
Magnetism in two dimensions and

Mermin-Wagner theorem

by Frank Schreiber

Question: Does a lower dimension (e.g., 2D instead of 3D), i.e. ”less neighbouring spins”
change the ordering behaviour ?

Answer: Yes.

Fundamental statement

”At any non-zero temperature, a one- or two-dimensional isotropic spin-S
Heisenberg model with finite-range exchange interaction canc be neither ferro-
magnetic nor antiferromagnetic.”

see Mermin / Wagner, Phys. Rev. Lett. 17 (1966 ) 1133
(note the assumptions ”isotropic” and ”finite-range”; these will be analysed
later.)

Proof: The original proof is somewhat involved; we will not follow it here.
We will rather illustrate the physics behind the Mermin-Wagner theorem which is based

on the idea that the excitation of spinwaves can destroy the magnetic order (here for a
ferromagnet; argumentation would be different for antiferromagnet (with dispersion E ∼

k))
Write the temperature-dependent magnetisation as

M(T ) = M(T = 0) − ∆M(T ) (1)

where ∆M(T ) is the reduction of the magnetisation due to thermally excited spin-waves.
∆M(T ) is calculated according to the usual strategy, i.e. integrate over the density

of states N(E) of the excitations times their the probability for the thermal occupation
(Bose-Einstein statistics)

∆M(T ) ∼
∫

∞

0
N(E)[1/(eE/kBT

− 1)]dE (2)

The important point to realise here is that N(E) depends on the dimensionality of the
system. Let us consider the general case of excitations with a dispersion

E ∼ kn (3)
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and a volume element in d-dimensional k space ∼ kd−1dk.
Using the above dispersion we write

kd−1
∼ Ed−1/n (4)

Using
dk = (dk/dE)dE (5)

we have

(dk/dE) ∼ k−nk ∼ E−1E1/n (6)

Thus, the volume element in k space (kd−1dk) is expressed using the volume element in
energy space

E(d−n)/ndE (7)

and the density of states is written as

N(E) ∼ E(d−n)/n (8)

Therefore,
for n = 2 (dispersion of spin-waves in ferromagnetics (with Heisenberg-Hamiltonian))
and d = 2 (two dimensions)

N(E) = constant (9)

and we have

∆M(T ) ∼

∫
∞

0
const [1/(eE/kBT

− 1)]dE (10)

∼ T
∫

∞

0
[1/(ex

− 1)]dx (11)

Analyse this integral near the lower boundary (small x) using

ex
− 1 = x + ... (12)

We find that ∫
∞

0
(1/x)dx (13)

diverges logarithmically. This means that ∆M(T ) diverges for finite T , which implies the
breakdown of magnetic order, i.e. M(T ) = 0 for T > 0.

The reason for the absence of magnetic order under the above assumptions is thus that
at finite temperatures spin-waves are infinitely easy to excite, which destroys magnetic
order.

Comments

1. assumption of ”isotropic interactions”

If there is, e.g., an easy axis (anisotropy) in the system, the dispersion has a different
form, such as, e.g.

E = A + Dk2 (14)
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with A = const. This translates into an integral (using the same arguments regarding
density of states etc as above) of the type

∆M(T ) ∼
∫

∞

A
const [1/(eE/kBT

− 1)]dE (15)

Since the lower boundary is now shifted (A > 0) the integral does not diverge at this
boundary and the magnetic order is thus stabilised by anisotropy.

2. assumption of ”short-range interactions”

If we assume longer-range interactions (e.g., dipolar) and a different dispersion, e.g.,
such as

E ∼ k1/2 for small k (16)

we find
N(E) ∼ E3 (17)

and the integral

∆M(T ) ∼
∫

∞

A
E3[1/(eE/kBT

− 1)]dE (18)

does not diverge at its lower boundary.

Thus, magnetic order may be stabilised in this model.

3. assumption of dimension d = 2 (or smaller)

Consider the dimension d as a continuous parameter with d = 2 + ε.

Assuming for simplicity the conventional dispersion E ∼ k2 and using the above
arguments this gives

N(E) ∼ Eε/2 (19)

which leave to an integral for ∆M(T ) of the type

∆M(T ) ∼

∫
∞

0
Eε/2[1/(eE/kBT

− 1)]dE (20)

∼ T
∫

∞

0
dx/(x1−(ε/2) + ...) (21)

which does not diverge.

Again, a deviation from the original assumptions by Mermin and Wagner, i.e. in this
case no strict two-dimensionality, but rather slightly higher (e.g. a film with a finite
thickness, i.e. not only a monolayer) stabilises the order.

4. comparison with experiments on real-world samples

While the assumptions (isotropic and short-range) is usually not strictly fulfilled, it
is hard to confirm Mermin-Wagner in a real system.

Nevertheless, the theorem provides an important benchmark and gives a qualitative
explanation why the ordering temperature Tc is usually reduced for thinner films.

see, e.g., Schneider et al., Phys. Rev. Lett. 64 (1990) 1059
(Tc depends on thickness for ultrathin films)
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