
Quantum Mechanics: Problems 3

1. Consider the coupling of two angular momenta J1 and J2 (which may be either orbital

or spin angular momenta) to give a resultant J = J1 + J2. (This coupling might be

brought about, for example, by the spin-orbit interaction considered in the following

question, where J1 = L, J2 = S, and the interaction which couples these two sources

of angular momentum together to give a resultant J = L+S is the spin-orbit coupling

Hamiltonian Hso = ζ L · S.)

The operator for the square of the total angular momentum is

J2 = (J1 + J2)
2
= J2

1 + J2

2 + 2J1·J2 = J2

1 + J2

2 + 2 (J1xJ2x + J1yJ2y + J1zJ2z)

and the operator for the projection of the total angular momentum on the z axis is

Jz = J1z + J2z

where the operators Jix, Jiy and Jiz satisfy the usual commutation relations

[

J2

i , Jix
]

=
[

J2

i , Jiy
]

=
[

J2

i , Jiz
]

= 0,

[Jix, Jiy] = ih̄ Jiz, [Jiy, Jiz] = ih̄ Jix, [Jiz, Jix] = ih̄ Jiy,

for i = 1 and 2. Note also that each component of J1 commutes with each component

of J2 because the two operators operate on different degrees of freedom.

(a) Use the basic angular momentum commutation relations to verify that

[

J2, J2

1

]

=
[

J2, J2

2

]

= 0

and
[

Jz, J
2

1

]

=
[

Jz, J
2

2

]

= 0,

and hence that it is possible to specify all four of the observables corresponding

to J2
1 , J

2
2 , J

2 and Jz simultaneously and precisely.

(b) Go on to show that

[

J2, J1z

]

6= 0 and
[

J2, J2z

]

6= 0,

and hence that the projections of the individual angular momenta J1 and J2 on

the z axis cannot be specified at the same time as the square of the total angular

momentum J.



2. Several different electronic states can arise from an atomic electron configuration (n`)k

where k is less than the number required for a closed shell. Electrostatic interactions

between the open shell electrons cause moderately large energy splittings between

these states, which are labelled by orbital and spin angular momentum quantum

numbers L and S and which are referred to as terms. Within each term, smaller

splittings occur due to spin-orbit coupling (a magnetic interaction between the spin

magnetic moment and the magnetic field generated by the motion of charged particles

about the electron in question). These splittings are referred to as fine structure and

result in individual levels labelled by the total electronic angular momentum quantum

number J . Assuming that L, S and J are all “good” quantum numbers, which is a

reasonable approximation for light atoms, each atomic energy level ELSJ is given by

ELSJ = ELS +
〈

LSJ
∣

∣Hso

∣

∣LSJ
〉

where ELS is the term energy, Hso = ζ L · S is the spin-orbit interaction Hamiltonian

and ζ is the spin-orbit coupling constant of the atom.

(a) Use the fact that the total electronic angular momentum operator J is given by

the vector sum J = L + S to express Hso in terms of the operators L2, S2 and

J2, and hence obtain an expression for ELSJ in terms of the quantum numbers

L, S and J .

(b) An analysis of the electronic spectrum of a certain atom shows that the ground

term is split into three levels with relative energies of 0, 14 and 42 cm−1. Use

your expression for ELSJ from part (a) to assign J values to the three levels and

obtain a value for ζ. What are the possible values of L and S for this term?

3. A quartic oscillator has a potential proportional to the fourth power of the displace-

ment from equilibrium so that the Hamiltonian is

H = −
h̄2

2µ

d2

dx2
+

1

2
kx4.

Find the best variational value of the parameter α in the trial function

ψ(x) = e−
1

2
αx2

and determine the corresponding energy. How might this approximate wavefunction

be improved?

Note :

∫ ∞

−∞

x2ne−ax
2

dx =
1.3.5 . . . (2n− 1)

(2a)n

√

π

a
.



4. Suppose that an approximate wavefunction for a system can be written in the form

ψ = c1φ1 + c2φ2 where φ1 and φ2 are certain real orthonormal functions and c1 and

c2 are real constants.

(a) Write down the expectation value E =
〈

H
〉

of the energy in terms of the integrals

α1 =
〈

φ1

∣

∣H
∣

∣φ1

〉

,

α2 =
〈

φ2

∣

∣H
∣

∣φ2

〉

,

and

β =
〈

φ1

∣

∣H
∣

∣φ2

〉

=
〈

φ2

∣

∣H
∣

∣φ1

〉

.

(b) According to the variational principle, the best wavefunction ψ is found by choos-

ing c1 and c2 so as to minimize E. Show that this happens when c1 and c2 satisfy

the secular equations

(α1 − E) c1 + β c2 = 0,

β c1 + (α2 − E) c2 = 0.

(c) These equations have a non-zero solution for the coefficients c1 and c2 if and only

if the secular determinant vanishes:
∣

∣

∣

∣

α1 − E β
β α2 − E

∣

∣

∣

∣

= 0.

Show that the energies satisfying this equation are

E± =
1

2
(α1 + α2)±

1

2

[

(α1 − α2)
2 + 4β2

]
1

2 .

(d) Use the secular equations to find the values of the coefficients c1 and c2 corre-

sponding to each of these two energies in the special case where α1 = α2 and

β < 0. (This case is relevant to both the σ molecular orbitals of H2 and the π

molecular orbitals of ethylene – see your Valence lectures in the Trinity term.)

5. This final question introduces you to a typical barrier tunnelling problem. Consider

the one-dimensional motion of a particle of massm and energy E on the x axis subject

to the potential V (x) given by

V (x) =











∞, x < 0,
0, 0 < x < a,
V0, a < x < b,
0, x > b,



where V0 is a constant greater than E.

(a) Sketch the potential.

(b) Show that a wavefunction of the form

ψ(x) =











0, x ≤ 0,
sin (kx), 0 ≤ x ≤ a,
A exp (k′x) +B exp (−k′x), a ≤ x ≤ b,
C sin (kx) +D cos (kx), x ≥ b,

satisfies the Schrödinger equation. What is the physical significance of k?

(c) Give, and explain, the conditions which determine the constants A, B, C, D.

(Hint: You clearly have to find 4 equations relating these 4 unknowns, but once

you have found these 4 equations you are not required to go ahead and actually

solve them for A, B, C and D.)

(d) Show that if b→∞ the allowed values of the energy satisfy

cot

(

2mEa2

h̄2

)

1

2

= −

(

V0 − E

E

)
1

2

.

(e) If E is a root of this equation, but b is finite, the boundary condition at x = 0 and

the continuity condition at x = a require that the wavefunction is unchanged in

the region x ≤ b. Show that in this case the “transmission coefficient” ψ(b)2/ψ(a)2

is exp [−2k′(b− a)] and therefore decreases exponentially when either the barrier

height or the barrier width is increased.


