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Advances in X-ray and neutron sources, as well as in area-detector technologies,

enable the recording of several terabytes of raw two-dimensional detector data

in a single experiment. While several efficient integration and conversion tools

are available for data collected in transmission geometry, analogous solutions

for grazing-incidence diffraction (including grazing-incidence X-ray diffraction

and grazing-incidence wide-angle X-ray scattering) experiments have not yet

achieved the same level of efficiency. The development of new data analysis

tools, including machine-learning-based software for X-ray data, necessitates

the establishment of a standardized format for the converted data. To address

these challenges, we have developed a new Python library, pygid, which is

designed to facilitate fast data processing while providing compatibility with

various raw data formats, a standardized data storage format and an intuitive

interface for straightforward use. pygid supports three types of coordinate

systems and both transmission and grazing-incidence geometries. It is capable of

handling large datasets, performing one-dimensional line cuts and simulating

expected Bragg peak positions for given structures. The package facilitates

sample and experimental metadata curation in accordance with the FAIR

principles. As an integral part of the broader mlgid pipeline, pygid serves as the

initial step linking raw scattering patterns with machine learning tools for data

analysis. The pygid package is accessible at https://github.com/mlgid-project.

1. Introduction

X-ray and neutron scattering techniques are essential tools in

materials science, chemistry, biophysics and condensed matter

physics. Their widespread use is supported by the continuous

progress in large-scale X-ray and neutron source infra-

structures, which provide high-brilliance and tunable radiation

for advanced structural investigations (Willmott, 2019). At the

same time, the development of modern 2D detectors with

continuous readout and minimal dead times down to 100 ns

has significantly improved spatial and temporal resolution in

scattering measurements, enabling fast data acquisition in e.g.

time-resolved and in situ experiments (Bein et al., 2015;

Bommel et al., 2014; Eres et al., 2019; Ferrer et al., 2013; Ju et

al., 2021; Kowarik et al., 2006; Magnussen et al., 2024; Nicklin et

al., 2017; Richard et al., 2010; Ulbrandt et al., 2020; Zhang et

al., 2024). As a result, the growing volume and complexity of

collected data have created a need for efficient and scalable

software tools capable of reliable data reduction and analysis.

Among the various X-ray scattering techniques, grazing-

incidence wide- and small-angle X-ray scattering (GIWAXS/

GISAXS) methods have become indispensable tools for
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studying thin films, nanostructured materials and surfaces

(Banerjee et al., 2021; Eisenberger & Marra, 1981; Feiden-

hans’l, 1989; Smilgies, 2025; Werzer et al., 2024). These

methods utilize an incident X-ray beam at a shallow angle,

around the critical angle of total reflection, maximizing surface

sensitivity (Robinson & Tweet, 1992). GIWAXS provides

detailed information on crystal unit cells, atomic/molecular

arrangement, degree of crystallinity and orientation of the

crystallites on the substrate surface. These techniques have

become widely applied in a broad range of research areas,

such as organic and hybrid electronics and photovoltaics,

where the precise structural characterization of thin films is

crucial. Examples include metal halide perovskites (Barrit et

al., 2022; Mundt & Schelhas, 2020; Schlipf & Müller-Busch-

baum, 2017; Steele et al., 2023), organic small molecules (Diao

et al., 2014; Gu et al., 2018; Hodas et al., 2018; Lapkin et al.,

2025; Richter et al., 2017; Arias et al., 2021) and polymers

(Manley et al., 2017; Müller-Buschbaum, 2014; Posselt et al.,

2017; Yang et al., 2020). Historically, the term GIXD (grazing-

incidence X-ray diffraction) was more commonly used, but it

is considered equivalent in this context. GISAXS is particu-

larly suited for characterizing nano- and microscale

morphology, including particle distribution, shape and surface

roughness, by analyzing intensity scattered at small angles

(Kaune et al., 2009; Smilgies et al., 2002; Smilgies, 2022;

Smilgies, 2025). Meanwhile, GISANS – the neutron analog of

GISAXS – offers complementary advantages for soft and

organic materials due to its sensitivity to light elements like

hydrogen, while isotopic substitution allows for tunable

contrast variation (Dosch, 1992; Hamilton et al., 1994; Jones et

al., 1999; Müller-Buschbaum et al., 2003; Müller-Buschbaum,

2013; Steitz et al., 2004). However, the complexity of the

grazing-incidence geometry, including symmetry breaking and

distortion of peaks, poses challenges for data reduction,

intensity correction and analysis compared with transmission

scattering experiments.

A fundamental step in grazing-incidence diffraction (GID)

data analysis is the conversion of raw 2D detector scattering

patterns into physically meaningful cylindrical coordinates

(qxy, qz) – the in-plane and out-of-plane components of the

scattering vector – or/and into polar coordinates (qabs, ) – the
absolute value of the scattering vector and azimuthal angle

(Section 3.2 and Appendix A). This process should also be

accompanied by various intensity corrections and masking of

dead and hot pixels (Section 4). Several software tools have

been developed to facilitate GID data processing, mostly

written in Python and MATLAB programming languages.

GIXSGUI is a MATLAB-based tool with script-based access

and a graphical user interface (GUI) (Jiang, 2015). It provides

software for 2D data visualization, reduction, line cutting and

indexing of grazing-incidence X-ray scattering data, and for

handling large datasets, such as those generated in in situ and

in operando studies at synchrotron facilities. INSIGHT (in situ

GIXS heuristic tool) is an object-oriented Python package

that can work with data batches (Reus et al., 2024). The main

feature of INSIGHT is the usage of frame-to-frame correc-

tions of experimental parameters, such as sample-to-detector

distance, that can be changed due to thermal expansions

during in situ experiments. GIWAXS-SIIRkit is a MATLAB-

based package designed for quantitative structural character-

ization of thin films using GIWAXS scattering patterns

(Savikhin et al., 2020). One of its key features is the ability to

assess scattering intensity variations by considering factors

such as refractive index shift and incident beam footprint.

indexGIXS provides a GUI for experimental data visualiza-

tion, scattering pattern simulation and peak indexing (Smilgies

& Li, 2021). pyFAI (Python fast azimuthal integration) is

optimized for fast data reduction, supporting azimuthal inte-

gration and detector calibration. The package provides a

pixel-splitting method for conversion and offers the fastest 1D

integration time (down to 48 ms for a 4 megapixel pattern on a

four-core office computer) (Ashiotis et al., 2015). The present

work introduces the new Python-based package pygid. Our

approach considers both the functionality and practical

experience gained from existing packages. pygid features

increased efficiency and an extended range of intensity

corrections.

As experimental techniques advance and high-throughput

measurements become more common, traditional analysis

approaches struggle to keep pace with the sheer amount of

information collected. In this context, machine learning (ML)

has received growing attention and development in the past

few years. It has emerged as a powerful tool for large and

complex datasets (Starostin et al., 2022a; Starostin et al., 2022b;

Pithan et al., 2023; Völter et al., 2025; Ziletti et al., 2018).

However, to exploit the potential of this approach fully, a

standardized data format, which pygid provides, is essential to

facilitate seamless integration with analysis software.

This article details the architecture, geometry conventions

and data processing workflow of pygid and provides usage

examples for different experimental setups. The article is part

of a series of papers (Starostin et al., 2022a; Starostin et al.,

2022b; Völter et al., 2025) focused on GID data acquisition and

analysis, with pygid serving as the first component of our data

processing pipelinemlgid that bridges raw detector output and

structural characterization.

2. The pygid package

The package was developed for fast GID data reduction,

including grazing-incidence small- and wide-angle scattering

experiments using both X-rays and neutrons (GISAXS,

GIWAXS, GISANS). It supports a wide range of raw scat-

tering pattern formats, performs 1D and 2D data conversions,

and saves data in a standardized format. The ability to process

batches of raw data makes it suitable for integration into

synchrotron and neutron beamlines for online data reduction

during measurements. The simple and intuitive design, along

with the examples and documentation provided, makes it user

friendly.

Python was chosen as the programming language for the

development of the pygid package due to its readability,

flexibility and extensive ecosystem of libraries, which make it

particularly well suited for data analysis and rapid prototyping

computer programs
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(Nagpal & Gabrani, 2019; Saabith et al., 2019). Additionally,

Python’s versatility and the modular nature of the pygid

package allow for easy integration with other libraries and

software and with scientific workflows, enabling seamless

interaction with existing tools and systems, including

synchrotron beamlines. However, since Python is an inter-

preted language it lacks computational performance when

processing large datasets. To compensate for that, we used the

numexpr library, which minimizes memory access and signifi-

cantly accelerates mathematical operations by utilizing opti-

mized multi-threading (McLeod et al., 2018). For data

conversion, we implemented the OpenCV-Python package

(Bradski, 2000), which efficiently handles image processing

tasks, enabling fast conversion and manipulation of 2D

detector data. This combination of the Python environment

for flexibility and the C-based libraries numexpr and OpenCV

for computational speed allowed us to create an effective and

high-performance tool for working with X-ray diffraction

data, providing a balance between usability and performance.

3. Data processing flow

In this section, we describe the structure of the pygid package

and the processing pipeline for raw data within the script,

including geometry representation, experimental data hand-

ling and metadata curation. The first step of the conceptual

design of pygid involves calculating coordinate maps and

intensity correction matrices based on the experimental

parameters (Fig. 1). Raw data loaded from the specified path

are intensity-corrected, masked and then transformed using

these maps. To facilitate the handling of large datasets, batch

processing can be enabled. Finally, the processed data in 32-bit

floating-point format, along with sample metadata and

experimental parameters, are stored for further analysis.

3.1. Experimental parameters

To store and operate the experimental parameters, pygid

uses a class named ExpParams. It defines six parameters

related to the detector orientation: the sample position

projection onto the detector plane (poni1, poni2 in metres)

or the direct beam position (centerX, centerY in pixels),

the sample-to-detector distance (SDD) along the normal to

the detector plane before applying any rotations, and three

detector rotation angles around the laboratory coordinate

axes (rot1, rot2, rot3) with the origin at the sample

positions. Additionally, it stores experimental details such as

the X-ray wavelength, detector pixel size, and image trans-

formation flags (fliplr, flipud, transp) for horizontal

flipping, vertical flipping and transpose, respectively. All these

parameters, except for the last set of keys, can be imported

from a PONI file created using the pyFAI package or its GUI

(Ashiotis et al., 2015). However, manual input of these values

is also supported. The ExpParams class can additionally

handle both static and dynamic masks. Users can provide

either a 2D array for the static mask (mask) or a file path

(mask_path) pointing to a mask file in NumPy (https://

numpy.org/), EDF or TIFF format. The static mask is applied

uniformly to all images to exclude detector gaps, the direct

beam region or the beam-stop shadow. Dynamic masks, in

contrast, are generated from each raw scattering frame and

are based on user-defined minimum and maximum intensity

thresholds (count_range), effectively excluding hot and

dead pixels.

3.2. Coordinate map calculation

The functionality of the CoordMaps class can be described

in three steps:

(i) computation of the detector pixel coordinates in Carte-

sian (q1, q2), cylindrical (qxy, qz), polar (qabs, ) or pseudo-

polar (qabs, qabs) systems in reciprocal space for both trans-

mission and GID geometries;

(ii) estimation of maximum measured q values based on the

detector position and size (optional);

(iii) calculation of intensity correction matrices (optional).
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Figure 1
Conceptual architecture of pygid. Blue boxes correspond to the classes
that the user interacts with, while gray boxes represent internal classes.

Figure 2
Scattering geometry and the three coordinate systems used in pygid:
(p1, p2) – pixel positions in the detector real-space coordinate system
(green); (xlab, ylab, zlab) – laboratory reciprocal-space coordinate system
used in transmission geometry (black); (xsmpl, ysmpl, zsmpl) – sample
coordinate system in reciprocal space, rotated by the angle of incidence i
counter-clockwise around the ylab axis, for grazing-incidence geometry
(red), direct beam (yellow) and scattered beam (blue) with horizontal ()
and vertical () scattering angles. The angle of incidence i is exaggerated
for clarity in the visualization.
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All calculations rely on three mutually connected ortho-

normal right-handed coordinate systems (Fig. 2), similar to

those described by Breiby et al. (2008) and Smilgies & Blasini

(2007). The first is the detector coordinate system (DCS) in

real space (d1, d2, d3), which is defined by pixel positions

(p1, p2) in the raw pattern and the SDD. The second is the

laboratory coordinate system (LCS) in reciprocal space

(indicated by the superscript lab, e.g. qlab), centered at the

point where the X-ray beam intersects the sample. In this

system, the direct beam propagates along the xlab axis. These

two frames are related through detector rotations (rot1,

rot2, rot3) around the laboratory coordinate frame. While

this description is sufficient for transmission geometry,

grazing-incidence experiments require an additional sample

coordinate system (SCS, denoted using the superscript smpl).

This system is linked to the laboratory frame via a rotation

matrix around the ylab axis to the angle of incidence.

The primary function of the CoordMaps class is to

compute pixel coordinates of the transformed image in

detector space, given predefined coordinate ranges (Fig. 3).

First, the given ranges in polar cylindrical (qxy, qz), (qabs, ),
pseudo-polar (qabs, qabs) or 2D Cartesian (q1, q2) coordinates

are transformed into Cartesian q-space coordinates, q = (qx,

qy, qz). In the case of GID geometry, the calculated q vector is

initially defined in the sample coordinate system and is then

rotated by the incidence angle to be represented in the

laboratory coordinate system. The corresponding final wave-

vector kf is then calculated in the LCS as kf = ki + q, where ki =

(2/, 0, 0). To transform kf into detector space, three rotation

matrices, defined by the detector rotation angles (rot1, rot2,

rot3), are applied. The resulting vector is proportional to the

pixel position d ¼ ðd1; d2; d3Þ in real space. In the final step,

the pixel coordinates (p1, p2) are computed from d using

experimental parameters, including the direct beam position

and pixel size.

A key feature of the pygid package is that it reuses the

calculated coordinate map (p1, p2), representing the converted

image pixel positions, multiple times for different scattering

patterns recorded under the same experimental conditions

(e.g. fixed angle of incidence for time scans). This reusability

significantly reduces the conversion time, as the coordinate

map does not need to be recalculated for each individual

pattern, thereby improving the overall efficiency of the data

processing pipeline.

The estimation of the q range is based on the opposite

conversion process from the pixel coordinates of the raw

image in detector space to q values in laboratory and sample

spaces for transmission and GID, respectively. Only corner

pixels and edge pixels on the same horizontal and vertical lines

as the direct beam pixel are processed for maximum scattering

vector and q values in cylindrical (qxy, qz) and Cartesian

(q1, q2) calculations. However, for angular range evaluation all

border pixels are processed. Finally, intensity correction

matrices require pixel positions in reciprocal space for each

pixel of the raw scattering pattern. The implemented intensity

corrections will be described further in Section 4.

3.3. Data loading

The DataLoading class is designed to handle raw

detector image files in a variety of formats. It supports file

types that can be opened by the FabIO library (EDF, TIFF,

CBF) (Knudsen et al., 2013) and the H5py library (Collette et

al., 2023) for files with more complex structure, including

HDF5 and NeXus formats. The FabIO library provides effi-

cient access to a wide range of 2D detector images. The H5py

library has demonstrated superior performance in terms of

data loading speed compared with other packages such as

PyTables (Alted et al., 2002), netCDF4 (Pierce, 2025) and

h5netcdf for HDF5 files (Table S1 in the supporting informa-

tion). However, the actual loading time is highly dependent on

the data storage infrastructure, the internal file structure of the

files, and any external references to other libraries or

resources.

Users also have the option to load the scattering patterns

externally and transfer the raw data as 2D or 3D arrays into

pygid. The DataLoading class operates internally and is not

intended for direct user interaction. Instead, users interact

with the Conversion class, where they specify the data file

path and the location of raw data arrays (for HDF5 and Nexus

files). These arrays are then processed and prepared for

subsequent analysis.

3.4. Conversion

The preliminary calculated coordinate maps and loaded

data are passed to the Conversion class, which first applies

the correction matrices calculated in the CoordMaps class.

According to the calculated coordinate map, the image can be

represented in polar, pseudo-polar, cylindrical or 2D Carte-

sian coordinates (Table 1).
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Figure 3
Schematic representation of coordinate map calculation from the given
coordinate types and ranges. qsmpl and qlab are scattering vectors in the
sample and laboratory coordinate systems, respectively, related to each
other via a rotation matrix around the ylab axis. ki is the incident wave-
vector in the LCS, kf the scattered wavevector in the LCS, (d1 , d


2 , d


3) the

real-space pixel positions in the LCS and (p1, p2) the pixel positions in the
converted images.
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The primary remapping function utilizes geometric image

transformations from the OpenCV-Python library

[cv2.remap()] (Gonzalez & Woods, 2018). Since new pixel

positions may be non-integer and pixel intensities need to be

accurately estimated, the package employs several inter-

polation techniques. Five interpolation methods are imple-

mented in the script: nearest-neighbor, bilinear, bicubic and

Lanczos (Cullum & Willoughby, 2002) interpolation, and

resampling based on the pixel area relation. This allows users

to balance speed and quality depending on the task, whether it

involves image downscaling or upscaling.

3.5. Data saving

To store individual converted images, complete datasets and

even multiple datasets within a single file, we employ the

widely adopted NeXus format (Klosowski et al., 1997;

Könnecke et al., 2015), which provides a standardized frame-

work for data exchange and archiving in neutron and X-ray

experiments. File writing is implemented using the H5py

library (Collette et al., 2023). The format allows for the storage

not only of converted patterns but also of experimental

parameters and sample descriptions.

The data type closely related to GIWAXS/GISAXS data is

the NXsas application definition, which was designed for

storing small-angle scattering (SAS) data in the NeXus

format. However, we have slightly modified the data group

to store arrays of scattering data for motor or time scans, as is

implemented in the NXscan definition (Fig. 4). An additional

analysis group is used to store the results of peak detec-

tion and fitting at the next analysis step. Converted images can

be stacked to the previously calculated data arrays if they have

the same shape, or can be saved in a separate NXentry

group. The naming of datasets for different types of coordi-

nates is shown in Tables 1 and 2. Additionally, a single

converted image can be visualized and saved using the

matplotlib library, which supports both vector (PDF, SVG,

EPS, PGF) and raster (PNG, JPG/JPEG, TIFF, BMP) formats

(Hunter, 2007).

The instrument group contains data from the

ExpParams class, following the standard naming defined in

the NXsas format. Additional information about the experi-

ment and source can be added using the ExpMetadata class

(Table S2). Details of the transformation, such as the date and

the applied intensity corrections, are stored in the process

group.

Finally, the sample group stores the sample-related

metadata. We strongly recommend that the metadata include

the sample name, structure, preparation description and

experimental conditions via the SampleMetadata class

(Tables S2 and S3). Sample metadata can also be imported

directly from a YAML file similar to the ORSO (Open

Reflectometry Standards Organization, https://www.

reflectometry.org/) specification. Users may further extend

the sample group with custom fields, for example chemical

formula, temperature, pressure, mass etc., as proposed by the

DAPHNE4NFDI initiative (Barty et al., 2023; Lohstroh et al.,

2024; Amelung et al., 2025) in accordance with the FAIR

Guiding Principles (Wilkinson et al., 2016). Both metadata

classes support formats such as strings, lists, integer or float

values, and NumPy arrays.

3.6. Other features

3.6.1. Batch analysis

The package automatically uses the batch mode when the

number of loaded patterns is larger than batch_size (32 is

the default value). Here, scattering patterns are loaded in

batches when the remapping function is called. After remap-

ping, the loaded scattering patterns are deleted from the

memory to allow the next batch to be processed and to avoid

extensive memory usage. The result will not be plotted and

returned; only saving in an HDF5 file is allowed.

3.6.2. Line profiles

In addition to 2D conversion functions, we have added 1D

radial and azimuthal integration functions (Table 2). The

corresponding functions call remapping into polar coordinates
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Figure 4
Overview of the structure of a saved NeXus file as a modified NXsas
application definition.

Table 1
2D conversion types and corresponding axes.

Experiment geometry Converted image type Function name Resulting image name Corresponding axis names

GID Cylindrical det2q_gid() img_gid_q q_xy, q_z
GID Polar det2pol_gid() img_gid_pol q_gid_pol, ang_gid_pol
GID Pseudo-polar det2pseudopol_gid() img_gid_pseudopol q_gid_rad, q_gid_azimuth
Transmission Cartesian det2q() img_q q_1, q_2
Transmission Polar det2pol() img_pol q_pol, ang_pol
Transmission Pseudo-polar det2pseudopol() img_pseudopol q_rad, q_azimuth
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in sample or laboratory spaces and perform averaging along

the angular and radial axis. Users can adjust the resolution in

both angular and radial directions, depending on their

preference for accuracy or speed. For GID data, it is also

possible to obtain horizontal profiles that are calculated from

patterns in cylindrical coordinates by averaging in a small qz
range close to 0. For vertical profiles, which are not directly

accessible due to the missing edge, we recommend calculating

radial profiles with a small angular range close to the vertical

axis according to the size of the missing wedge. The profiles

can be plotted with adjustable color map, limits and distance

between curves for multiple datasets, saved as a figure or in an

HDF5 file, and returned as a NumPy array.

3.6.3. GIWAXS pattern simulation

We integrated the pygidSIM package (Romodin, 2025),

which simulates expected Bragg peak positions in GIWAXS

patterns based on crystallographic information (unit-cell

parameters and atomic positions) provided in CIFs (Hall et al.,

1991). The package outputs the positions as cylindrical coor-

dinates and intensities of Bragg reflections for various Miller

indices. pygid enables users to overlay experimental patterns

with simulated data for a set of CIFs and crystal orientations.

4. Intensity corrections

The importance and details of intensity corrections for 2D

detector data in X-ray scattering experiments have been

discussed in several articles (Gasser et al., 2025; Jiang, 2015;

Pauw et al., 2017). While the positions of Bragg peaks in

WAXS/GIWAXS experiments provide information about the

crystal type and unit-cell parameters, their intensities make it

possible to estimate the amplitude of structure factors corre-

sponding to the arrangement of individual atoms within the

unit cell. In SAXS/GISAXS experiments, the intensity of the

scattering pattern contributes to the scattering-invariant

parameters of phase separation efficiency and intermolecular

structure dispersity. This underscores the importance of

accurate corrections, even in small-angle scattering, despite

the reduced impact of most corrections due to the large

sample-to-detector distances. Since many of these corrections

are independent of the angle of incidence, pygid applies them

to the raw scattering pattern prior to conversion. A list of the

pygid corrections, along with their input parameters and types,

is presented in Table 3.

(i) Flat-field correction accounts for the varying sensitivity

of different detector pixels. The creation of the corresponding

correction matrix is not a part of the pygid workflow but can

be performed e.g. using the approach described by Weng et al.

(2023). The matrix is then loaded as a 2D array.

(ii) Dark-current correction involves subtracting the signal

recorded in the absence of the X-ray beam. The correction

matrix should be loaded as a 2D array.

(iii) Solid-angle correction accounts for the geometric

effects arising from the proportional relationship between the

signal detected by a pixel and its corresponding solid angle

,

 ¼ Apx cos 

SPD2
/ cos3  ¼ CorrMatrixSA; ð1Þ

where Apx is the pixel area, SPD is the sample-to-pixel

distance, and  is the angle between the normal vector to the
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Table 3
Intensity corrections implemented in pygid.

Correction type Correction usage key (Boolean) Variables Data type

Flat field – flat_field ndarray (2D)
Dark current – dark_current ndarray (2D)
Solid angle make_solid_angle_corr – –
Polarization make_pol_corr pol_type Float 2 (0, 1)
Air attenuation make_air_attenuation_corr air_attenuation_coeff Float > 0 (m1)
Sensor attenuation make_sensor_attenuation_corr sensor_attenuation_coeff Float > 0 (m1)

sensor_thickness Float > 0 (m)
Sample absorption make_absorption_corr sample_attenuation_coeff Float > 0 (m1)

sample_thickness Float > 0 (m)
Lorentz make_lorentz_corr powder_dim Integer, 2 or 3

Table 2
1D profiling and corresponding axes.

Function name Resulting data name Corresponding axis name Description

radial_profile_gid() rad_cut_gid q_gid_pol Makes polar remapping and averages in the given angular range for the GID
geometry

radial_profile() rad_cut q_pol Makes polar remapping and averages in the given angular range for the
transmission geometry

azim_profile_gid() azim_cut_gid ang_gid_pol Makes polar remapping and averages in the given radial range for the GID
geometry

azim_profile() azim_cut ang_pol Makes polar remapping and averages in the given radial range for the
transmission geometry

horiz_profile_gid() horiz_cut_gid q_xy Makes cylindrical remapping and averages in the given qz range for the GID
geometry
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pixel surface n and the wavevector kf corresponding to that

pixel position.

(iv) Polarization correction accounts for the polarization of

the incident X-ray beam. The scattered intensity depends on

the angle between the polarization of the incident and scat-

tered waves, following a squared cosine dependence. This can

be described by the horizontal () and vertical () scattering
angles in both in-plane and out-of-plane scattering geometries,

CorrMatrixP ¼ Ph þ ð1 ÞPv; ð2Þ

where the subscripts h and v refer to, respectively, horizontal

and vertical components and

Ph ¼ 1 cos2  sin2 ; ð3Þ

Pv ¼ cos2 : ð4Þ

The polarization parameter  is approximately equal to 1 for

typical synchrotron radiation (horizontal polarization) and 0.5

for an unpolarized laboratory X-ray tube. Users are required

to specify the  parameter using the pol_type key.

(v) Air attenuation correction is based on the Beer–

Lambert extinction law and arises due to the varying X-ray

beam paths to each pixel. The linear attenuation coefficient

(air) depends on the X-ray energy and air density and must

be provided by the user, while the sample-to-pixel distance

(SPD) is derived from the coordinate maps:

CorrMatrixAAtt ¼ expðair  SPDÞ / exp
air

cos 

 
: ð5Þ

(vi) Sensor attenuation and sample absorption corrections are

based on the X-ray beam path through the detector sensor and

sample. Linear attenuation coefficients and thicknesses are

required for these calculations. For a more detailed descrip-

tion of the correction process and its mathematical aspects, we

refer the reader to Gasser et al. (2025).

(vii) The Lorentz correction is related to the distribution of

the Bragg peaks on circles/spheres with different radii in

reciprocal space (Jiang, 2015). The usage of this correction in

pygid is limited to the most common thin-film 2D and 3D

powder-like cases, which can be chosen using powder_dim =

2 or 3, respectively:

CorrMatrixLðpower dim ¼ 3Þ ¼ 1

sin2  cos
; ð6Þ

CorrMatrixLðpower dim ¼ 2Þ ¼ 1

sin smpl
: ð7Þ

Here smpl is the horizontal scattering angle and 2 is the total

scattering angle in the SCS.

5. Performance

To assess the performance of the pygid package, we conducted

benchmark tests on three computing systems with different

capabilities: a typical office desktop PC (Intel i5-6500, four

cores, 16 GB RAM, Windows 10), the ESRF VISA cluster

(AMD CPU, 32 cores, 128 GB RAM; https://visa.readthedocs.

io/en/latest/) and the DESY Maxwell cluster (AMD CPU, 48

cores, 512 GB RAM; https://docs.desy.de/maxwell/). As a test

dataset, we used an HDF5 file with a single GIWAXS pattern

of diindenoperylene (DIP), acquired with an EIGER2 X CdTe

4M detector (2162  2068 pixels) on the ID10-SURF beam-

line at the ESRF. The X-ray energy was E = 20 keV. To test the

multiprocessing mode (MP) during conversion and coordinate

map calculations, we used an HDF5 file containing 13 scat-

tering patterns measured at different angles of incidence

(ranging from 0.04 to 0.1) using the same experimental

setup. For each angle, a separate coordinate map was calcu-

lated in MP mode. Preliminary calibration was based on the

lanthanum hexaboride (LaB6) scattering pattern using the

pyFAI GUI (Ashiotis et al., 2015). Each performance test was

averaged over 100 runs.

Table 4 summarizes the execution times for different stages

of the pygid workflow. The initial stage of preliminary calcu-

lations, which includes pixel position transformation into

cylindrical coordinates, generation of polarization and solid-

angle correction maps, and determination of converted axis

ranges, takes approximately 1161  32 ms on an office PC.

This step is slightly faster on the VISA and Maxwell clusters,

requiring 1001  122 and 689  3 ms, respectively. Here, the

calculated qxy and qz ranges were [0, 4.32] and [0, 4.06],

respectively. The resolution was determined automatically on

the basis of the pixel size. As a result, the converted image had

a size of 1749  1861 pixels. The second stage, performed for

each scattering pattern, involves raw data loading, conversion

with linear pixel interpolation and saving into an HDF5 file,

taking 103  11 and 105  25 ms on the office PC and

computer programs
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Table 4
Comparison of processing time distribution (in ms) across different computational stages.

Raw scattering patterns in HDF5 format with a resolution of 2162  2068 pixels were used for testing.

Computational stage Office PC ESRF VISA cluster DESY Maxwell cluster

Coordinate map calculation 530.88  22.89 455.65  58.75 271.41  2.3
Correction map calculation (with MP) 607.20  22.59 (332.34  26.95) 531.73  106.43 (87.09  3.38) 406.98  1.19 (79.61  0.48)
q-range determination 22.63  2.74 13.61  3.71 10.79  0.07
Total time for preliminary calculations 1160.7  32.3 1001.0  121.6 689.18  2.56

Raw data loading 40.95  5.09 30.71  3.78 27.44  0.32
Conversion (with MP) 14.71  0.94 (15.48  0.26) 3.43  1.14 (2.81  0.17) 3.73  0.32 (2.55  0.09)
Data saving 47.55  9.74 49.39  2.0 73.71  24.73
Total time per pattern 103.21  11.03 83.53  4.43 104.88  24.73
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Maxwell cluster, respectively, while the VISA cluster reduced

this processing time to 84  4 ms. As the file input/output

performance may vary depending on the storage system and

specific configuration, the following analysis focuses on the

core image conversion functionality and the coordinate map

computation, which represents the most computationally

demanding step.

Thus, the execution time of the coordinate map calculation

scales nearly linearly with the resolution, i.e. the size of the

converted image (Fig. S1 and Table 4). The highest calculation

speed was observed on the Maxwell cluster. When multiple

coordinate maps were calculated in multiprocessing mode, the

processing speed increased significantly, by up to 45%, 83%

and 81% for the PC and the VISA and Maxwell clusters,

respectively.

The conversion time depends on both the raw scattering

pattern size [Figs. 5(a) and 5(b)] and the chosen resolution

[Figs. 5(c) and 5(d)]. The benefits of multiprocessing become

apparent primarily on cluster systems: the conversion time was

reduced by up to 34% on the VISA cluster and up to 43% on

the Maxwell cluster.

As previously mentioned, the conversion speed can also be

influenced by the interpolation method [Figs. 5(e) and 5( f)].

For conversion to cylindrical coordinates no significant

computer programs
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Figure 5
Performance results of the pygid package, showing the dependence of the conversion time on (a) and (b) raw pattern size, (c) and (d) resolution, and (e)
and ( f ) interpolation type for (a), (c) and (e) cylindrical and (b), (d) and ( f ) polar coordinates.
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differences were observed. On the other hand, for polar

coordinates, nearest-neighbor interpolation resulted in faster

processing, whereas more complex methods, such as cubic and

Lanczos (Cullum & Willoughby, 2002), significantly slowed

down the conversion. The differences between interpolation

methods are illustrated in Fig. S2. In our previous work, we

demonstrated that the interpolation can introduce artifacts in

the low-q region, which consequently affect the ML-based

peak detection process (Völter et al., 2025). From this

perspective, the pixel-splitting approach implemented in the

pyFAI package is more suitable. However, interpolation

remains crucial in the high-q region and near the missing

wedge, where some bins may be empty after conversion.

These differences may become more pronounced for lower-

resolution images. Therefore, users are encouraged to choose

the interpolation method that best suits their specific case,

considering resolution, processing time and the region of

interest.

6. Data reduction and simulation examples

As a demonstration of the capabilities of the pygid package,

we present three examples of data obtained using different

detectors at various X-ray sources, each with distinct raw data

formats. Fig. 6 shows the raw scattering patterns alongside

their representations in cylindrical and polar coordinates after

transformation.

The first example features the GIWAXS pattern of a DIP

thin film acquired on the ESRF ID10 beamline (X-ray beam

energy E = 20 keV). The scattering data were recorded using

an EIGER2 X CdTe 4M detector (2162  2068 pixels) and

saved in the NeXus format. A Python-based script for coor-

dinate transformation and expected peak position simulation

computer programs
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Figure 6
pygid package usage examples. (a)–(c) GIWAXS patterns of a DIP thin film measured on the ESRF ID10 beamline (EIGER2 X CdTe 4M detector).
(d)–( f ) GIWAXS patterns of MAPbI3 measured on the DESY P08 beamline (PerkinElmer flat-panel detector). (g)–(i) GIWAXS patterns of Pb
nanoparticles measured using a laboratory scattering setup (Pilatus 300k detector). For each dataset, (a), (d), (g) raw scattering patterns, (b), (e), (h)
converted images in cylindrical coordinates and (c), (f ), (i) converted images in polar coordinates. The simulation of the scattering patterns was done
using the pygidSIM package (blue rings). The color of the simulated data is proportional to the structure factor.
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is provided in Table 5 as an example of pygid package usage.

The resulting pattern reveals a highly oriented 2D DIP

powder structure [Figs. 6(a) to 6(c)]. For simulations using

pygidSIM, a monoclinic -phase oriented along the [001]

direction was used (Heinrich et al., 2007). Only peaks with

intensities exceeding 0.1% of the maximum are shown in the

figure.

Secondly, a typical GIWAXS pattern of methylammonium

perovskite MAPbI3 is shown (Kneschaurek et al., 2023). The

experiment was conducted on the PETRA III P08 beamline

using a PerkinElmer flat-panel detector (2048  2048 pixels).

The X-ray energy was E = 18 keV. The raw data were saved as

TIFF format. The tetragonal perovskite structure appears to

be randomly oriented [Figs. 6(d) to 6( f)] (Druzbicki et al.,

2023). The rings and arcs observed at 0.45, 0.51 and 0.65 Å1

are not simulated, as they originate from a Pb3I8 intermediate

complex.

Finally, clusters of PbTe nanoplatelets were measured in

GID geometry using an in-house X-ray scattering setup

(Xeuss 2.0, Xenocs, X-ray beam energy E = 8 keV) equipped

with a Pilatus 300k detector (487  619 pixels). The experi-

ment produced raw data in EDF format. Bragg reflections in

the horizontal and vertical directions are observed, indicating

the formation of a superlattice from stacked nanoplatelets

(Biesterfeld et al., 2024) [Figs. 6(g) to 6(i)].

The presented examples highlight the usefulness of pygid in

handling diverse file formats generated using different

experimental setups and detectors, including a flat-panel

PerkinElmer detector. The integration of the pygidSIM

package provides a user-friendly framework for simulating the

positions and intensities of Bragg reflections and diffraction

rings from CIFs.

7. Summary and conclusions

The present work introduces the new pygid package, devel-

oped to address the increasing demand for fast and reliable

data reduction of 2D scattering data. As the volume of X-ray

and neutron scattering data continues to grow – particularly at

high-throughput synchrotron and laboratory facilities – there

is a critical need for automated and efficient processing tools.

pygid is specifically designed for batch conversion and

simplifies this process for users with varying levels of expertise.

It supports raw data loading across all common formats used

in both laboratory and synchrotron environments.

The package is applicable to both small- and wide-angle

scattering, in grazing-incidence and transmission geometries.

It enables conversion to 2D Cartesian, polar and pseudo-polar

reciprocal-space coordinates and provides radial and azimu-

thal integration routines. The average conversion speed

(14.71  0.94 ms per image) is superior to that of other

existing tools of 2D remapping and can be further reduced by

tuning the resolution, selecting appropriate interpolation

methods and using cluster computing. To ensure reliable

computer programs
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Table 5
Overview of key steps in pygid data reduction workflow.

Code Description

>> import pygid Import of the package

>> params = pygid.ExpParams(

poni_path=’LaB6.poni’,

mask_path=’mask.npy’,

ai=0.075)

Creation of the ExpParams class instance from the loaded PONI file and mask, and input of
incident angle

>> matrix = pygid.CoordMaps(params) Creation of the CoordMaps class instance

>> exp_metadata = pygid.ExpMetadata(

start_time="2024-03-17T14:30:00Z",

source_type="synchrotron",

source_name="ESRF",

detector="eiger4m",

instrument_name="ID10")

Metadata definition; an example of the sample metadata is shown in Table S3

>> smpl_metadata = pygid.SampleMetadata(

path_to_load="DIP_metadata.yaml")

>> analysis = pygid.Conversion(

matrix=matrix,

path="DIP.h5",

dataset="/measurement/eiger4m")

Creation of the Conversion class instance and a raw scattering pattern loading

>> analysis.det2q_gid(

plot_result=True,

save_result=True,

path_to_save="DIP_result.h5",

exp_metadata=exp_metadata,

smpl_metadata=smpl_metadata)

Image conversion to GID cylindrical coordinates, plotting and saving the result with metadata

>> analysis.make_simulation(

path_to_cif="DIP_structure.cif",

orientation=[0, 0, 1],

min_int=1e-3,

plot_result=True,

return_result=True)

Simulation based on CIF and given orientation, plotting with the experimental scattering pattern
and returning Miller indices with positions
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quantitative analysis, a wide range of intensity corrections

have been implemented. In addition, the pygidSIM package is

included to simulate scattering patterns based on crystal-

lographic information, enabling direct comparison with

experimental data. As part of our mlgid pipeline, the package

provides an interface between raw experimental data and

machine-learning-based tools for peak detection, labeling and

structure determination.

Future developments will focus on GPU acceleration and

enhanced multiprocessing to increase performance further.

We also plan to integrate pygid directly into beamline work-

flows at synchrotron facilities, enabling in situ data conversion

immediately after acquisition, which will help provide rapid

feedback during measurements.

APPENDIX A
Equations used for coordinate map calculations

From cylindrical (qsmpl
xy ; qsmpl

z ) to 3D Cartesian (qsmpl
x ; qsmpl

y ;
qsmpl
z ) coordinates in the SCS for a given angle of incidence i:

qsmpl
x ¼ ½ðqsmpl

xy Þ2 þ ðqsmpl
z Þ2

2k
þ qsmpl

z tanðiÞ; ð8Þ

qsmpl
y ¼ sgnðqsmpl

xy Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqsmpl

xy Þ2  ðqsmpl
x Þ2

q
; ð9Þ

qsmpl
z ¼ qsmpl

z ; ð10Þ
where k is the wavevector magnitude.

From 3D Cartesian (qsmpl
x ; qsmpl

y ; qsmpl
z ) to cylindrical (qsmpl

xy ;
qsmpl
z ) in the SCS:

qsmpl
xy ¼ sgnðqsmpl

y Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqsmpl

x Þ2 þ ðqsmpl
y Þ2

q
; ð11Þ

qsmpl
z ¼ qsmpl

z : ð12Þ
From polar (q

smpl
abs , ) and pseudo-polar (q

smpl
abs , q

smpl
abs ) to

cylindrical (qsmpl
xy ; qsmpl

z ) in the SCS:

qsmpl
xy ¼ q

smpl
abs cos ; ð13Þ

qsmpl
z ¼ q

smpl
abs sin : ð14Þ

From 2D Cartesian (qlab1 ; qlab2 ) to 3D Cartesian (qlabx ; qlaby ;
qlabz ) in the LCS:

qlabx ¼  ðqlab1 Þ2 þ ðqlab2 Þ2
2k

; ð15Þ

qlaby ¼ sgnðqlab1 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqlab1 Þ2 þ ðqlab2 Þ2  ðqlabx Þ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðqlab2 =qlab1 Þ2

q ; ð16Þ

qlabz ¼ sgnðqlab2 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqlab1 Þ2 þ ðqlab2 Þ2  ðqlabx Þ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðqlab1 =qlab2 Þ2

q : ð17Þ

From 3D Cartesian (qlabx ; qlaby ; qlabz ) to 2D Cartesian (qlab1 ;
qlab2 ) in the LCS:

qlab1 ¼ qlaby

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ qlabx =ð2kÞ

s
; ð18Þ

qlab2 ¼ qlabz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ qlabx =ð2kÞ

s
: ð19Þ

From polar (qlababs, ) and pseudo-polar (qlababs, q
lab
abs) to 3D

Cartesian (qlabx ; qlaby ; qlabz ) to 2D Cartesian (qlab1 ; qlab2 ) in the

LCS:

qlabx ¼  ðqlababsÞ2
2k

; ð20Þ

qlaby ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqlababsÞ2  ðqlabx Þ2

q
cos ; ð21Þ

qlabz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqlababsÞ2  ðqlabx Þ2

q
sin : ð22Þ

The relations between the SCS (qsmpl) and LCS (qlab) are

qlab ¼ R̂yðiÞ qsmpl; ð23Þ

qsmpl ¼ R̂yðiÞ qlab: ð24Þ
The relation between the LCS (qlab) and detector pixel

positions (p1, p2) is

qlab þ ki ¼ kf / d ¼ bRð1;2;3Þ d; ð25Þ
where bRð1;2;3Þ ¼ bRxð1ÞbRyð2ÞbRzð3Þ, bRiðÞ
is a rotation matrix over i axes of the LCS to, and d is a pixel

position in the DCS that is related to the pixel coordinates via

the pixel size psize and the sample projection onto the detector

plane (poni1, poni2):

d ¼
d1
d2
d3

2
4

3
5 ¼

p1 psize  poni1

p1 psize þ poni2

SDD

2
4

3
5: ð26Þ
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Rosebrock, M., Klepzig, L. F., Leis, W., Seitz, M., Meyer, J. C. &
Lauth, J. (2024). Chem. Mater. 36, 7197–7206.

Bommel, S., Kleppmann, N., Weber, C., Spranger, H., Schäfer, P.,
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Schepper, R., Solé, V. A., Jialin & Guest, D. H. (2023). h5py/h5py:
3.8.0, https://doi.org/10.5281/zenodo.7560547.

Cullum, J. K. & Willoughby, R. A. (2002). Lanczos algorithms for
large symmetric eigenvalue computations, Vol. I, Theory. SIAM.

Diao, Y., Shaw, L., Bao, Z. & Mannsfeld, S. C. (2014). Energy
Environ. Sci. 7, 2145–2159.

Dosch, H. (1992). Critical phenomena at surfaces and interfaces:
evanescent X-ray and neutron scattering. Heidelberg: Springer.
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