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Abstract

The existence of interactions among the particles of a system is
a common situation in statistical physics, for instance in real gases
or weak liquid solutions. On the one hand, these interactions limit
the range of applicability of the ideal equation of state. On the other
hand, they give rise to a whole new class of exciting phenomena, such as
thermodynamic instability and metastability, phase transition, phase
separation, and self-assembled micro-structuring. The virial expan-
sion is the simplest and most general theory addressing these effects,
and constitutes the foundation for more advanced and specific models,
such as Ornstein-Zernike Integral Schemes, Path Integral Statistical
Physics, and Phase Field Theories. In these notes, we introduce the
virial expansion using elementary mathematical methods. The reader
needs to be only familiar with the contents of first- and second-year
university courses. A basic understanding of classical mechanics and
thermodynamics is recommended, including the equation of state of
the ideal gas.

In the first section, we briefly review the equation of state of the ideal
gas. We discuss the problems encountered when trying to extend that result
to systems of interacting particles, and elucidate the general strategy of the
virial expansion. Then, we introduce the second virial coefficient and derive
the corresponding second-order virial equation of state in two different ways,
using the virial theorem and the cluster expansion. Finally, we present an
example based on the square well potential, and connect the virial expansion
to the familiar van der Waals equation of state for real gases, and thus
connect microscopic interaction parameters to macroscopic equation of state,
one of the key points in condensed matter.

Starting point: equation of state

Matter can be found in different thermodynamic phases. For instance, H2O
in a closed box is a liquid under normal conditions, but can be converted
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into a vapor or a solid upon a change of temperature. For pure substances,
a complete description (of all phases) is possible through a thermodynamic
potential as a function of its natural variables:

Energy E(S, V,N)

. . . . . .

Free energy F (T, V,N)

Free enthalpy G(T, P,N)

Most frequently and conveniently, experiments use the variable set T, V, P, V .
There is an equation connecting these variables , the so-called equation of
state (EOS):

P = P (V, T,N) . (1)

Since the pressure is an intensive quantity (i.e. independent of the system
size), it is possible to express it as a function of purely intensive quantities.
The equation (1) is restated introducing the density ρ := N/V , becoming:

P = P (T, ρ) . (2)

Ideal gas

The EOS of the ideal gas reads simply:

P =
NkT

V
= ρkT , (3)

the pressure is linear both in the temperature and in the density. Note that
P = P (T, ρ) is entirely invertible in both variables; at every (P, T ), a single
phase with density ρ = P/kT is predicted.

This EOS can be verified experimentally measuring (T ,V ,P ,N) for real
gases at high T and low P . Moreover, it can be derived theoretically under
the assumptions that molecules in the gas are point-like and do not interact
with each other.

Real systems

If the simplifying assumptions of the ideal gas are given up, i.e. if interac-
tions between the particles and a finite particle volume of these is allowed
for, this many-particle system is much more difficult to solve.

Many different techniques have been developed to cope with this prob-
lem. The standard way proceeds in two steps. First of all, one has to find a
reference state which is not very different from the real system, and whose
Hamiltonian is known. For instance, an ideal, zero-temperature crystal is
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a reference state for a real crystal; the hard-sphere system is a reference
state for real colloidal dispersions. Then, one may use a type of perturba-
tion theory around this state in the thermodynamic variables (T ,P ,ρ) to get
a better approximation. Of course, this approach is doomed to fail if the
interactions are too strong and the density too high. The virial expansion
is such a perturbation theory. It is used when the interactions are dom-
inated by two-body interactions, whereas many-body ones are rare. The
virial expansion is thus suited for modeling not only real gases. Also, liquid
mixtures where one component is much less abundant and bigger than the
other (solution, or suspension) can be simplified to a picture of big colloidal
particles (solute) in a homogeneous background (solvent). The latter argu-
ment is a common paradigm in colloid theory and allows a connection of
colloid theory and thermodynamics of real gases and simple liquids.

The virial equation of state

Let us study the thermodynamics of a real gas at low density and high
temperature. The theory for dilute solutions is analogous. In this gas, it
is rare for two particles to come close to one another; for three or more
particles it is even less frequent.

We assume that the total potential energy can be written as a sum of
two-particle interactions:

V(q) =
1

2

N∑
k=1

N∑
j=1,j 6=k

V2(qk, qj) , (4)

where the pair potential V2 is equal for all pairs. In this simplified form, V(q)
becomes much more tractable than in the general, multi-particle interaction
case. In fact, we only need a theoretical model for the potential between
two molecules, instead of 3N ones.

Now, we start the second step of the strategy, i.e. perturbation theory.
In the usual virial expansion, one expands in powers of the density, keeping
the temperature dependence of the coefficients. One seeks a so-called virial
equation of state:

P (T, ρ) = kT ·

[
ρ+

MAX∑
i=2

Bi(T )ρi

]
, (5)

where Bi(T ) are the expansion coefficients and MAX is the maximum order
of the expansion. The first correction to the ideal gas EOS is given by the
second virial coefficient B2, and is written:

P (T, ρ) = kT ·
[
ρ+B2 ρ

2
]

= kT · ρ [1 +B2ρ]
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Therefore, for a real gas, B2 is the main physical quantity that distinguishes
it from the ideal gas, and that estimates the overall interactions among the
particles. We derive the virial EOS below, but for the impatient reader we
already state the main result:

B2 = −2π

∫ ∞
0

(
e−

V2(R)
kT − 1

)
R2 dR . (6)

Two paths are common to get the virial EOS from the potential (4), the
derivation based on the virial theorem and the cluster expansion. In these
notes, the former will be less formal but easier to follow.

Derivation based on the virial theorem

This derivation is mathematically easier and physically more instructive, but
not quite direct. As a first step, it is necessary to translate the existence of
V(q) into a general correction for the EOS. Then, this correction has to be
recast in terms of a power expansion of the density.

The definition from classical mechanics of the virial G reads:

G =

N∑
i=1

qi · pi

Even at thermodynamic equilibrium, G will change all the time because of
fluctuations. However, the mean of its time derivative is zero; using the
ergodic hypothesis, one can write:〈

dG

dt

〉
= lim

τ→∞

1

τ

∫ τ

0

dG

dt
dt

= lim
τ→∞

1

τ
(G(τ)−G(0))

= 0 . (7)

The last equality follows because G is a limited function (both volume and
energy of the system are finite).

From the definition of the virial, and using Hamilton’s equation of mo-
tion, one obtain:

dG

dt
=

d

dt

[
N∑
i=1

qi · pi

]

= 2
N∑
i=1

p2i
2m

+
N∑
i=1

qi · fi(q)

= 2K(p) +

N∑
i=1

qi · fi(q) . (8)
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Here K(p) is the kinetic energy as a function of momenta, and fi(q) is the
total force acting on the i-th particle:

fi(q) := −∂qiV(q) + fext(qi) ,

which is the sum of internal and external forces (the last ones coming from
the walls confining the gas). ∂x := ∂/∂x is the partial derivative.

The external force term in (8) is proportional to the pressure, because
fext is different from zero only on the container walls:〈

N∑
i=1

qi · fext(qi)

〉
= N · 〈q1 · fext(q1)〉

= 3N 〈qx1 · fext(qx1 )〉
= 3PV , (9)

where the last equality follows from the usual molecular theory of gases.
The mean kinetic energy is proportional to the temperature (equiparti-

tion theorem):
2 〈K〉 = 3NkT , (10)

From (7), the average of (8) using (9) and (10) has to vanish, ensuring
the conservation of the mean virial. We recast this conservation as a function
of the pressure, obtaining the following result:

P (T, ρ) = ρkT −

[
1

3V

〈
N∑
i=1

qi · ∂qiV(q)

〉]
(11)

Compared to the ideal gas, we have an additional factor, the so-called virial
correction, which is due to the interactions:

X = −

[
1

3V

〈
N∑
i=1

qi · ∂qiV(q)

〉]

Now we will express the last equality in a more convenient form, using
the hypothesis of pairwise interactions. The partial derivative of V becomes:

∂qiV(q) =
1

2

 N∑
j=1,j 6=i

∂qiV2(qi, qj) +

N∑
k=1,k 6=i

∂qiV2(qk, qi)


=

N∑
j=1,j 6=i

∂qiV2(qi, qj) ,
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In the second line we used the identity of particles, i.e. V2(qi, qj) = V2(qj , qi).
We get:

X =
1

3V

〈∑
i,j 6=i

qi · ∂qiV2(qi, qj)

〉

=
1

6V

〈∑
i,j 6=i

rij∂rijV2(rij)

〉
,

where rij := qi−qj is the position difference, and the translational symmetry
of the potential, i.e. V2(qi, qj) = V2(rij), has been used.

Pair correlation function

At this point, in terms of notation it is more convenient to trade in the
double sum for a distribution function:

g(r) :=
1

ρ2

∑
i,j 6=i

δ(r − rij) ,

This quantity is, strictly speaking, a function of all particle positions at
a given time, i.e. a dynamic variable. In practice, ρ2 g(r) is a map of
the molecule separations, the probability distribution of finding, among all
molecules, two of them separated by a vector r. Its mean value

〈
ρ2 g(r)

〉
is

the equilibrium probability distribution that two particles are separated by
a vector r, and is called pair correlation function.

Therefore, it is clear that g and V2 are closely related. The mean
inter-particle separation takes exactly the value that minimizes the free
energy(enthalpy); in turn, the total interaction energy V2 depends on the
relative positions of particles. Obviously, the pair correlation function also
depends on the temperature and the density, i.e. g = g(r, T, ρ).

In terms of pair correlations, the virial correction can be rewritten as
follows:

X =
ρ2

6V

∫
V

∫
V
g(r) · r · ∂rV2(r) dqdq′ , (12)

in which r := q − q′.

Radial distribution function

Now, if the potential is also radially symmetric, one can simplify this ex-
pression further. We have to assume that g is also radially symmetric; this
is explained in the following. First we introduce the inter-particle distance
R := |r|. Now, given a particle at a certain point in space, ρ2 g(R) is the
probability distribution to find another particle at a distance R. Clearly,
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if both the Hamiltonian and the entropy are radially symmetric, the con-
dition of minimizing the free energy (enthalpy) implies the same symmetry
for g(r). Then, g only depends on the distance between two particles, and
is called radial distribution function.

Inserting X from (12) into the EOS (11), we find the virial EOS:

P (T, ρ) = ρkT − 2πρ2

3

∫ ∞
0

g(R)R3 V ′2(R) dR , (13)

where we used the identity r · ∂rf(r) = R f ′(R), valid for every radially
symmetric function f .

Sign of the virial correction

From the minus sign in the virial EOS (13), one could think that the virial
correction is always negative. This is not true, as we will see in the following.

The sign of the whole correction X depends on that of the integrand
function g R3 V ′2 . g is always positive because it is proportional to a prob-
ability distribution via a positive factor ρ2; R3 is also positive, since the
integration is performed from zero upwards. So, the key factor here is V ′2 ,
the derivative of the pairwise potential.

If the potential between two particles increases with the distance, as for
gravity or Coulomb attraction, the virial correction will be negative. In
contrast, if the potential decreases with distance, as for Coulomb repulsion,
the virial correction will be positive.

It is also possible that V2 is not a monotonic function, because a certain
distance between particles is energetically favored. In fact, this is the usual
case, i.e. attractive and repulsive contributions to V2. For instance, atoms
in a crystal possess harmonic potentials centered at certain lattice spacings,
and colloidal particles in an electrolyte solution can have a non-trivial po-
tential. In both cases, it is clear that interactions play an important role for
the EOS, but the sign of the virial correction is not obvious at first glance.

Second-order expansion of the virial EOS

Now we are able to perform perturbation theory on the virial EOS. In prac-
tice, the virial correction is the product of two quantities, i.e. V ′2 and g. If
the potential is known, the whole power expansion is encoded in the radial
distribution function.

As a first approximation, it is natural to assume that g is Boltzmann-
distributed according to the potential V2:

g(R) ≈ exp

[
−V2(R)

kT

]
. (14)
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With such a choice, the virial EOS can be integrated by parts and, for
sufficiently regular potentials, we get the second-order expansion:

P (T, ρ) = ρkT − 2πkT ρ2
∫ ∞
0

(
e−

V2(R)
kT − 1

)
R2 dR . (15)

Because of the approximation (14), all coefficients above the second one
have been neglected. The reader can (indeed, should) verify that the second-
order coefficient is consistent with B2 as in (6). Furthermore, as for the full
virial correction, attractive (repulsive) potentials will give rise to negative
(positive) B2. Conversely, the sign of B2 is an indicator of the “degree of
attractiveness and repulsiveness” of inter-particle interactions.

Higher-order expansion

In principle, refining the approximation for g up to the n-th order, the final
virial EOS will be of (n + 2)-th order. However, this refinement is very
difficult to perform in practice.

One could even get the impression that we only shifted the expansion
problem from P (T, ρ) over to g(r, T, ρ). As a matter of fact, our whole
derivation enabled us to calculate a single virial coefficient, namely B2.
However, from the second-order EOS it is possible to calculate g(r, T, ρ)
approximately, up to first order in the density. Recursively, this delivers
the third-order virial coefficient B3, an so on. So, from the single param-
eter B2, it is possible to compute approximately the full correction due to
interactions. This procedure is called Kirkwood superposition approx-
imation.

Cluster expansion

The second path for including the interactions into the EOS, in a power
expansion of the density, is the cluster expansion. This approach is much
more direct than the mechanical derivation and, in a sense, more power-
ful. The drawback lies in its mathematical abstraction and computational
complexity.

The starting point is the following: apart from exotic examples, all ther-
modynamic potentials are equivalent for describing a system, as long as they
are expressed as functions of their natural variables. A good choice is the
free energy, because it depends on both V and N , so it is easily expressed as
a function of the density. In the canonical formalism, the pressure is derived
from the partition function Z as follows:

P (T, V,N) = −∂V F (T, V,N) = kT · ∂V logZ(T, V,N) . (16)

The expansion of P is then translated into an expansion of Z. If the
Hamiltonian is in a form that allows a decoupling of the momenta pi from
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the positions qi, we can define a reduced partition function:

ZQ(T, V,N) :=

(
2πmkT

h2

)−3N/2
· Z(T, V,N) ,

which is an integral over the Gibbs distribution of the potential V alone, i.e.:

ZQ(T, V,N) =
1

N !

∫
V N

exp

[
−V(q)

kT

]
dq .

We want to expand ZQ around the limit of vanishing density, so that
small correction to the ideal gas are taken into account. In the ideal gas,
particles never meet in the sense of interactions. In a weakly interacting
gas, pairs of particles will interact rarely, and three-particle clusters will
form even less commonly. But the probability of meeting is clearly linked to
the density. So, we develop an expansion around the number of molecules
meeting in a cluster and hope, in the end, to recover a density expansion.
The general theory, which includes non-pairwise forces, is called Ursell
expansion; however, for the sake of brevity, we will only study the pairwise
approximated theory due to Mayer, called the Mayer expansion.

Mayer f-function

We have already met the basic ingredient in equation (15). In order to derive
that expression, we have integrated (13) by parts , using the following choice
of functions:

V ′2(R) e−
V2(R)
kT

∫
dR
−→ −kT

(
e−

V2(R)
kT − 1

)
R3 ∂/∂R−→ 3R2

In the integrated part, the “minus one” part looks superfluous; its derivative
is zero. However, its presence is essential for the elimination of the boundary
integral at R → ∞. Without the “minus one”, the exponential function
would stay finite and the integral would diverge! So, the function:

f(R) := e−
V2(R)
kT − 1

seems to be a key piece in our previous derivation; it is called Mayer f-
function. In ideal systems, where there are no interactions, the Mayer
f-function vanishes everywhere. The stronger the interactions V2, the larger
the absolute value of f . In this sense, the Mayer f-function looks like a
promising candidate as smallness parameter for a perturbation approach
starting from the ideal gas. This is indeed the essence of the cluster ex-
pansion, as we will see in the following. For now, note that, in general, the
Mayer f-function is zero at large distances, and takes finite values only in
the interaction region, where the pairwise potential is different from zero.
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Mayer expansion

Now look at the reduced partition function ZQ. In the approximation of
pairwise interactions, we assume that V2 only depends on the position dif-
ference rij = qi− qj , symmetrically under exchange of the two particles. ZQ
becomes:

ZQ(T, V,N) =
1

N !

∫
V N

exp

[
−
∑

j>k V2(rkj)

kT

]
dq

=
1

N !

∫
V N

∏
j>k

exp

[
−
V2(Rkj)

kT

]
dq

=
1

N !

∫
V N

∏
j>k

{1 + f(rkj)} dq . (17)

In the last expression we used the Mayer f-function.
Since the Mayer f-function is zero at large rkj , the effective integration

volume in the space of configurations is much smaller than V N . In other
words, in most of V N we are integrating the identity function. This remark
shows the way how to expand ZQ. As a zero-order approximation, we as-
sume that the integrand is indeed the identity. Secondly, we calculate the
correction for one pair of interacting particles. Then, we take into account
two pairs, three pairs, one 3-body cluster, one 3-body and one pair, etc., up
to large clusters.

Mathematically, this is expressed in the following series expansion:∏
j>k

{1 + f(rkj)} = 1 +
∑
j>k

fkj +
∑

j>k, m>l, l≥k, (kj)6=(lm)

fkjflm + . . . (18)

which is called the Mayer expansion.

Cluster diagrams and combinatorics

Equation (18) get notationally complex as the order of the expansion in-
creases, for the indices are not free to run from 1 to N , but are constrained
in order to avoid double-counting.

Moreover, (18) groups together terms quite different from one another.
For instance, consider the following terms:

f12f23 and f12f34

In the first one, particle 2 builds an interaction bridge between 1 and 3,
forming a 3-body cluster, 1-2-3. In the last one, two spatially separated
pairs are formed, i.e. 1-2 and 3-4. Both terms are written in the form
fkjflm, so that they appear in the same group in (18).

Another obvious drawback of the expansion as written in (18) is that
we do not recognize identical clusters formed by different particles. For
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instance, it is clear that the terms f12f23 and f12f24 contribute with the
same amount to the reduced partition function, but equation (18) does not
show it at all.

To get over these three issues, a graphical approach has been taken. This
is analogous to the Feynman diagrams in Quantum Field Theory, but in the
real rather than in the reciprocal space. Following the convention of e.g.
Croxton, we denote every particle involved in an interaction with a white
circle, and every fkj as a bond between two white circles. Particles which do
not take part in any interaction are written either by non-connected circles
or let away. Finally, if one type of cluster is present n times in the system,
its diagram will be elevated to the n-th.

Our previous examples would become:

f12f34 −→ ( )2

f12f23 −→
f12f24 −→

We immediately see the advantages of this approach. Equivalent clusters
are represented exactly in the same way, and topologically different clusters
are clearly distinguishable.

It remains only the problem of the contained indices. Here, we do not
have indices at all, but it is not easy to determine how often a certain
diagram will occur in the Mayer expansion. In principle it is all about
counting and ordering diagrams, but in practice it is a formidable problem of
combinatorics. The same difficulty is met in other branches of physics where
diagrammatic perturbation theory is used, such as Path Integral Statistical
Field Theory. Usually, some physical reason allows one to throw away all
but a certain class of graphs, thus simplifying the combinatorics. But in
the case of the Mayer expansion, no such approximation seems appropriate,
because all cluster forms are equally important.

We are not really interested here in calculating the coefficients of the
expansion up to high orders, but only in showing a proof of principle. So, in
the following, numbers coming from the combinatorics will not be explained;
they will just appear in the equations.

Second-order correction

The easiest terms in (18) are the ones with a single Mayer f-function. They
represent a single pair of interacting particles in the whole system, and their
graph is just . The reduced partition function up to second order
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becomes:

ZQ(T, V,N) =
1

N !

∫
V N

{
1 +

1

2

N !

(N − 2)!

}
dq

=
1

N !

[
V N +

N(N − 1)

2
V N−1

∫
V

dr

]
=:

1

N !

[
V N +

N(N − 1)

2
V N−1

]
.

where the black diagram is the integrated counterpart of the white one, i.e.

:=

∫
V

dr .

Now we calculate the pressure from the ZQ:

P (T, V,N) = kT∂V logZ(T, V,N)

= kT∂V logZQ(T, V,N)

= kT∂V

[
− logN ! +N log V + log

{
1 +

N(N − 1)

2V

}]
≈ kT∂V

[
− logN ! +N log V +

N(N − 1)

2V

]
≈ kT N

V
− kT

2

(
N

V

)2

where we used the approximations log(1 + x) ≈ x for small densities and
N(N − 1) ≈ N2 for large particle numbers.

Written as a function of temperature and density, and assuming radial
symmetry of the potential, we get the same result as before, i.e.:

P (T, ρ) = ρkT − 2πkTρ2
∫ ∞
0

(
e−

V2(R)
kT − 1

)
R2 dR . (19)

One can easily check that the second virial coefficient is consistent with (6).

Higher-order corrections

Differently from the mechanical derivation, the cluster expansion gives us
the full recipe (apart from combinatorics) for calculating higher-order cor-
rections. They will be represented by graphs such as the following:

Third: ( )2 , ,

Fourth: ( )3 , , , . . .

In these notes, we will not examine the details of the higher-order correc-
tions, nor of their graphical representations in terms of graphs. The inter-
ested reader is referred to the cited literature.
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Examples

In the following, we illustrate the virial expansion with classic examples.

Hard Sphere Potential

The hard sphere is one of the most frequently used model and reference
system in soft matter research since it is very simple and takes into account
only the excluded volume of the particles. The given interaction potential
reads

VHS(r) =

{
∞ r < a

0 r ≥ a
(20)

with the sphere diameter a. The infinite barrier at distances smaller than a
models the strong electron-electron repulsion found when two particles come
in contact.

Several thermodynamic quantities can be calculated analytically, inter
alia the first coefficients of the virial expansion. Let us apply the virial
formalism to calculate the first correction to the ideal gas EOS for excluded
volume interaction of hard spheres from Eq. (6):

B2 = −2π

∫ ∞
0

(
e−

VHS(r)

kT − 1
)
r2 dr (21)

= −2π

∫ a

0
(0− 1) r2 dr (22)

=
2

3
πa3 = 4 · vp (23)

with the particle volume vp = (4/3)π(a/2)3.
Thus, the second virial coefficient directly includes the excluded volume

from the particles.

Square Well Potential

In most cases, hard core repulsion is not sufficient to describe fully the inter-
particle interaction, in particular in presence of attractions. In those cases,
e.g. gaseous atomic species to aqueous protein solutions, the spherical square
well potential is an easy and widely used model instead. It is mathematically
written as follows:

Vsw(r) =


+∞ if r < a,

−ε if a < r < a(1 + δ), and

0 otherwise, i.e. if r > a(1 + δ).

The potential is shown in Figure 1. The hard core (r < a) is given by
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Vsw

r

Figure 1: The square well potential as a function of inter-particle distance.

the hard sphere contribution. The square well in the region between a
and a(1 + δ) models the interaction between two particles. ε quantifies the
interaction strength (and also the attractive or repulsive character), and δ
the interaction range.

The second virial coefficient for the square well potential is given by
Eq. (6), which in this case simplifies as follows:

B2 = −4vp

[
−1 +

(
e
ε
kT − 1

)
·
(
δ3 + 3δ2 + 3δ

)]
≈ −4vp ·

[
−1 +

ε

kT

(
δ3 + 3δ2 + 3δ

)]
.

The last approximation holds if the interaction is reasonably weak, ε� kT .
The second-order virial EOS becomes:

P = kT
{
ρ− 4vp ·

[
−1 +

ε

kT

(
δ3 + 3δ2 + 3δ

)]
· ρ2
}

This EOS depends on the three material parameters a, ε, and δ, but the
latter two appear in the EOS together. Therefore, we can reduce the num-
ber of independent parameters to two by introducing the quantity ξ :=
4 ε
kT

(
δ3 + 3δ2 + 3δ

)
. The EOS becomes then

P = kTρ (1 + 4vpρ)− ξρ2

where the first summand is the hard sphere contribution and the second
specifies the additional interaction.
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Van der Waals Equation of State (EOS)

In order to describe the gas-liquid phase transition, J.D. van der Waals
suggested more than a century ago (when the virial expansion itself was not
yet known) a special form of the EOS, the so-called van der Waals EOS:(

P +
ξ

v2

)
· (v − ζ) = kT .

where v = V/N is the specific volume. ζ has been introduced to account for
the volume occupied by each particle, therefore reducing the total accessible
volume for all particles. ξ accounts for additional interactions between the
particles.

At that time, various alternatives had been proposed as improvements to
the ideal EOS, and many others were thereafter. Nevertheless, this EOS kept
been used for a very long time, since it provides reasonable thermodynamic
consistency. Recasting the van der Waals EOS we obtain

P = kT
ρ

1− ζρ
− ξρ2

≈ kTρ
(
1 + ζρ+ (ζρ)2 + . . .

)
− ξρ2

≈ kT
[
ρ+ (ζ − ξ)ρ2 + ζ2ρ3 + . . .

]
where the series expansion is only valid for ζρ � 1, corresponding to not
too high particle densities.

The first summand is the ideal gas contribution. The second represents
the correction due to the second virial coefficient, in particular consisting
of the hard sphere virial coefficient (choose ζ = 4vp) and a contribution
accounting for additional interaction, e.g. square-well attraction. The third
and higher terms only account for excluded volume contributions, but are
essential to yield phase separation, which cannot be described from the
second virial coefficient alone. The correspondence up to second order with
the virial expansion explains part of the success of the van der Waals EOS.
At low particle densities the behavior is well described by the first correction
via the second virial coefficient.

In conclusion, the virial expansion is a powerful tool in statistical me-
chanics, for it is able to link the macroscopic quantities of thermodynamics
to the microscopic inter-particle potential.
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