
(Appendix) Where do the selection rules originate from and what is the dipole approximation?
The following paragraph offers a simplified explanation of the derivation of selection rules. It should, however,
be emphasised that not all simplifying assumptions are necessarily mentioned explicitly.
According to Fermi’s golden rule, the intensity of a transition between two states |i〉 and |f〉 (’final state’ and
’initial state’) is generally proportional to the square of a matrix element

I ∼ |Mfi|2

where the matrix elements are those of the electromagnetic interaction operator

Mfi ∼ 〈f |HWW | i〉

The electromagnetic interaction operator of a non-relativistic 1 electron-1 photon process can be derived from
the integral

HWW = −1

c

∫
d3 rĵ(~r)Â(~r)

Here, ĵ(~r) is the current density operator of the electron; ĵ leads to a term ∼ e
2me

p̂ ∼ p̂ and is therefore
proportional to the momentum operator of the electron.

Â(~r) is the vector potential eventually leading to a term ∼ ~ε ei
~k~r, where ~ε is the polarisation and ~k is the

photon wave vector.
Inserting the respective values thus yields the expression

Mfi ∼
〈
f
∣∣∣ ei~k~r ~̂ε ~̂p ∣∣∣ i〉

This matrix element now needs to be evaluated.
The term ei

~k~r can be simplified using a Taylor series expansion:

ei
~k~r = 1︸︷︷︸

yields el. dipole term (E1)

+ i~k~r + o(i~k~r)2︸ ︷︷ ︸
yields magnetic dipole moment M1, electric quadrupole moment E2 etc.

The electric dipole radiation usually dominates by far (if it is allowed!), as can be shown by a simple estimation
of an optical transition (λ ' 6000 Å, r ' 1 Å)

kr ' 2π

6000 Å
1 Å ' 1

1000︸ ︷︷ ︸
M1, E2 etc

� 1︸︷︷︸
E1

In this example, the amplitudes (E1 and M1, E2 etc) differ by 3 orders of magnitude (103 : 1) and this difference
is even squared in the case of their ratios (' 106 : 1).
In dipole approximation, the matrix element to be evaluated is therefore

Mfi ∼ 〈f |~ε~p | i〉

The operator ~̂ε~̂p can be simplified:

〈Φm |~ε~p |Φn〉 = ~ε

〈
Φm

∣∣∣∣me
d~r

dt

∣∣∣∣Φn

〉
(Time derivative of an operator) ∼ me~ε

〈
Φm

∣∣∣∣ i~ [H0 , ~r]

∣∣∣∣Φn

〉
([H0 , r] ∼ p, see Bethe/Salpeter, p.52) ∼ ime

~
~ε 〈Φm |H0r − rH0 |Φn〉

(Φi are eigenstates of H0) ∼ ime~ε

(
Em − En

~

)
〈Φm |~r |Φn〉

∼ −imeω 〈Φm |~ε~r |Φn〉

Therefore, in the present context
~ε~p ∼ ~ε~r

This corresponds to a dipole energy ∼ ~E~µ = q ~E~r ∼ r cosϑ.
Thus, the selection rules for dipole radiation (E1) can be regarded as conditions under which

〈f |~ε~r | i〉 6= 0
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Application of the calculation to an H atom
If we perform the calculation for atoms similar to H with the known energy eigenstates Φm = Rn,l(r)Yl,m(ϑ, ϕ),
we obtain

〈Φm |~ε~r |Φn〉 =

∫ ∞
0

drr2R∗nf ,lf
(r)rRni,li(r)︸ ︷︷ ︸

radial part, const.

∫ ∫
dϕdϑ sinϑY ∗lf ,mf

(ϑ, ϕ)Yli,mi
~ε
~re
|r|︸ ︷︷ ︸

angular part, is evaluated in the following

Expressing ~ε~r via spherical surface functions Yl,m

~ε~r = εx sinϑ cosϕ+ εy sinϑ sinϕ+ εz cosϑ

=

√
4π

3

(
εzY1,0 +

−εx + iεy√
2

Y1,1 +
εx + iεy√

2
Y1,−1

)
shows that the matrix element needs to be evaluated using an integral over three Yl,m.

0
!

6= angular part =

∫ ∫
dϑdϕ sinϑY ∗lf ,mf

Y(l=1)(m=−1,0,1)Yli,mi

This expression is only 6= 0 if:

mf −mi = ±1 and lf − li = 0,±1

(The selection rule ∆S = 0 is due to the fact that HWW does not contain — and therefore cannot change —
the spin.)
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