

How fly embryos know head from tail

Richard Neher Max-Planck-Institute for Developmental Biology

Development

Stages of development

- Development starts with a single fertilized egg
- the genome of every cell in our body remains unchanged
- breaking the symmetry:
 - anterior posterior (front and back)
 - dorsal ventral (back and belly)
 - left right
- specification of the different organs, segments....

Drosophila filmfest

http://www.princeton.edu/~wbialek/rome/Hist04BNT.avi

Green fluorescent protein

Different colors obtained by modification of the protein 5

Bicoid mRNA and protein

bcd RNA

- bicoid mRNA is localized at the front of the egg, deposited by the mother
- bicoid protein is produced from the mRNA
- Bicoid protein diffuses towards the tail
- Bicoid acts as a transcription factor that turns on cascade of genes that determine head/tail

Bicoid protein

Transcriptional regulation

Output

Bill Bialek

Input – output

Input: Bicoid protein

- Bicoid regulates downstream genes such as hunchback
- very sharp response: a shallow gradient is transformed into a step like response.
- this sharp response is achieved by a series of amplifications and feedbacks

discovered here in Tuebingen by Driever and Nuesslein-Volhard, 1988

Output: Hunchback protein

Models of Bicoid gradient formation

8

Estimating the diffusion constant

- The gradient forms in ~90min = 5400s
- The length of the embryo is $500 \mu m$
- The typical distance traveled by diffusion in a time t is $|\Delta x| \sim \sqrt{Dt}$
- Hence for diffusion over 100 $\mu m,$ we need

$$D > \frac{10^4}{5000} \frac{\mu m^2}{s} = 2 \frac{\mu m^2}{s}$$
$$\tau \approx 1000s$$

The problem is that measurements suggest a ten-fold smaller D

Two photon microscopy

- A form of fluorescence microscopy: Laser light is used to excite dyes, the emitted fluorescence is recorded
- Normally: one high energy photon per excitation. Excitation is proportional to the intensity.
- In two photon microscopy, simultaneous absorption of two low energy photons. Excitation proportional to intensity squared
- Advantages:
 - low absorption: image deep in tissue
 - good z-resolution

Two-photon microscopy of fly embryos

Mavrakis et al, 2008

Gregor et al, 2007_{11}

Bicoid protein is localized to nuclei

12

Nuclei split and reform

13

Cell nucleus and nuclear transport

Measuring the diffusion constant

Fluorescence recovery after photo-bleaching (FRAP)

- Locally deplete the dye by photo-bleaching
- Record how it is replenished by diffusion (on scales much larger than a nucleus)
- Fit the measurement to the solution of a diffusion equation

$$D = 0.3 \frac{\mu m^2}{s}$$

Images by Zeiss.de

Possible resolutions

 k_BT

6

16

R (nm)

4

8

Gregor et al, 2005

- Larger diffusion in the center of the embryo (but there is evidence against)
- Active transport (shaking and stirring) on time scales >10 min

Back to biology

Summary

- Development is a fascinating process
- Studying dynamic processes requires dynamics observations
- Fit the measurement to the solution of a diffusion equation