How fly embryos know head from tail

Richard Neher
Max-Planck-Institute for Developmental Biology

Development

MAX-PLANCK-GESELLSCHAFT

Science
-

Stages of development

- Development starts with a single fertilized egg
- the genome of every cell in our body remains unchanged
- breaking the symmetry:
- anterior - posterior (front and back)
- dorsal - ventral (back and belly)
- left - right
- specification of the different organs, segments....

Drosophila filmfest

http://www.princeton.edu/~wbialek/rome/Hist04BNT.avi

Green fluorescent protein

Different colors obtained by modification of the protein

Bicoid mRNA and protein

bcd RNA

- bicoid mRNA is localized at the front of the egg, deposited by the mother
- bicoid protein is produced from the mRNA
- Bicoid protein diffuses towards the tail
- Bicoid acts as a transcription factor that turns on cascade of genes that determine head/tail

Bicoid protein

Transcriptional regulation

Input - output

Input: Bicoid protein

- Bicoid regulates downstream genes such as hunchback
- very sharp response: a shallow gradient is transformed into a step like response.
- this sharp response is achieved by a series of amplifications and feedbacks
discovered here in Tuebingen by Driever and Nuesslein-Volhard, 1988

Output: Hunchback protein

(stolen from) Bill Bialek

Models of Bicoid gradient formation

$$
\frac{\partial}{\partial t} P(x, t)=\underset{\substack{\text { diffusion }}}{D} \frac{\partial^{2}}{\partial x^{2}} P(x, t)-\frac{P(x, t)}{\tau}+\underset{\text { degradation }}{k \delta(x)}
$$

Steady state solution: $\quad P(x)=\frac{k D}{\tau} e^{-\frac{x}{\sqrt{D \tau}}}$

Estimating the diffusion constant

- The gradient forms in ~ 90 min $=5400$ s
- The length of the embryo is $500 \mu \mathrm{~m}$
- The typical distance traveled by diffusion in a time t is $|\Delta x| \sim \sqrt{D t}$
- Hence for diffusion over $100 \mu \mathrm{~m}$, we need

$$
\begin{aligned}
D & >\frac{10^{4}}{5000} \frac{\mu m^{2}}{s}=2 \frac{\mu m^{2}}{s} \\
\tau & \approx 1000 s
\end{aligned}
$$

The problem is that measurements suggest a ten-fold smaller D

Two photon microscopy

- A form of fluorescence microscopy: Laser light is used to excite dyes, the emitted fluorescence is recorded
- Normally: one high energy photon per excitation. Excitation is proportional to the intensity.
- In two photon microscopy, simultaneous absorption of two low energy photons. Excitation proportional to intensity squared
- Advantages:
- low absorption: image deep in tissue
- good z-resolution

1-photon excitation

2-photon excitation

Two-photon microscopy of fly embryos

Mavrakis et al, 2008

Gregor et al, 2007_{11}

Bicoid protein is localized to nuclei

cc12

cc10

cc13

cc11

cc14

Nuclei split and reform

AX-PLANCK-GESELLSCHAFT

Cell nucleus and nuclear transport

Measuring the diffusion constant

Fluorescence recovery after photo-bleaching (FRAP)

- Locally deplete the dye by photo-bleaching
- Record how it is replenished by diffusion (on scales much larger than a nucleus)
- Fit the measurement to the solution of a diffusion equation

$$
D=0.3 \frac{\mu m^{2}}{s}
$$

Possible resolutions

- Larger diffusion in the center of the embryo (but there is evidence against)
- Active transport (shaking and stirring) on time scales >10 min

Gregor et al, 2005
Time (s)

Back to biology

Summary

- Development is a fascinating process
- Studying dynamic processes requires dynamics observations
- Fit the measurement to the solution of a diffusion equation

