent to the LLPS
in protein solutions) similar to conventional patchy models.1

We compute static and dynamic structure factors (which are
quantities that are also frequently determined in experiments)
and investigate their behavior close to the spinodal and the
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critical points of the liquid–gas separation (which is at a
particle packing fraction of about 0.1). The packing fraction is
low enough for the system to be far away from the region
of system-spanning network formation that would entail
slowing-down and eventual dynamic arrest at gelation points.
The dynamic signatures of such a network formation and arrest
have been studied, e.g. in a sticky spot model with 4 sites, which
gives rise to the formation of a random, fully connected
tetrahedral network.59,60 There, the long-time dynamics is driven
by the evolving network of metastable domains. Nevertheless, at
such low packing fractions as 0.1 and below, we also find two
time scales in the dynamic structure factor of the system, similar
to experiments.17 An analysis of the dynamic clusters in real
space also reveals the existence of two time scales. We interpret
this as a particular feature of patchy models, at least of the
type investigated here, which further confirms the usefulness
of patchy colloidal models for the description of certain
protein solutions.

The paper is organized as follows. In Section 2, the floating-
bond model and the simulation methods are introduced.
Results for static and dynamic structure factors and an analysis
of clusters at a fixed time and their time evolution are pre-
sented in Section 3. A discussion of the obtained results in
relation to experiments and further perspectives are contained
in Section 4.

2 Floating-bond model and
simulation methods

Simple models for patchy particles are the sticky-spot model
and the Kern–Frenkel model.55 In the sticky-spot model, point
patches are located on the surface of a hard spherical colloid
(with radius s/2). Point patches interact attractively when the
distance between any two patches is smaller than a patch
radius d/2 (d { s), see Fig. 1(a). In the Kern–Frenkel model,
patches are modelled as spherical cones of radius (s + d)/2. Any
two patches interact attractively if they intersect with each other
and if the vector connecting the centres of mass of the two
colloids passes through both of them. The equilibrium proper-
ties of these models along with basic simulation techniques are
reviewed in ref. 61. We use a model simplified even further by
employing a binary model with isotropic but non-additive
pairwise interactions (‘‘floating bond model’’), see Fig. 1(b).
The first species represents colloids (hereafter ‘‘particles’’) and
the second species mediates the attractive interactions between
the particles (hereafter ‘‘bonds’’). The interactions between
particles and bonds (outside a hard core) are attractive and
short-ranged and the radius of the bonds is small. The inter-
action between two bonds is repulsive, however with a larger
interaction radius. This prevents two bonds coming too close to
each other and limits the maximum number of bonds that can
bind to the surface of a particle (see Fig. 1(c)). The model was
introduced and its static properties studied by Zaccarelli and
coworkers,62 employing hard potentials for the particle–particle
and bond–bond interactions and a square-well interaction

for the particle–bond interaction. Some dynamic properties
(using event-driven molecular dynamics) have been studied
subsequently in ref. 63.

Experimental protein systems (such as those with globular
proteins in trivalent salt solutions) possess features of patchy
particle models with fixed patches (specific surface groups) and
of the floating-bond model (mobile cations). Concerning the
numerical treatment, the particular choice of the ‘‘floating
bond model’’ has some advantages: all particles are symmetric
with respect to rotational degrees of freedom. This renders
simulations fast and thus allows for rather simple numerics
and large systems. Below, we will introduce a version of the
floating-bond model with continuous potentials, which can be
treated using Brownian dynamics.

2.1 Model potentials

According to ref. 62, the restriction to a maximum of 4 bonds
per particle and 2 particles per bond can be approximately
realized with the choice of hard sphere diameters s22 = 0.8s11

and s12 = 0.55s11 (see Fig. 1(c)). Although a fifth bond
is theoretically possible, it practically never occurs if the
square-well interaction range d between particles and bonds
is chosen to be small (d = 0.03s12 in ref. 62). We adopted
the following continuous form of the potentials uij(r) (with
i, j = 1, 2), which closely approximates the hard and square
well potentials of ref. 62:

Fig. 1 (a) Schematic simple patchy particle model, a one component
system of particles (green) with mutually attractive patches (grey) and thus
anisotropic interactions. The particles have translational and orientational
degrees of freedom, visualized by the dark green arrows. (b) ‘‘Floating bond
model’’, a binary system of particles and bonds. Attractive interactions only
exist between particles and bonds, all interactions can be chosen as
isotropic. Particles (green) and bonds (red) have translational degrees
of freedom only (dark green and red arrows, respectively). (c) In the
floating-bond model, realized with hard interactions, s12 is independent
from s11 and s22. The size of s22 (transparent red sphere, larger than 2R12)
prevents the possibility of more than 4 bonds binding to a particle
(green sphere).
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The hard interactions have been replaced by the repulsive
part of the (shifted) Lennard-Jones potential. The Lennard-
Jones diameters have been fixed by the Barker–Henderson
recipe evaluated for T - 0, which gives dij = 2�1/6sij. The
attractive well has been replaced by a half-period cosine where
the integrated strength (for T - 0) of the resulting attractive
well is equal to the original square well. For d = 0.03s12, this
gives l/d12 E 0.134. For simplicity, we chose e11 = e22 = e12 =: e
and the temperature will be measured in units of e: kBT/e - T.
The resulting potentials are depicted in Fig. 2.

2.2 Simulation methods

We implemented Brownian dynamics using the standard
position Langevin equation64 and the dynamic Monte-Carlo
(MC) method.65,66 In each MC step of the dynamic MC method,
small translational, random moves in the range [�dl,dl] (for
each cartesian direction and for all particles and bonds) are
attempted and they are accepted with an average acceptance
ratio a (for particles). Let D0 be the diffusion constant for a free
particle, then the time per MC sweep can be defined as

dt ¼ dl2a
6D0

: (2)

This dt is independent of dl if the latter is chosen to be not
too large. A dimensionless time (for later use) is defined
by setting tD0/s11

2 - t where t = 1 corresponds to the average
time for an isolated particle to diffuse over a distance given
by its diameter (Brownian self-diffusion time). Results on the
dynamic structure factor and the cluster time evolution below
were obtained with the dynamic MC method only but results
for diffusion in dilute systems and for the static structure factor
were obtained by simulations using both the position Langevin
equation and dynamic MC. We typically simulated N1 = 1000
particles and a variable number N2 of bonds. The relative
concentration of bonds is denoted by cb = N2/N1, and the
packing fraction of particles is denoted by F = (ps11

3N1)/(6L3),
where L is the side length of the cubic simulation box.

Pressure isotherms using the virial method64 were calcu-
lated to check the location in the phase diagram (see below).
The static particle–particle structure factor was calculated

according to the definition

SðqÞ ¼ 1

N1

XN1

i¼1

XN1

j¼1
exp iq � ri � rj

� �� �* +
(3)

where the sums only run over particle indices. Likewise, the
self and the distinct parts of the dynamic structure factor
(intermediate scattering function) were calculated according
to the definition67

Ssðq; tÞ ¼
1

N1

XN1

i¼1
exp iq � riðtÞ � rið0Þð Þð Þ

* +

Sdðq; tÞ ¼
1

N1

XN1

i¼1

XN1

jðaiÞ¼1
exp iq � riðtÞ � rjð0Þ

� �� �* +
:

(4)

For the purpose of calculating statistics of clusters of
bonded particles and bond lifetimes, we defined connected
and disconnected bond–particle pairs as indicated in Fig. 2.
The gap (distances for which bond–particle pairs appear as
neither connected nor disconnected) was chosen with the
following idea: a connected bond (established when r o s12)
becomes disconnected only when r 4 s12 + l/2. This avoids
the appearance of artificially short bond lifetimes through tiny

Fig. 2 The interaction potentials (in units of kBT at a reduced temperature
of 0.1) in the floating-bond model. (a) Particle–particle and bond–bond
interactions, dashed lines indicate the hard sphere (HS) potentials of ref. 62
and 63. (b) Particle–bond interactions, dashed lines indicate the square well
(SW) potentials of ref. 62 and 63. For later use, we define bound bond–
particle pairs if r o s12 occurs at some time instant and we define the
breakup of a bound pair if r 4 s12 + l/2 occurs at a later time instant, where r
is the center–center distance of a bond and a particle (see Section 2.2).

uiiðrÞ ¼
4eii

dii

r

� �12

� dii

r

� �6

þ1
4

" #
ðro 21=6diiÞ

0 ðr4 21=6diiÞ

8>><
>>:

u12ðrÞ ¼
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d12

r

� �12

� d12

r

� �6
" #
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� �
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1þ cos
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MC moves for bonds/particles when they are located close to
the potential minimum of u12(r). For a cluster analysis, we
consider two particles as directly bonded when they share a
bond that is bound to each particle. The DBSCAN algorithm68

was used to identify clusters of bonded particles. The dynamic
behaviour of clusters was characterized via the evolution of
initial clusters at time zero via their largest subclusters at later
times (see Fig. 3).

2.3 Phase diagram

In ref. 62 and 63, several static and dynamic properties of the
model with hard potentials and a maximum number of bonds
equal to 4 have been studied for the bond concentration cb = 2
(which can be considered as optimal for binding since in the
ground state, all particles are bound and all bonds are used). As
can be expected for a patchy model, the region of gas–liquid
phase separation is shifted to a smaller packing fraction F and
lower temperature T compared to a simple isotropic liquid.
From the measurement of the spinodal points, the location of
the critical point can be estimated as Tc E 0.1 and Fc E 0.1.
Near the critical point, the pressure isotherms of our floating-
bond model with continuous potentials are similar. We could
determine spinodal points reliably only for packing fractions
F 4 Fc, and these are close to the results of ref. 62 (see Fig. 4).

Ref. 62 and 63 identified an ‘‘optimal network region’’ for
F 4 0.23 and T t Tc. For F = 0.25 and T E 0.07, the authors
observed an arrest in time in the mean-square displacement,
which points to a gel transition. Near the critical point, self
diffusion is slowed down compared to very dilute systems but
the system stays far from gelation.

3 Simulation results

With the information from the phase diagram at hand, we chose
two paths with termination points close to the critical point (path
I) and close to a spinodal point (path II, see also Fig. 4). On these
paths we evaluated the static and dynamic structure of the system
through the intermediate scattering function. For path I, the
optimal bond concentration is chosen for binding (cb = 2), the
particle packing fraction is approximately the critical one

(F = 0.1 E Fc), and the temperature is lowered towards
T = 0.1 E Tc. For path II, the temperature is set to approximately
the critical one (T = 0.1 E Tc), the particle packing fraction is
F = 0.05 and the bond concentration is increased from 0 to the
optimal one. We focus on small packing fractions F r Fc and
deliberately avoid the percolating network region, which has been
analyzed in ref. 63 through long-time self-diffusivity. For these
small packing fractions, self diffusion is still fast enough that any
formed clusters and networks are highly dynamic objects.

3.1 Static structure factor

We have computed the static structure factor along paths I and
II and the results are shown in Fig. 5. For path I, the effect of
decreasing T towards the critical point results in an enhance-
ment of S(q - 0). For path II, the packing fraction is quite low
(F = 0.05) and the bond concentration cb is varied from 0 to 2. At
cb = 0, the system is a pure repulsive-sphere system with a weak
maximum in S(q) around qs11 E 6. With increasing cb, the
maximum shifts towards qs11 E 8 and the near-critical enhance-
ment S(q - 0) is also clearly visible. The first maximum at
qs11 E 8 is seen for the end points of both paths. In ref. 62,
higher packing fractions in the network region were studied and
a similar peak together with a secondary peak at qs11 E 5 was
observed and attributed to the formation of a tetrahedrally
coordinated network. At the low packing fractions studied here,
the network is not fully formed and the secondary peak is hardly
discernible. Snapshots near the critical point confirm this, and
an example is shown in Fig. 6.

3.2 Dynamic structure factor (intermediate scattering
function)

We have computed the self/distinct part of the intermediate
scattering function Ss/d(q,t) along paths I and II for various qs11

Fig. 3 Dynamic behavior of clusters: an initial cluster was identified at
t = 0 (green particles). At the next time instance t1, all clusters were
identified that still contained any of the initial particles and possible new
particles (in blue) but only the largest cluster of these was retained for
analysis at the next time instance t2. A new particle–bond connection
is considered to be formed when particles and bonds are separated by
r o s12 but an existing particle–bond connection is considered to be
broken only when r 4 s12 + l/2 (see Fig. 2).

Fig. 4 Phase diagram of the model for cb = 2. Open red squares are
spinodal points determined in ref. 62 using hard and square well potentials.
Black filled diamonds are spinodal points (obtained by fitting van der Waals
loops to the pressure data) from our MC simulations using continuous
potentials. Lines connecting filled circles are iso-self-diffusivity lines from
ref. 63. The static and dynamic structures in this work are determined
along path I (dashed line) and path II (end point shown at F = 0.05, T = 0.1).
Along path II, cb is increased from 0 to 2.
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between 2 and 10 and reduced times between 10�4 and 102. To
exemplify these numbers, consider the experimental system of
ref. 17 (BSA solutions with s E 70 Å and D0 E 6.3 Å2 ns�1 (no
salt)). There, the self-diffusion time would be E800 ns and
therefore the time-range considered in the simulations corre-
sponds to the range 0.08 ns. . .80 ms. The considered wave
numbers correspond to 0.3. . .1.5 nm�1.

In general, the statistical fluctuations in the distinct part
Sd(q,t) (for fixed t) differed a lot and in an unsystematic manner
between different q values. We used 16 independently equili-
brated systems from which we generated in total 48 trajectories
for Ss/d(q,t) at a given state point. Time was binned logarith-
mically with 4 stencils per decade.

Examples of the normalized structure factors (intermediate
scattering functions) fs(q,t) = Ss(q,t) and fd(q,t) = Sd(q,t)/S(q,0)
for qs11 = 4.22 (path I) and qs11 = 3.68 (path II) are shown in
Fig. 7. One can see clearly that for both paths, the dynamics

becomes slower when going towards the critical point (red
full squares) and the curves deviate more and more from a
simple exponential decay. We captured this by fitting fs/d(q,t)
using two exponentials:

fs=dðq; tÞ ¼
X2
i¼1

A
s=d
i ðqÞ exp �q2D

s=d
i ðqÞt

� 	
(5)

where As/d
i (q) are q-dependent amplitudes and Ds/d

i (q) are
q-dependent diffusion coefficients (Ds

i for self diffusion and
Dd

i for collective diffusion). This is similar to analysis of
experimental data, e.g. in ref. 17 where (collective) diffusion
coefficients (from fd(q - 0,t)) in protein–salt solutions have
been analyzed approaching a spinodal-like line in the phase
diagram. The fits are shown with full lines in Fig. 7 and capture
the behavior of fs/d(q,t) rather well. Single exponential fits would
deviate considerably.

Fig. 5 Static structure factors along path I (a) and path II (b), computed using the position Langevin equation. Results agree with dynamic MC, and an
example is shown in the right panel (full black line).

Fig. 6 (a) Snapshot at the end point of path I at F = 0.1, T = 0.1 and cb = 2. The system consists of clusters that themselves are a loose network.
(b) Snapshot at the end point of path II at F = 0.05, T = 0.1 and cb = 2. Clusters are smaller and there are more unbound particles. Larger red spheres are
particles and bonds are smaller blue spheres. Both particles and bonds are reduced in size such that the links (indicating connected particle–bond pairs)
are more visible. Both snapshots were taken with the VMD software.69
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We performed double exponential fits to all values in the
indicated q range. The results for those diffusion coefficients
that could be determined with an accuracy of 50% and better
are collected in the ESI.† The main conclusion from the fits is
that a robust separation of time scales exists over the whole q
range (except for the system with no bonds on path II).

In Fig. 8, we show the error-weighted average (over q)
diffusion coefficients %Ds/d

i for path I. %Ds/d
1 (‘‘slow’’ diffusion)

and %Ds/d
2 (‘‘fast’’ diffusion) differ by roughly one order of

magnitude. Both decrease for T - 0.1, i.e. towards the critical
point, the dynamics becomes slower. The ratio becomes bigger
when approaching the critical point. We note that Ds

1 and Dd
1

(‘‘slow’’ diffusion) seem to converge towards the critical point,
i.e. there is no difference between the time scales for self and
collective diffusion for the slow process.

In Fig. 9, we show the error-weighted average diffusion
coefficients for path II. As for path I, both %Ds/d

1 (‘‘slow’’ diffu-
sion) and %Ds/d

2 (‘‘fast’’ diffusion) decrease for cb - 2, i.e. towards
the spinodal line and their magnitudes differ by roughly one
order of magnitude. Note however that for cb = 0, there is no
real slow diffusion since the system consists of purely repulsive
spheres. At the end point of path II there is still a difference
between the diffusion coefficients of self and collective diffu-
sion for the slow process but we also note that this end point
(T = 0.1, F = 0.05, cb = 2) is near the spinodal line but not so
close to the critical point (see Fig. 4).

We see the same trends for collective diffusion in the
experiments of ref. 17. There, the trivalent salt ions act as
bonds and upon increasing the salt concentration towards the
spinodal line, a similar decrease of Dd

i is observed as well as
the ratio Dd

1/Dd
2 of about one order of magnitude. Note that the

experiments were carried out with dynamic light scattering and
allow the extraction of diffusion coefficients for q - 0, a limit
that cannot be properly reached in the simulations.

3.3 Cluster analysis

In order to obtain more insight into the properties of the system
in real space, we performed a cluster analysis. Instantaneous
clusters were determined as described in Section 2.2. Along path
I, we determined a normalized distribution f (n) of clusters with n
particles, which is shown in Fig. 10(a). When changing the
reduced temperature from 0.12 to 0.1, a considerable stretching
of the cluster size distribution is observed, with no maximum at a
favoured cluster size. This is similar to the cluster size distribution
derived from Flory–Stockmayer theory (see the example in ref. 19).
Near the critical point (T = 0.1), we investigated the dependence of
the cluster radius of gyration on the particle number, rg(n).
Compact clusters would entail rg p nB with B = 1/3, but we found
B E 0.43 (see Fig. 10(b)). This points to open clusters and is
corroborated by the snapshot in Fig. 6.

Time evolution of clusters was investigated using the concept of
the ‘‘evolution of the largest subcluster’’, see Section 2.2 and Fig. 3.

Fig. 7 Intermediate scattering functions fs/d(q,t) along path I (qs11 = 4.22, (a) and (b)) and along path II (qs11 = 3.68, (c) and (d)). The sequence blue
triangles - green points - red squares corresponds to an approach to the terminal point of each path (critical point for path I resp. spinodal point for
path II). Symbols are simulation data and lines and fits according to eqn (5).
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We considered only initial clusters with size n Z 10. A time-
dependent normalized cluster size h(t) was then defined
through

hðtÞ ¼ Average
size of the largest subcluster at time t

size of the initial cluster

� �
: (6)

For the end point of path II, the result for h(t) is shown in
Fig. 11. The time-dependence of h(t) clearly shows two different
time scales, which we identified by a fit to the function

hðtÞ ¼
X2
i¼1

ai exp �ditð Þ þ c (7)

whose result is shown by the continuous line in Fig. 11. The two
rate constants were determined as d1 = 0.013 and d2 = 1.1. The
occurrence of two distinct time scales (as in the intermediate
scattering functions) is striking but a straightforward connec-
tion of the q-dependent self and collective diffusion coefficients
Ds/d

i (q) to the rate constants di is not obvious. In order to obtain
h(t), an averaging over different cluster sizes and thus different
length scales was performed whereas the intermediate scatter-
ing function allows diffusion to be extracted on a particular
length scale 2p/q. The rate d2 belongs to a ‘‘fast’’ process
occurring on the time scale of the Brownian self-diffusion time.
This time scale is also similar to single-bond lifetimes, i.e.
average lifetimes for connections between particles and bonds.

Fig. 8 Average diffusion coefficients along path I from error-weighted
diffusion coefficients, which in turn are obtained from fits of the inter-
mediate scattering functions to eqn (5). (a) Slow component. (b) Fast
component. (c) Ratio between ‘‘fast’’ and ‘‘slow’’ average diffusion coeffi-
cients. Error bars are obtained from the standard deviation of the fit
coefficients.

Fig. 9 Average diffusion coefficients along path II from error-weighted
diffusion coefficients, which in turn are obtained from fits of the inter-
mediate scattering functions to eqn (5). (a) Slow component. (b) Fast
component. (c) Ratio between ‘‘fast’’ and ‘‘slow’’ average diffusion coeffi-
cients. Error bars are obtained from the standard deviation of the fit
coefficients.
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We found that in the vicinity of the spinodal line, they are
on the order of 1 (e.g. on path I, they change from E0.5 at
T = 0.14 to E3 at T = 0.1). Thus, the fast process in the decay
of the cluster size is associated with the breakup of single
bonds, which is reasonable. On the other hand, we have no
clear picture of which precise mechanism is responsible for
the ‘‘slow’’ process that occurs on a time scale of about
100 Brownian self-diffusion times. This will be subject to
further investigations in the future.

From our results, we clearly infer that clusters in the vicinity
of the spinodal line are highly dynamic objects, and there is no
sign of a dynamical arrest for the small packing fractions
investigated (F = 0.05 and 0.1). This is in accordance with the
findings of ref. 63 on self-diffusivity (see the corresponding
isolines in Fig. 4). At these packing fractions, even near the
critical point, there is no strong slowing-down as seen in the
optimal network region (0.25 o F o 0.4 and T o 0.1).

4 Conclusion and outlook

Using Brownian dynamics simulations, we studied a simple
patchy model (floating-bond model) where the patchiness of
particles is realized via a second species of bonds, which may
bind to particles through a short-ranged attractive interaction.
A limited, tunable valence of particles is possible by choosing
an appropriate repulsion between the bonds. The model shows
a shifted gas–liquid transition (typical for patchy models) as
well as a network fluid and glass region.62,63 We have computed
static and dynamic structure factors for state points approaching
the critical point and the spinodal line of the gas–liquid transition.
Near the spinodal and the critical points, the dynamic structure
factor shows clear deviations from a decay with a single relaxa-
tion time scale. The results can be described well with the
assumption of a second time scale that is about 10 times
slower. In real space, near the critical point, the system shows
the formation of rather open (noncompact) clusters whose size
is broadly distributed. Studying the evolution of the largest
subcluster of a given initial cluster also shows the existence of
two time scales. The fast one can be attributed to the lifetime of
connections between particles and bonds whereas the inter-
pretation of the slow one is not obvious.

The model studied here can be viewed as a very basic
description of the patchiness in the character of the effective
protein–protein interactions seen in ref. 14–22. There, bonds
are trivalent cations. The experimental system exhibits spinodal-
like lines for rather low protein packing fractions of a few
percent. Upon approaching these, the dynamic structure factor
also exhibits two time scales with a ratio of about 10. The results
of our model suggest that the appearance of a second time scale
already at low protein packing fractions (in the simulations: 5
and 10 percent) is linked to the patchiness of the effective
interactions. Within the simple model, however, the second
time scale cannot be linked to a characteristic diffusion time
of clusters of a particular size. The instantaneous cluster size
distribution of the model near the critical point shows an onset
of a power law and it does not show a peak for a specific cluster
size. The clusters are transient and the second time scale in the
decay of the largest subcluster points to a collective process not
related to the diffusion of whole clusters.

In the experimental system of ref. 14–22, the effective
protein–protein interactions also include repulsive charge–
charge interactions. In the vicinity of the spinodal-like lines,
the effective charge changes sign. Therefore, near this point of
charge reversal, the system displays a subtle interplay of patchy

Fig. 10 (a) Normalized instantaneous size distribution for clusters (state
points on path I). (b) Cluster radius of gyration vs. particle number in the
cluster for the end point of path I (close to the critical point). Full lines are
power laws: the fit to the data gives a coefficient of 0.43, which is larger than
a power law with a coefficient of 1/3, appropriate for compact clusters.

Fig. 11 Time-dependent normalized cluster size h(t) for the end point of
path II (T = 0.1, F = 0.05, cb = 2). Symbols are simulation averages and the
line is a fit to eqn (7) with rate constants d1 = 0.013 and d2 = 1.1.
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attractions and longer-ranged repulsions. There are a number
of studies of systems with isotropic short-range attractions and
longer-ranged repulsions28–35 (as alluded to in the Introduction)
since these systems form stable cluster phases. Also, in these
stable cluster phases, individual clusters are not long-time
stable, see ref. 35 for a recent, detailed investigation. For patchy
short-range attractions and longer-ranged repulsions, the
implications for the phase diagram have been studied in
ref. 70 and possible cluster phases identified. The connection
of such cluster phases and their dynamics to the experimental
system will be the subject of further study. Future simulations
and theoretical studies on more refined models including
longer-ranged repulsions provide the groundwork for predicting
and numerically calculating experimentally accessible scattering
functions. In this way, a direct comparison of the patchy
colloid models with both coherent and incoherent scattering
experiments will be possible based on simulations. This approach
complements the analytical implementation of theoretical scattering
functions for direct experimental data fitting, in particular in
cases where the latter approach is not available due to the
absence of analytical descriptions.
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