computer programs

g JOURNAL OF
) APPLIED
2 CRYSTALLOGRAPHY

ISSN 1600-5767

Received 7 July 2025
Accepted 26 November 2025

Edited by A. Barty, DESY, Hamburg, Germany

Keywords: Python packages; data reduction;
data analysis; grazing-incidence X-ray diffraction
GIXD; grazing-incidence wide-angle X-ray
scattering GIWAXS; grazing-incidence small-
angle X-ray scattering GISAXS; wide-angle X-ray
scattering WAXS; small-angle X-ray scattering
SAXS.

Supporting information: this article has
supporting information at journals.iucr.org/j

Preprocessing of
Grazing Incidence Diffraction

OPEN & ACCESS

Published under a CC BY 4.0 licence

pygid: a Python package for fast data reduction in

grazing-incidence diffraction

Ainur Abukaev,® Constantin Volter,® Mikhail Romodin,® Sebastian Schwartzkopff,*
Florian Bertram,” Oleg Konovalov, Alexander Hinderhofer,® Dmitry Lapkin®* and

Frank Schreiber®*

AInstitut fiir Angewandte Physik, Universitdt Tiibingen, Auf der Morgenstelle 10, 72076 Tiibingen, Germany, "Deutsches

Elektronen-Synchrotron DESY, NotkestraRe 85, 22607 Hamburg, Germany, and “European Synchrotron Radiation Facility
(ESRF), 71 avenue des Martyrs, 38000 Grenoble, France. *Correspondence e-mail: dmitry.lapkin@uni-tuebingen.de,

frank.schreiber@uni-tuebingen.de

Advances in X-ray and neutron sources, as well as in area-detector technologies,
enable the recording of several terabytes of raw two-dimensional detector data
in a single experiment. While several efficient integration and conversion tools
are available for data collected in transmission geometry, analogous solutions
for grazing-incidence diffraction (including grazing-incidence X-ray diffraction
and grazing-incidence wide-angle X-ray scattering) experiments have not yet
achieved the same level of efficiency. The development of new data analysis
tools, including machine-learning-based software for X-ray data, necessitates
the establishment of a standardized format for the converted data. To address
these challenges, we have developed a new Python library, pygid, which is
designed to facilitate fast data processing while providing compatibility with
various raw data formats, a standardized data storage format and an intuitive
interface for straightforward use. pygid supports three types of coordinate
systems and both transmission and grazing-incidence geometries. It is capable of
handling large datasets, performing one-dimensional line cuts and simulating
expected Bragg peak positions for given structures. The package facilitates
sample and experimental metadata curation in accordance with the FAIR
principles. As an integral part of the broader migid pipeline, pygid serves as the
initial step linking raw scattering patterns with machine learning tools for data
analysis. The pygid package is accessible at https://github.com/mlgid-project.

1. Introduction

X-ray and neutron scattering techniques are essential tools in
materials science, chemistry, biophysics and condensed matter
physics. Their widespread use is supported by the continuous
progress in large-scale X-ray and neutron source infra-
structures, which provide high-brilliance and tunable radiation
for advanced structural investigations (Willmott, 2019). At the
same time, the development of modern 2D detectors with
continuous readout and minimal dead times down to 100 ns
has significantly improved spatial and temporal resolution in
scattering measurements, enabling fast data acquisition in e.g.
time-resolved and in situ experiments (Bein ef al., 2015;
Bommel et al., 2014; Eres et al., 2019; Ferrer et al., 2013; Ju et
al., 2021; Kowarik et al., 2006; Magnussen et al., 2024; Nicklin et
al., 2017; Richard et al., 2010; Ulbrandt et al., 2020; Zhang et
al., 2024). As a result, the growing volume and complexity of
collected data have created a need for efficient and scalable
software tools capable of reliable data reduction and analysis.

Among the various X-ray scattering techniques, grazing-
incidence wide- and small-angle X-ray scattering (GIWAXS/
GISAXS) methods have become indispensable tools for
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studying thin films, nanostructured materials and surfaces
(Banerjee et al., 2021; Eisenberger & Marra, 1981; Feiden-
hans’l, 1989; Smilgies, 2025; Werzer et al, 2024). These
methods utilize an incident X-ray beam at a shallow angle,
around the critical angle of total reflection, maximizing surface
sensitivity (Robinson & Tweet, 1992). GIWAXS provides
detailed information on crystal unit cells, atomic/molecular
arrangement, degree of crystallinity and orientation of the
crystallites on the substrate surface. These techniques have
become widely applied in a broad range of research areas,
such as organic and hybrid electronics and photovoltaics,
where the precise structural characterization of thin films is
crucial. Examples include metal halide perovskites (Barrit et
al., 2022; Mundt & Schelhas, 2020; Schlipf & Miiller-Busch-
baum, 2017; Steele et al., 2023), organic small molecules (Diao
et al., 2014; Gu et al., 2018; Hodas et al., 2018; Lapkin et al.,
2025; Richter et al., 2017; Arias et al,, 2021) and polymers
(Manley et al., 2017; Miller-Buschbaum, 2014; Posselt et al.,
2017; Yang et al., 2020). Historically, the term GIXD (grazing-
incidence X-ray diffraction) was more commonly used, but it
is considered equivalent in this context. GISAXS is particu-
larly suited for characterizing nano- and microscale
morphology, including particle distribution, shape and surface
roughness, by analyzing intensity scattered at small angles
(Kaune et al., 2009; Smilgies et al., 2002; Smilgies, 2022;
Smilgies, 2025). Meanwhile, GISANS - the neutron analog of
GISAXS - offers complementary advantages for soft and
organic materials due to its sensitivity to light elements like
hydrogen, while isotopic substitution allows for tunable
contrast variation (Dosch, 1992; Hamilton et al., 1994; Jones et
al., 1999; Miiller-Buschbaum et al., 2003; Miiller-Buschbaum,
2013; Steitz et al, 2004). However, the complexity of the
grazing-incidence geometry, including symmetry breaking and
distortion of peaks, poses challenges for data reduction,
intensity correction and analysis compared with transmission
scattering experiments.

A fundamental step in grazing-incidence diffraction (GID)
data analysis is the conversion of raw 2D detector scattering
patterns into physically meaningful cylindrical coordinates
(qxy» q2) — the in-plane and out-of-plane components of the
scattering vector — or/and into polar coordinates (q.ps, X) — the
absolute value of the scattering vector and azimuthal angle
(Section 3.2 and Appendix A). This process should also be
accompanied by various intensity corrections and masking of
dead and hot pixels (Section 4). Several software tools have
been developed to facilitate GID data processing, mostly
written in Python and MATLAB programming languages.
GIXSGUI is a MATLAB-based tool with script-based access
and a graphical user interface (GUI) (Jiang, 2015). It provides
software for 2D data visualization, reduction, line cutting and
indexing of grazing-incidence X-ray scattering data, and for
handling large datasets, such as those generated in in situ and
in operando studies at synchrotron facilities. INSIGHT (in situ
GIXS heuristic tool) is an object-oriented Python package
that can work with data batches (Reus et al., 2024). The main
feature of INSIGHT is the usage of frame-to-frame correc-
tions of experimental parameters, such as sample-to-detector

distance, that can be changed due to thermal expansions
during in situ experiments. GIWAXS-SIIRkit is a MATLAB-
based package designed for quantitative structural character-
ization of thin films using GIWAXS scattering patterns
(Savikhin et al., 2020). One of its key features is the ability to
assess scattering intensity variations by considering factors
such as refractive index shift and incident beam footprint.
indexGIXS provides a GUI for experimental data visualiza-
tion, scattering pattern simulation and peak indexing (Smilgies
& Li, 2021). pyFAI (Python fast azimuthal integration) is
optimized for fast data reduction, supporting azimuthal inte-
gration and detector calibration. The package provides a
pixel-splitting method for conversion and offers the fastest 1D
integration time (down to 48 ms for a 4 megapixel pattern on a
four-core office computer) (Ashiotis er al., 2015). The present
work introduces the new Python-based package pygid. Our
approach considers both the functionality and practical
experience gained from existing packages. pygid features
increased efficiency and an extended range of intensity
corrections.

As experimental techniques advance and high-throughput
measurements become more common, traditional analysis
approaches struggle to keep pace with the sheer amount of
information collected. In this context, machine learning (ML)
has received growing attention and development in the past
few years. It has emerged as a powerful tool for large and
complex datasets (Starostin et al., 2022a; Starostin et al., 2022b;
Pithan et al, 2023; Volter et al., 2025; Ziletti et al., 2018).
However, to exploit the potential of this approach fully, a
standardized data format, which pygid provides, is essential to
facilitate seamless integration with analysis software.

This article details the architecture, geometry conventions
and data processing workflow of pygid and provides usage
examples for different experimental setups. The article is part
of a series of papers (Starostin et al., 2022a; Starostin et al.,
2022b; Volter et al., 2025) focused on GID data acquisition and
analysis, with pygid serving as the first component of our data
processing pipeline mlgid that bridges raw detector output and
structural characterization.

2. The pygid package

The package was developed for fast GID data reduction,
including grazing-incidence small- and wide-angle scattering
experiments using both X-rays and neutrons (GISAXS,
GIWAXS, GISANS). It supports a wide range of raw scat-
tering pattern formats, performs 1D and 2D data conversions,
and saves data in a standardized format. The ability to process
batches of raw data makes it suitable for integration into
synchrotron and neutron beamlines for online data reduction
during measurements. The simple and intuitive design, along
with the examples and documentation provided, makes it user
friendly.

Python was chosen as the programming language for the
development of the pygid package due to its readability,
flexibility and extensive ecosystem of libraries, which make it
particularly well suited for data analysis and rapid prototyping
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(Nagpal & Gabrani, 2019; Saabith et al., 2019). Additionally,
Python’s versatility and the modular nature of the pygid
package allow for easy integration with other libraries and
software and with scientific workflows, enabling seamless
interaction with existing tools and systems, including
synchrotron beamlines. However, since Python is an inter-
preted language it lacks computational performance when
processing large datasets. To compensate for that, we used the
numexpr library, which minimizes memory access and signifi-
cantly accelerates mathematical operations by utilizing opti-
mized multi-threading (McLeod et al, 2018). For data
conversion, we implemented the OpenCV-Python package
(Bradski, 2000), which efficiently handles image processing
tasks, enabling fast conversion and manipulation of 2D
detector data. This combination of the Python environment
for flexibility and the C-based libraries numexpr and OpenCV
for computational speed allowed us to create an effective and
high-performance tool for working with X-ray diffraction
data, providing a balance between usability and performance.

3. Data processing flow

In this section, we describe the structure of the pygid package
and the processing pipeline for raw data within the script,
including geometry representation, experimental data hand-
ling and metadata curation. The first step of the conceptual
design of pygid involves calculating coordinate maps and
intensity correction matrices based on the experimental
parameters (Fig. 1). Raw data loaded from the specified path
are intensity-corrected, masked and then transformed using
these maps. To facilitate the handling of large datasets, batch
processing can be enabled. Finally, the processed data in 32-bit
floating-point format, along with sample metadata and
experimental parameters, are stored for further analysis.

3.1. Experimental parameters

To store and operate the experimental parameters, pygid
uses a class named ExpParams. It defines six parameters
related to the detector orientation: the sample position

ExpParams

|

CoordMaps

b

Batch [«—jConversion

CorrMaps DatalLoader!

ExpMetadata
SampleMetadata

P

DataSaver

Figure 1
Conceptual architecture of pygid. Blue boxes correspond to the classes
that the user interacts with, while gray boxes represent internal classes.

projection onto the detector plane (ponil, poni?2 in metres)
or the direct beam position (centerX, centerY in pixels),
the sample-to-detector distance (SDD) along the normal to
the detector plane before applying any rotations, and three
detector rotation angles around the laboratory coordinate
axes (rotl, rot2, rot3) with the origin at the sample
positions. Additionally, it stores experimental details such as
the X-ray wavelength, detector pixel size, and image trans-
formation flags (f1iplr, flipud, transp) for horizontal
flipping, vertical flipping and transpose, respectively. All these
parameters, except for the last set of keys, can be imported
from a PONI file created using the pyFAI package or its GUI
(Ashiotis et al., 2015). However, manual input of these values
is also supported. The ExpParams class can additionally
handle both static and dynamic masks. Users can provide
either a 2D array for the static mask (mask) or a file path
(mask_path) pointing to a mask file in NumPy (https://
numpy.org/), EDF or TIFF format. The static mask is applied
uniformly to all images to exclude detector gaps, the direct
beam region or the beam-stop shadow. Dynamic masks, in
contrast, are generated from each raw scattering frame and
are based on user-defined minimum and maximum intensity
thresholds (count_range), effectively excluding hot and
dead pixels.

3.2. Coordinate map calculation

The functionality of the CoordMaps class can be described
in three steps:

(i) computation of the detector pixel coordinates in Carte-
sian (q1, q»), cylindrical (g, q.), polar (gabs, X) Or pseudo-
polar (Gaps, gabsX) Systems in reciprocal space for both trans-
mission and GID geometries;

(ii) estimation of maximum measured g values based on the
detector position and size (optional);

(iii) calculation of intensity correction matrices (optional).

ysmpl Ry

Figure 2

Scattering geometry and the three coordinate systems used in pygid:
(p1, p2) — pixel positions in the detector real-space coordinate system
(green); (x™°, y'°, z'*") — laboratory reciprocal-space coordinate system
used in transmission geometry (black); (x*™F', y*™' z"™PY) _ sample
coordinate system in reciprocal space, rotated by the angle of incidence ¢;
counter-clockwise around the y,, axis, for grazing-incidence geometry
(red), direct beam (yellow) and scattered beam (blue) with horizontal (y)
and vertical (§) scattering angles. The angle of incidence «; is exaggerated
for clarity in the visualization.
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All calculations rely on three mutually connected ortho-
normal right-handed coordinate systems (Fig. 2), similar to
those described by Breiby ef al. (2008) and Smilgies & Blasini
(2007). The first is the detector coordinate system (DCS) in
real space (dy, d, d3), which is defined by pixel positions
(p1, p2) in the raw pattern and the SDD. The second is the
laboratory coordinate system (LCS) in reciprocal space
(indicated by the superscript lab, e.g. ¢'*"), centered at the
point where the X-ray beam intersects the sample. In this
system, the direct beam propagates along the x'*" axis. These
two frames are related through detector rotations (rotl,
rot2, rot3) around the laboratory coordinate frame. While
this description is sufficient for transmission geometry,
grazing-incidence experiments require an additional sample
coordinate system (SCS, denoted using the superscript smpl).
This system is linked to the laboratory frame via a rotation
matrix around the y" axis to the angle of incidence.

The primary function of the CoordMaps class is to
compute pixel coordinates of the transformed image in
detector space, given predefined coordinate ranges (Fig. 3).
First, the given ranges in polar cylindrical (qyy, q2), (qabss X)-
pseudo-polar (gaps, gansX) OF 2D Cartesian (q1, g,) coordinates
are transformed into Cartesian g-space coordinates, q = (q,,
dy, q.)- In the case of GID geometry, the calculated q vector is
initially defined in the sample coordinate system and is then
rotated by the incidence angle to be represented in the
laboratory coordinate system. The corresponding final wave-
vector kg is then calculated in the LCS as k¢ = k; + ¢, where k; =
(27/2, 0, 0). To transform k; into detector space, three rotation
matrices, defined by the detector rotation angles (rotl, rot2,
rot3), are applied. The resulting vector is proportional to the
pixel position d* = (d7, dj, d}) in real space. In the final step,
the pixel coordinates (p;, p,) are computed from d* using

GID Transmission
(1guns) | [ (1)

polar |G| polar
. x J . X 7/

() | ompt 2C% | [ and ool
pseudopolar rq — q pseudopolar
Jquh.x"x, J‘]ahxb{,

f Gy q;
cylindrical 4. % cartesian
. ! L~ J
d ’ experimental
god e, ko dy |—Rammmeters | P
. P2
ds
Figure 3

Schematic representation of coordinate map calculation from the given
coordinate types and ranges. ¢"™ and ¢'** are scattering vectors in the
sample and laboratory coordinate systems, respectively, related to each
other via a rotation matrix around the y"" axis. k; is the incident wave-
vector in the LCS, k; the scattered wavevector in the LCS, (d7, d3, d}) the
real-space pixel positions in the LCS and (p1, p,) the pixel positions in the
converted images.

experimental parameters, including the direct beam position
and pixel size.

A key feature of the pygid package is that it reuses the
calculated coordinate map (py, p»), representing the converted
image pixel positions, multiple times for different scattering
patterns recorded under the same experimental conditions
(e.g. fixed angle of incidence for time scans). This reusability
significantly reduces the conversion time, as the coordinate
map does not need to be recalculated for each individual
pattern, thereby improving the overall efficiency of the data
processing pipeline.

The estimation of the g range is based on the opposite
conversion process from the pixel coordinates of the raw
image in detector space to g values in laboratory and sample
spaces for transmission and GID, respectively. Only corner
pixels and edge pixels on the same horizontal and vertical lines
as the direct beam pixel are processed for maximum scattering
vector and g values in cylindrical (g,,, g.;) and Cartesian
(91, q>) calculations. However, for angular range evaluation all
border pixels are processed. Finally, intensity correction
matrices require pixel positions in reciprocal space for each
pixel of the raw scattering pattern. The implemented intensity
corrections will be described further in Section 4.

3.3. Data loading

The DataLoading class is designed to handle raw
detector image files in a variety of formats. It supports file
types that can be opened by the FabIO library (EDF, TIFF,
CBF) (Knudsen et al., 2013) and the H5py library (Collette et
al., 2023) for files with more complex structure, including
HDF5 and NeXus formats. The FablO library provides effi-
cient access to a wide range of 2D detector images. The H5py
library has demonstrated superior performance in terms of
data loading speed compared with other packages such as
PyTables (Alted et al., 2002), netCDF4 (Pierce, 2025) and
h5netcdf for HDFS files (Table S1 in the supporting informa-
tion). However, the actual loading time is highly dependent on
the data storage infrastructure, the internal file structure of the
files, and any external references to other libraries or
resources.

Users also have the option to load the scattering patterns
externally and transfer the raw data as 2D or 3D arrays into
pygid. The DataLoading class operates internally and is not
intended for direct user interaction. Instead, users interact
with the Conversion class, where they specify the data file
path and the location of raw data arrays (for HDF5 and Nexus
files). These arrays are then processed and prepared for
subsequent analysis.

3.4. Conversion

The preliminary calculated coordinate maps and loaded
data are passed to the Conversion class, which first applies
the correction matrices calculated in the CoordMaps class.
According to the calculated coordinate map, the image can be
represented in polar, pseudo-polar, cylindrical or 2D Carte-
sian coordinates (Table 1).
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Table 1
2D conversion types and corresponding axes.

Experiment geometry Converted image type Function name

Resulting image name Corresponding axis names

GID Cylindrical det2qg_gid() img_gid_g q_xy,d_z

GID Polar det2pol_gid() img_gid_pol g_gid_pol, ang_gid_pol
GID Pseudo-polar det2pseudopol_gid() img_gid_pseudopol g _gid_rad, g gid_azimuth
Transmission Cartesian det2qg/() img_qg g 1l,q_ 2

Transmission Polar det2pol () img_pol g_pol, ang_pol

Transmission Pseudo-polar det2pseudopol () img_pseudopol g _rad, g _azimuth

The primary remapping function utilizes geometric image
transformations  from the  OpenCV-Python  library
[cv2.remap ()] (Gonzalez & Woods, 2018). Since new pixel
positions may be non-integer and pixel intensities need to be
accurately estimated, the package employs several inter-
polation techniques. Five interpolation methods are imple-
mented in the script: nearest-neighbor, bilinear, bicubic and
Lanczos (Cullum & Willoughby, 2002) interpolation, and
resampling based on the pixel area relation. This allows users
to balance speed and quality depending on the task, whether it
involves image downscaling or upscaling.

3.5. Data saving

To store individual converted images, complete datasets and
even multiple datasets within a single file, we employ the
widely adopted NeXus format (Klosowski et al, 1997,
Konnecke et al., 2015), which provides a standardized frame-
work for data exchange and archiving in neutron and X-ray
experiments. File writing is implemented using the H5py
library (Collette et al., 2023). The format allows for the storage
not only of converted patterns but also of experimental
parameters and sample descriptions.

The data type closely related to GIWAXS/GISAXS data is
the NXsas application definition, which was designed for
storing small-angle scattering (SAS) data in the NeXus
format. However, we have slightly modified the data group
to store arrays of scattering data for motor or time scans, as is
implemented in the NXscan definition (Fig. 4). An additional
analysis group is used to store the results of peak detec-

NXroot

| example.h5 |
NXentry
—-|example_0000|

NXinstrument

1= raw data path

'« converted data (3D)
\* X-axis range

1= y-axis range nxdata

1
! analysis

NXdata

instrument N
1* experimental 1

NXSSmblE parameters :
gamrcetips -

NXprocess == mmem——————o 5

s sample metadata

example_0001

Figure 4
Overview of the structure of a saved NeXus file as a modified NXsas
application definition.

tion and fitting at the next analysis step. Converted images can
be stacked to the previously calculated data arrays if they have
the same shape, or can be saved in a separate NXentry
group. The naming of datasets for different types of coordi-
nates is shown in Tables 1 and 2. Additionally, a single
converted image can be visualized and saved using the
matplotlib library, which supports both vector (PDF, SVG,
EPS, PGF) and raster (PNG, JPG/JPEG, TIFF, BMP) formats
(Hunter, 2007).

The instrument group contains data from the
ExpParams class, following the standard naming defined in
the NXsas format. Additional information about the experi-
ment and source can be added using the ExpMe tadata class
(Table S2). Details of the transformation, such as the date and
the applied intensity corrections, are stored in the process
group.

Finally, the sample group stores the sample-related
metadata. We strongly recommend that the metadata include
the sample name, structure, preparation description and
experimental conditions via the SampleMetadata class
(Tables S2 and S3). Sample metadata can also be imported
directly from a YAML file similar to the ORSO (Open
Reflectometry  Standards  Organization,  https://www.
reflectometry.org/) specification. Users may further extend
the sample group with custom fields, for example chemical
formula, temperature, pressure, mass etc., as proposed by the
DAPHNE4NFDI initiative (Barty et al., 2023; Lohstroh et al.,
2024; Amelung et al, 2025) in accordance with the FAIR
Guiding Principles (Wilkinson et al., 2016). Both metadata
classes support formats such as strings, lists, integer or float
values, and NumPy arrays.

3.6. Other features
3.6.1. Batch analysis

The package automatically uses the batch mode when the
number of loaded patterns is larger than batch_size (32 is
the default value). Here, scattering patterns are loaded in
batches when the remapping function is called. After remap-
ping, the loaded scattering patterns are deleted from the
memory to allow the next batch to be processed and to avoid
extensive memory usage. The result will not be plotted and
returned; only saving in an HDFS file is allowed.

3.6.2. Line profiles

In addition to 2D conversion functions, we have added 1D
radial and azimuthal integration functions (Table 2). The
corresponding functions call remapping into polar coordinates

J. Appl. Cryst. (2026). 59, 263-275
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Table 2
1D profiling and corresponding axes.

Function name Resulting data name

Corresponding axis name

Description

radial_profile_gid() rad_cut_gid gq_gid_pol

radial_profile() rad_cut g _pol

azim_profile_gid() azim_cut_gid ang_gid_pol

Makes polar remapping and averages in the given angular range for the GID
geometry

Makes polar remapping and averages in the given angular range for the
transmission geometry

Makes polar remapping and averages in the given radial range for the GID
geometry

azim_profile () azim_cut ang_pol Makes polar remapping and averages in the given radial range for the
transmission geometry

horiz_profile_gid() horiz_cut_gid q_xy Makes cylindrical remapping and averages in the given ¢, range for the GID
geometry

Table 3

Intensity corrections implemented in pygid.

Correction type Correction usage key (Boolean) Variables Data type

Flat field - flat_field ndarray (2D)

Dark current
Solid angle
Polarization

Air attenuation
Sensor attenuation

make_solid_angle_corr
make_pol_corr
make_air_attenuation_corr
make_sensor_attenuation_corr

Sample absorption make_absorption_corr

Lorentz make_lorentz_corr

dark_current

pol_type
air_attenuation_coeff
sensor_attenuation_coeff

ndarray (2D)

Float € (0,1)
Float > 0 (m™")
Float > 0 (m™")

sensor_thickness Float > 0 (m)
sample_attenuation_coeff Float > 0 (mfl)
sample_thickness Float > 0 (m)

powder_dim Integer, 2 or 3

in sample or laboratory spaces and perform averaging along
the angular and radial axis. Users can adjust the resolution in
both angular and radial directions, depending on their
preference for accuracy or speed. For GID data, it is also
possible to obtain horizontal profiles that are calculated from
patterns in cylindrical coordinates by averaging in a small g,
range close to 0. For vertical profiles, which are not directly
accessible due to the missing edge, we recommend calculating
radial profiles with a small angular range close to the vertical
axis according to the size of the missing wedge. The profiles
can be plotted with adjustable color map, limits and distance
between curves for multiple datasets, saved as a figure or in an
HDFS5 file, and returned as a NumPy array.

3.6.3. GIWAXS pattern simulation

We integrated the pygidSIM package (Romodin, 2025),
which simulates expected Bragg peak positions in GIWAXS
patterns based on crystallographic information (unit-cell
parameters and atomic positions) provided in CIFs (Hall ez al.,
1991). The package outputs the positions as cylindrical coor-
dinates and intensities of Bragg reflections for various Miller
indices. pygid enables users to overlay experimental patterns
with simulated data for a set of CIFs and crystal orientations.

4. Intensity corrections

The importance and details of intensity corrections for 2D
detector data in X-ray scattering experiments have been
discussed in several articles (Gasser et al., 2025; Jiang, 2015;
Pauw et al., 2017). While the positions of Bragg peaks in
WAXS/GIWAXS experiments provide information about the

crystal type and unit-cell parameters, their intensities make it
possible to estimate the amplitude of structure factors corre-
sponding to the arrangement of individual atoms within the
unit cell. In SAXS/GISAXS experiments, the intensity of the
scattering pattern contributes to the scattering-invariant
parameters of phase separation efficiency and intermolecular
structure dispersity. This underscores the importance of
accurate corrections, even in small-angle scattering, despite
the reduced impact of most corrections due to the large
sample-to-detector distances. Since many of these corrections
are independent of the angle of incidence, pygid applies them
to the raw scattering pattern prior to conversion. A list of the
pygid corrections, along with their input parameters and types,
is presented in Table 3.

(i) Flat-field correction accounts for the varying sensitivity
of different detector pixels. The creation of the corresponding
correction matrix is not a part of the pygid workflow but can
be performed e.g. using the approach described by Weng et al.
(2023). The matrix is then loaded as a 2D array.

(ii) Dark-current correction involves subtracting the signal
recorded in the absence of the X-ray beam. The correction
matrix should be loaded as a 2D array.

(iii) Solid-angle correction accounts for the geometric
effects arising from the proportional relationship between the
signal detected by a pixel and its corresponding solid angle
A,

A, cosa 3 .
AQ = —SPD?_ o cos” @ = CorrMatrixg,, (1)
where Ay is the pixel area, SPD is the sample-to-pixel
distance, and « is the angle between the normal vector to the

268

Ainur Abukaev et al. « pygid

J. Appl. Cryst. (2026). 59, 263-275



computer programs

Table 4

Comparison of processing time distribution (in ms) across different computational stages.

Raw scattering patterns in HDFS5 format with a resolution of 2162 x 2068 pixels were used for testing.

Computational stage Office PC

ESRF VISA cluster DESY Maxwell cluster

Coordinate map calculation 530.88 £ 22.89

Correction map calculation (with MP)

g-range determination 22.63 £2.74

Total time for preliminary calculations 1160.7 £ 32.3

Raw data loading 40.95 £ 5.09

Conversion (with MP) 14.71 4 0.94 (15.48 £ 0.26)
Data saving 47.55 £ 9.74

Total time per pattern 103.21 £ 11.03

607.20 & 22.59 (332.34 £ 26.95)

455.65 & 58.75 27141 £ 2.3
531.73 & 106.43 (87.09 =+ 3.38) 406.98 + 1.19 (79.61 + 0.48)
13.61 & 3.71 10.79 & 0.07

1001.0 & 121.6 689.18 & 2.56

30.71 & 3.78 2744 £ 032

343 £ 1.14 (2.81 £ 0.17) 3.73 4 0.32 (255 & 0.09)
4939 £ 2.0 73.71 £ 24.73

83.53 &+ 4.43 104.88 == 24.73

pixel surface n and the wavevector k; corresponding to that
pixel position.

(iv) Polarization correction accounts for the polarization of
the incident X-ray beam. The scattered intensity depends on
the angle between the polarization of the incident and scat-
tered waves, following a squared cosine dependence. This can
be described by the horizontal (y) and vertical () scattering
angles in both in-plane and out-of-plane scattering geometries,

CorrMatrixp = ¢P, + (1 — ¢) Py, 2)

where the subscripts h and v refer to, respectively, horizontal
and vertical components and

P, =1—cos®*$§sin’ y, 3)

P, = cos’ 8. 4)

The polarization parameter ¢ is approximately equal to 1 for
typical synchrotron radiation (horizontal polarization) and 0.5
for an unpolarized laboratory X-ray tube. Users are required
to specify the ¢ parameter using the pol_type key.

(v) Air attenuation correction is based on the Beer—
Lambert extinction law and arises due to the varying X-ray
beam paths to each pixel. The linear attenuation coefficient
(air) depends on the X-ray energy and air density and must
be provided by the user, while the sample-to-pixel distance
(SPD) is derived from the coordinate maps:

CorrMatrix , o, = exp(—,, X SPD) exp(ﬁ) Q)

cos o

(vi) Sensor attenuation and sample absorption corrections are
based on the X-ray beam path through the detector sensor and
sample. Linear attenuation coefficients and thicknesses are
required for these calculations. For a more detailed descrip-
tion of the correction process and its mathematical aspects, we
refer the reader to Gasser et al. (2025).

(vii) The Lorentz correction is related to the distribution of
the Bragg peaks on circles/spheres with different radii in
reciprocal space (Jiang, 2015). The usage of this correction in
pygid is limited to the most common thin-film 2D and 3D
powder-like cases, which can be chosen using powder_dim=
2 or 3, respectively:

1

CorrMatrix, (power dim=3) = ———,
w( ) sin® © cos @

(6)

. . 1
CorrMatrix; (power dim =2) = ———. 7)
sin ySmP
Here y*™'is the horizontal scattering angle and 20 is the total

scattering angle in the SCS.

5. Performance

To assess the performance of the pygid package, we conducted
benchmark tests on three computing systems with different
capabilities: a typical office desktop PC (Intel i5-6500, four
cores, 16 GB RAM, Windows 10), the ESRF VISA cluster
(AMD CPU, 32 cores, 128 GB RAM,; https://visa.readthedocs.
io/en/latest/) and the DESY Maxwell cluster (AMD CPU, 48
cores, 512 GB RAM; https://docs.desy.de/maxwell/). As a test
dataset, we used an HDFS file with a single GIWAXS pattern
of diindenoperylene (DIP), acquired with an EIGER2 X CdTe
4M detector (2162 x 2068 pixels) on the ID10-SURF beam-
line at the ESRF. The X-ray energy was E =20 ke V. To test the
multiprocessing mode (MP) during conversion and coordinate
map calculations, we used an HDFS5 file containing 13 scat-
tering patterns measured at different angles of incidence
(ranging from 0.04° to 0.1°) using the same experimental
setup. For each angle, a separate coordinate map was calcu-
lated in MP mode. Preliminary calibration was based on the
lanthanum hexaboride (LaBg) scattering pattern using the
pyFAI GUI (Ashiotis ef al., 2015). Each performance test was
averaged over 100 runs.

Table 4 summarizes the execution times for different stages
of the pygid workflow. The initial stage of preliminary calcu-
lations, which includes pixel position transformation into
cylindrical coordinates, generation of polarization and solid-
angle correction maps, and determination of converted axis
ranges, takes approximately 1161 =32 ms on an office PC.
This step is slightly faster on the VISA and Maxwell clusters,
requiring 1001 £ 122 and 689 + 3 ms, respectively. Here, the
calculated ¢,, and ¢, ranges were [0,4.32] and [0, 4.06],
respectively. The resolution was determined automatically on
the basis of the pixel size. As a result, the converted image had
a size of 1749 x 1861 pixels. The second stage, performed for
each scattering pattern, involves raw data loading, conversion
with linear pixel interpolation and saving into an HDFS file,
taking 103 =11 and 105+ 25ms on the office PC and
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Maxwell cluster, respectively, while the VISA cluster reduced
this processing time to 84 +4 ms. As the file input/output
performance may vary depending on the storage system and
specific configuration, the following analysis focuses on the
core image conversion functionality and the coordinate map
computation, which represents the most computationally
demanding step.

Thus, the execution time of the coordinate map calculation
scales nearly linearly with the resolution, ie. the size of the
converted image (Fig. S1 and Table 4). The highest calculation
speed was observed on the Maxwell cluster. When multiple
coordinate maps were calculated in multiprocessing mode, the
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Figure 5

processing speed increased significantly, by up to 45%, 83%
and 81% for the PC and the VISA and Maxwell clusters,
respectively.

The conversion time depends on both the raw scattering
pattern size [Figs. 5(a) and 5(b)] and the chosen resolution
[Figs. 5(¢) and 5(d)]. The benefits of multiprocessing become
apparent primarily on cluster systems: the conversion time was
reduced by up to 34% on the VISA cluster and up to 43% on
the Maxwell cluster.

As previously mentioned, the conversion speed can also be
influenced by the interpolation method [Figs. 5(e) and 5(f)].
For conversion to cylindrical coordinates no significant
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Performance results of the pygid package, showing the dependence of the conversion time on (@) and (b) raw pattern size, (¢) and (d) resolution, and (e)
and (f) interpolation type for (a), (c¢) and (e) cylindrical and (b), (d) and (f) polar coordinates.
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differences were observed. On the other hand, for polar
coordinates, nearest-neighbor interpolation resulted in faster
processing, whereas more complex methods, such as cubic and
Lanczos (Cullum & Willoughby, 2002), significantly slowed
down the conversion. The differences between interpolation
methods are illustrated in Fig. S2. In our previous work, we
demonstrated that the interpolation can introduce artifacts in
the low-¢g region, which consequently affect the ML-based
peak detection process (Volter et al., 2025). From this
perspective, the pixel-splitting approach implemented in the
pyFAI package is more suitable. However, interpolation
remains crucial in the high-g region and near the missing
wedge, where some bins may be empty after conversion.
These differences may become more pronounced for lower-
resolution images. Therefore, users are encouraged to choose
the interpolation method that best suits their specific case,

considering resolution, processing time and the region of
interest.

6. Data reduction and simulation examples

As a demonstration of the capabilities of the pygid package,
we present three examples of data obtained using different
detectors at various X-ray sources, each with distinct raw data
formats. Fig. 6 shows the raw scattering patterns alongside
their representations in cylindrical and polar coordinates after
transformation.

The first example features the GIWAXS pattern of a DIP
thin film acquired on the ESRF ID10 beamline (X-ray beam
energy E =20 keV). The scattering data were recorded using
an EIGER2 X CdTe 4M detector (2162 x 2068 pixels) and
saved in the NeXus format. A Python-based script for coor-
dinate transformation and expected peak position simulation
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Figure 6

pygid package usage examples. (a)-(c) GIWAXS patterns of a DIP thin film measured on the ESRF ID10 beamline (EIGER2 X CdTe 4M detector).
(d)-(f) GIWAXS patterns of MAPbI; measured on the DESY P08 beamline (PerkinElmer flat-panel detector). (g)-(i) GIWAXS patterns of Pb
nanoparticles measured using a laboratory scattering setup (Pilatus 300k detector). For each dataset, (a), (d), (g) raw scattering patterns, (b), (e), (h)
converted images in cylindrical coordinates and (c), (f), (i) converted images in polar coordinates. The simulation of the scattering patterns was done
using the pygidSIM package (blue rings). The color of the simulated data is proportional to the structure factor.
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Table 5

Overview of key steps in pygid data reduction workflow.

Code Description

>> import pygid

>> params = pygid.ExpParams (
poni_path='LaB6.poni’,
mask_path='mask.npy’,
ai=0.075)

>> matrix = pygid.CoordMaps (params)

>> exp_metadata = pygid.ExpMetadata (
start_time="2024-03-17T14:30:002",
source_type="synchrotron",
source_name="ESRF",
detector="eiger4m",
instrument_name="ID10")

>> smpl_metadata = pygid.SampleMetadata (
path_to_load="DIP_metadata.yaml")

>> analysis = pygid.Conversion (
matrix=matrix,
path="DIP.h5",
dataset="/measurement/eigerdm")

>> analysis.det2g _gid(
plot_result=True,
save_result=True,
path_to_save="DIP_result.hb5",
exp_metadata=exp_metadata,
smpl_metadata=smpl_metadata)

>> analysis.make_simulation (
path_to_cif="DIP_structure.cif",
orientation=[0, 0, 1],
min_int=le-3,
plot_result=True,
return_result=True)

is provided in Table 5 as an example of pygid package usage.
The resulting pattern reveals a highly oriented 2D DIP
powder structure [Figs. 6(a) to 6(c)]. For simulations using
pygidSIM, a monoclinic o-phase oriented along the [001]
direction was used (Heinrich et al., 2007). Only peaks with
intensities exceeding 0.1% of the maximum are shown in the
figure.

Secondly, a typical GIWAXS pattern of methylammonium
perovskite MAPbI; is shown (Kneschaurek et al., 2023). The
experiment was conducted on the PETRA IIT PO8 beamline
using a PerkinElmer flat-panel detector (2048 x 2048 pixels).
The X-ray energy was E = 18 keV. The raw data were saved as
TIFF format. The tetragonal perovskite structure appears to
be randomly oriented [Figs. 6(d) to 6(f)] (Druzbicki et al.,
2023). The rings and arcs observed at 0.45, 0.51 and 0.65 A~
are not simulated, as they originate from a Pbslg intermediate
complex.

Finally, clusters of PbTe nanoplatelets were measured in
GID geometry using an in-house X-ray scattering setup
(Xeuss 2.0, Xenocs, X-ray beam energy E = 8 keV) equipped
with a Pilatus 300k detector (487 x 619 pixels). The experi-
ment produced raw data in EDF format. Bragg reflections in
the horizontal and vertical directions are observed, indicating
the formation of a superlattice from stacked nanoplatelets
(Biesterfeld et al., 2024) [Figs. 6(g) to 6(i)].

The presented examples highlight the usefulness of pygid in
handling diverse file formats generated using different

Import of the package

Creation of the ExpParams class instance from the loaded PONI file and mask, and input of
incident angle

Creation of the CoordMaps class instance

Metadata definition; an example of the sample metadata is shown in Table S3

Creation of the Conversion class instance and a raw scattering pattern loading

Image conversion to GID cylindrical coordinates, plotting and saving the result with metadata

Simulation based on CIF and given orientation, plotting with the experimental scattering pattern
and returning Miller indices with positions

experimental setups and detectors, including a flat-panel
PerkinElmer detector. The integration of the pygidSIM
package provides a user-friendly framework for simulating the
positions and intensities of Bragg reflections and diffraction
rings from CIFs.

7. Summary and conclusions

The present work introduces the new pygid package, devel-
oped to address the increasing demand for fast and reliable
data reduction of 2D scattering data. As the volume of X-ray
and neutron scattering data continues to grow — particularly at
high-throughput synchrotron and laboratory facilities — there
is a critical need for automated and efficient processing tools.
pygid is specifically designed for batch conversion and
simplifies this process for users with varying levels of expertise.
It supports raw data loading across all common formats used
in both laboratory and synchrotron environments.

The package is applicable to both small- and wide-angle
scattering, in grazing-incidence and transmission geometries.
It enables conversion to 2D Cartesian, polar and pseudo-polar
reciprocal-space coordinates and provides radial and azimu-
thal integration routines. The average conversion speed
(1471 £ 0.94 ms per image) is superior to that of other
existing tools of 2D remapping and can be further reduced by
tuning the resolution, selecting appropriate interpolation
methods and using cluster computing. To ensure reliable
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quantitative analysis, a wide range of intensity corrections
have been implemented. In addition, the pygidSIM package is
included to simulate scattering patterns based on crystal-
lographic information, enabling direct comparison with
experimental data. As part of our mligid pipeline, the package
provides an interface between raw experimental data and
machine-learning-based tools for peak detection, labeling and
structure determination.

Future developments will focus on GPU acceleration and
enhanced multiprocessing to increase performance further.
We also plan to integrate pygid directly into beamline work-
flows at synchrotron facilities, enabling in situ data conversion
immediately after acquisition, which will help provide rapid
feedback during measurements.

APPENDIX A

Equations used for coordinate map calculations
From cylindrical (g™, ™) to 3D Cartesian (g™, ¢¥™',

xy y
qi’“pl) coordinates in the SCS for a given angle of incidence «;:

smpl)2 smpl\2
= —[gy™)" + @™ |

K + g2 tan(oy;), (8
@™ = —sgn(gy™) / (an"™) = (@™’ )
g™ = g™, (10)

where k is the wavevector magnitude.
From 3D Cartesian (¢}, g™, ¢3™') to cylindrical (¢3)*',
¢:™") in the SCS:

g = —sgn(q}™™) /(@) + (¢ (11)
™ = g™ (12)

smpl smpl smpl

From polar (q,,s , x) and pseudo-polar (g, , ¢,ps X) tO
cylindrical (g3, ¢3™"') in the SCS:

sm smpl

qu = Qabsp COs X, (13)
smy smpl .

g™ = g sinx. (14)

From 2D Cartesian (¢'*°, ¢*) to 3D Cartesian (¢'*", qu“b,
¢¥) in the LCS:

qlab _ (qllab)z + (qlzab)2

— 15
x > (15)
(@) + (g5°) — (g'0)
" = sgn(qi® ‘/ — (19
V1 + (50 /q™)
V@) + @) - @)
q:" = sgn(q;” . an

1+ (g5 /g5y

From 3D Cartesian (¢, ¢\"*, ¢*°) to 2D Cartesian (¢},
g®) in the LCS:

1
lab — lab , 18
T g o
qlab — qlab 1 (19)
SR FEREer)

From polar (¢!,

x) and pseudo-polar (¢, g% x) to 3D
Cartesian (q'®°, ql;‘b, q'zab) to 2D Cartesian (%", g¥°) in the
LCS:
lab)2
Lab _ (‘];t]:) 7 (20)

4y = /(@) — (q*) cos x, (1)
7™ =/ (q)’ — (q)’ sin x. (22)

The relations between the SCS (q°™") and LCS (q'**) are

0" = R,(~er) g™ (23)
g™ = R, (o) q*". (24)
lab

The relation between the LCS (q
positions (py, p) is

q° +k =k ocd" = @(_617 0,, —0;)d, (25)

where R(=01, ©;, —03) = R (=01) R, (02) R, (—03), R(®)
is a rotation matrix over i axes of the LCS to ®, and d is a pixel
position in the DCS that is related to the pixel coordinates via
the pixel size pg,. and the sample projection onto the detector
plane (ponil, poni2):

) and detector pixel

d, P1Psize —PONil
d= d2 = —P1 Psize + pODi2 . (26)
d SDD
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