Controlling the Texture and Crystallinity of Evaporated Lead Phthalocyanine Thin Films for Near-Infrared Sensitive Solar Cells

Karolien Vasseur,§ Katharina Broch,§ Alexander L. Ayzner,† Barry P. Rand,§ David Cheyns,§ Christian Frank,§ Frank Schreiber,§ Michael F. Toney,⊥ Ludo Froyen,‡ and Paul Heremans†,§

†imec, Kapeldreef 75, 3001 Heverlee, Belgium
‡Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Heverlee, Belgium
§Institut für Angewandte Physik and LISA +, Universität Tübingen, Auf der Morgenstelle 10, Tübingen 72076, Germany
⊥Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
§Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

ABSTRACT: To achieve organic solar cells with a broadened spectral absorption, we aim to promote the growth of the near-infrared (NIR)-active polymorph of lead phthalocyanine (PbPc) on a relevant electrode for solar cell applications. We studied the effect of different substrate modification layers on PbPc thin film structure as a function of thickness and deposition rate \(r_{\text{dep}} \). We characterized crystallinity and orientation by grazing incidence X-ray diffraction (GIXD) and in situ X-ray reflectivity (XRR) and correlated these data to the performance of bilayer solar cells. When deposited onto a self-assembled monolayer (SAM) or a molybdenum oxide (MoO3) buffer layer, the crystallinity of the PbPc films improves with thickness. The transition from a partially crystalline layer close to the substrate to a more crystalline film with a higher content of the NIR-active phase is enhanced at low \(r_{\text{dep}} \), thereby leading to solar cells that exhibit a higher maximum in short circuit current density \(J_{\text{SC}} \) for thinner donor layers. The insertion of a CuI layer induces the formation of strongly textured, crystalline PbPc layers with a vertically homogeneous structure. Solar cells based on these templated donor layers show a variation of \(J_{\text{SC}} \) with thickness that is independent of \(r_{\text{dep}} \). Consequently, without decreasing \(r_{\text{dep}} \) we could achieve \(J_{\text{SC}} = 10 \text{mA/cm}^2 \), yielding a bilayer solar cell with a peak external quantum efficiency (EQE) of 35% at 900 nm, and an overall power conversion efficiency (PCE) of 2.9%.

KEYWORDS: structural templating, molecular orientation, polymorphism, copper iodide (CuI), self-assembled monolayer (SAM), planar heterojunction

1. INTRODUCTION

Continuous progress in designing new organic semiconductors,1–3 optimizing device architectures,4,5 and controlling active layer morphology,6–10 has allowed organic solar cell efficiencies to improve dramatically, with record efficiencies now exceeding 10%.11 Further improvement of efficiency requires an increased overlap with the solar spectrum in order to maximize photocurrent generation, and in particular, for use with complementary absorbing tandem cells.12 Since an important part of the photon flux is situated above \(\lambda = 800 \) nm, it is key to incorporate organic solar cells into the tandem structure that exhibit a sensitivity into the near-infrared (NIR) region while simultaneously ensuring efficient photon-to-current conversion.

Among small-molecular-weight donor materials, phthalocyanines (Pcs) are an archetypal material class due to their high optical absorption coefficients in the visible region and their tunable functional properties by incorporating different metal ions in the Pc ring.13 Introducing a large metal ion, a metal-halide or metal-oxo moiety into the Pc ring disrupts its planarity; the three-dimensionality of the resultant molecule causes its optical and electrical properties in the solid state to be strongly influenced by molecular packing.14–19 Nonplanar Pcs such as titanyl (TiOPc)4,20–22 vanadyl (VOPc)23 and lead Pc (PbPc)24,25 are reported to crystallize as a variety of polymorphs, most of them exhibiting either monoclinic or triclinic symmetry. The triclinic polymorph of these compounds displays a broadened and red-shifted absorption spectrum due to the increased intermolecular interactions in this close packing arrangement.10 For PbPc, the phase transition from monoclinic to triclinic is accompanied by a distinct shift of the dominant peak in the absorption spectrum from \(\lambda = 740 \) nm to \(\lambda = 900 \) nm.26–28 The characteristic absorption peak of triclinic PbPc is positioned at even longer

Supporting Information

ACS Applied Materials & Interfaces
8505

© 2013 American Chemical Society
wavelengths than that of the NIR absorbing phase of TiOPc and CIAIPc, rendering PbPc a promising candidate to achieve high-performance NIR-sensitive solar cells.

Promoting the growth of the triclinic polymorph for fabricating solar cells with NIR sensitivity requires insight into the thin film structure of nonplanar Pcs. Processing parameters enabling structural control include (i) growth conditions, including substrate temperature, deposition rate \(r_{dep}\) and the substrate, and (ii) postdeposition treatments such as thermal and solvent annealing. For PbPc, the monoclinic to triclinic phase transition has been achieved by thermal annealing\(^{29}\) and applying high pressure\(^{30}\) on the as-deposited film. The growth of the triclinic polymorph was enhanced by increasing the substrate temperature and decreasing \(r_{dep}\).\(^{15,31}\) Our previous study on PbPc films grown on ITO substrates indicated an evolving structure with thickness that was shown to sensitively depend upon \(r_{dep}\) and substrate temperature. There, the short-circuit current density \(J_{SC}\) of planar PbPc/C\(_{60}\) solar cells amounted to 8.5 mA/cm\(^2\), but this value remains limited by the fact that the exciton diffusion length of PbPc was less than the film thickness needed to reach such \(J_{SC}\) values (12 nm vs 40 nm, respectively).\(^{32}\) In order to limit the parasitic absorption of the poorly ordered PbPc layer formed close to the ITO substrate, the formation of the triclinic phase near the substrate surface should be enhanced during the early stages of thin film growth. Consequently, the optimum in the photocurrent will shift to thinner donor layers, which should result in solar cells with higher performance.

As the growth of an organic layer is governed by the delicate balance between molecule–substrate and molecule–molecule interactions,\(^{33}\) modification of the substrate surface properties is an effective way to change the organic thin film structure, including crystallinity, crystal phase, and molecular orientation.\(^{34–38}\) The insertion of a pentacene, seixaphenile, para-silphenyl, CuPc or ZnPc layer between the ITO substrate and the PbPc thin film has proven to promote the formation of the triclinic phase.\(^{39–42}\) Besides organic templating layers, CuI has recently been demonstrated to efficiently template PbPc layers. Shim et al.\(^{43,44}\) reported on PbPc solar cells with a CuI interlayer achieving an increased \(J_{SC}\) up to 8.7 mA/cm\(^2\). This improvement is mainly ascribed to the increased crystallinity and texturing of the PbPc layer. The templating effect of CuI was also demonstrated for CuPc,\(^{45}\) ZnPc,\(^{46}\) and TiOPc\(^{47}\) layers, where the molecular orientation changed from edge-on to face-on upon the insertion of CuI. This orientation change has a complex effect on the resulting device performance, which is described for planar ZnPc/\(C_{60}\) heterojunction (HJ) solar cells by Rand et al.\(^{6}\)

Other surface modifications that have been investigated for solar cell applications include self-assembled monolayers (SAMs)\(^{47–52}\) and metal oxide layers.\(^{53,54}\) Although it is well-known that SAMs induce an edge-on orientation of Pcs,\(^{55,56}\) the main goal of inserting these layers has been to control the work function of the anode rather than to template the donor layer that is deposited on top. Recently, however, a SAM of 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) was shown to exhibit a strong templating effect on CIAIPc layers, and this resulted in planar solar cells with significantly improved efficiencies.\(^{5}\)

As the performance of OPV cells critically relies on the morphology and crystalline structure of the thin films involved, a thorough study of the structure–property relationship of the donor layer as well as insight into parameters that control thin film structure is needed to further improve solar cell efficiency.\(^{57,58}\) In this work, we compare the influence of various surface modification layers, namely FDTS, CuI and MoO\(_3\), as a reference, on the structural evolution of PbPc thin films when deposited at two different \(r_{dep}\) with the aim to fabricate efficient NIR-sensitive solar cells. The structure of the PbPc thin films is elucidated by investigating their crystallinity and preferred orientation, which is referred to as texture. This is done by correlating optical absorption spectroscopy measurements with structural information obtained by in situ out-of-plane Bragg diffraction to probe the vertical ordering and two-dimensional grazing incidence X-ray diffraction (2D GIXD)\(^{59–62}\) that reveal the in-plane ordering. Finally, we investigate the consequences of the PbPc donor layer structure and crystallinity on the spectral response in planar HJ solar cells.

2. EXPERIMENTAL METHODS

2.1. Substrate Preparation and Thin Film Deposition.

The substrates used in this study are glass substrates with 110 nm thick prepatterned indium–tin-oxide (ITO, Kintec) and highly doped n\(^+\)-type silicon wafers with thermally grown SiO\(_2\). Substrate cleaning consisted of sonication in detergent, deionized water and acetone, followed by submergence in hot isopropanol. Finally, a 15 min ultraviolet-O\(_3\) treatment was applied.

The growth of PbPc is studied on three different surfaces: on top of (i) MoO\(_3\), (ii) FDTS, or (iii) CuI, grown on glass/ITO or SiO\(_2\). The MoO\(_3\) layer of 2 nm thickness is evaporated at a rate of 1 Å/s in a high vacuum evaporator with a base pressure \(\approx 1 \times 10^{-7}\) Torr. A 1 nm thick layer of CuI is deposited in the same system at a rate of 0.2 Å/s, whereas FDTS is applied by vapor phase deposition in a home-built oven at 140 °C under reduced pressure.

The organic materials, PbPc (Sigma-Aldrich), fullerene (\(C_{60}\) SES research), and bathocuproine (BCP, Sigma-Aldrich) were purified once using gradient sublimation, while Ag, CuI and MoO\(_3\) were used as received. Organic thin films were deposited by thermal evaporation in a high vacuum evaporator with a base pressure \(\approx 1 \times 10^{-7}\) Torr, and the substrate temperature was fixed to room temperature. The PbPc films have been evaporated at \(r_{dep} = 0.05\) or \(r_{dep} = 1\) Å/s, as monitored by a quartz crystal microbalance (QCM). Note: The thickness of PbPc on CuI was systematically 80% of the thickness of PbPc deposited on MoO\(_3\), FDTS, or ITO, as determined by ellipsometry, and was accounted for in the thicknesses deposited. For solar cell structures, subsequent organic layers were deposited at \(r_{dep} = 1\) Å/s in the same system without breaking vacuum. The 120 nm thick Ag cathode is evaporated through a shadow mask, defining an active area of 0.134 cm\(^2\).

2.2. Thin Film Characterization (postgrowth).

Absorption spectra of the PbPc films on glass covered with MoO\(_3\), CuI, or FDTS were measured between 300 and 1100 nm with a Shimadzu UV-1601PC UV–visible spectrophotometer.

Grazing incidence X-ray diffraction (GIXD) spectra were acquired on PbPc films deposited at \(r_{dep} = 0.05\) Å/s and \(r_{dep} = 1\) Å/s on SiO\(_2\) substrates coated with either MoO\(_3\), FDTS, or CuI. The use of SiO\(_2\) substrates for structural analysis instead of ITO substrates is motivated by the roughness of commercially available ITO covered glass slides which limits the signal-to-background ratio in X-ray diffraction (XRD) measurements. However, to correlate PbPc thin film structure with the performance of solar cells in which the donor layer is deposited onto an untreated ITO anode, the structural evolution of PbPc on ITO is also of interest. We mimic this case by depositing a 2 nm-thick MoO\(_3\) layer on top of the SiO\(_2\) substrate, assuming that the PbPc thin film structure on ITO and MoO\(_3\) is qualitatively similar, although not quantitatively identical. We support this assumption by two observations: (i) ITO and MoO\(_3\) have an equal surface enthalpy as determined by static contact angle measurements and (ii) solar cells with and without MoO\(_3\) anode buffer layer display similar external
quantum efficiency (EQE) spectra as shown in Figure S1 available in the Supporting Information, thus indicating that both PbPc donor layers exhibit a similar structure.

The GIXD measurements were performed at the Stanford Synchrotron Radiation Lightsource (SSRL) beamline 11–3 with an X-ray wavelength of 0.976 Å and an area detector (MAR345). First, an incidence angle of \(\theta = 0.12^\circ \) slightly above the critical angle of the films (\(\theta_c = 0.116^\circ \)) was chosen. Second, an incidence angle of \(\theta = 0.08^\circ \) was used to probe the near-surface structure (\(\approx 5-10 \) nm) of the films. Typical exposure times were 120 s. The resolution of the GIXD data obtained using the image plate detector is determined by the sample size (\(12.5 \times 12.5 \) mm), the distance between the sample and the detector as determined by calibration (38.6 cm), and the detector pixel size (\(150 \times 150 \) \(\mu \)m). The overall resolution of the GIXD measurements is about 0.05–0.1 Å\(^{-1}\). To prevent beam damage, we performed measurements under a He atmosphere. The sample–detector distance was calibrated using a LaB\(_6\) standard.

The GIXD measurements were analyzed using the software package WxDiff, provided by Dr. Stefan Mannsfeld.\(^{63}\) Diffraction patterns are distortion corrected (\(\theta \)-dependent image distortion introduced by planar detector surface) before performing the quantitative analysis on the images. Background correction is also applied when diffraction peak intensities are calculated. The GIXD data are expressed as a function of the scattering vector \(q \) defined in eq. 1.

\[
q = \sqrt{(q_{xy}^2 + q_z^2)}
\]

The polar angle \(\chi \) equals \(0^\circ \) at \(q_y = 0 \) and is \(90^\circ \) at \(q_y = 0 \). For diffraction peaks \(q = 0.53 \) Å\(^{-1}\) and \(q = 0.9 \) Å\(^{-1}\), the intensity profile \(I_q \) is obtained as a function of \(\chi \) defined in eqs 2 and 3.

\[
I_q(q) = \frac{1}{q} \int_{\chi}^{\pi} I(\chi, q) dq
\]

for \(\theta = 0.12^\circ \) or 0.08°

\[
I_q(q) = \int_{\chi}^{\pi} I(\chi, q) dq
\]

with \(t \) the PbPc film thickness. The integral in eqs 2 and 3 is approximated by summing intensities over an arc segment \(\Delta \chi \) that is chosen to encompass the entire peak and roughly corresponds to \(\chi \pm 0.08 \text{ Å}^{-1}\).

Figure S2 provides a schematic of the GIXD data treatment explained here. Previous experiments have shown that the error on the calculated \(I_q(q) \) value is about 10%.\(^{64}\) From \(I_q(q) \), the degree of crystallinity (doc) is calculated as follows:

\[
doc = q \int_{\theta}^{\theta/2} I_q(q) \sin(q) dq
\]

2.3. In Situ X-ray Reflectivity Measurements. To complement the 2D GIXD measurements that give information about the in-plane structure, we performed in situ X-ray reflection (XRR) measurements to study the out-of-plane structure of the PbPc films. The PbPc thin films are deposited in a portable ultrahigh vacuum chamber with a Be window that enables in situ XRR measurements,\(^{65}\) the unique capabilities of which are demonstrated in ref 66–68. The pressure during deposition was \(1 \times 10^{-7} \text{Torr} \), and PbPc was deposited at \(\text{rate} \) = 0.05 Å/s as monitored by a QCM. Similar substrates as for the 2D GIXD measurements were employed. Following the evolution of the first order Bragg peak in real-time was hindered due to the chosen deposition rate limiting the integration time, and hence the temporal resolution of the measurement. Therefore, we opted for in situ but not real-time XRR measurements which are performed by interrupting PbPc deposition after the growth of a 10 nm-thick PbPc adlayer. We proceeded with the depositions and subsequent XRR measurements until a final PbPc layer thickness of 60 nm was achieved. We confirmed that the structure of the final PbPc layer of 60 nm thickness was similar after a continuous and an interrupted growth process, as is shown in Figure S3 in the Supporting Information.

The XRR measurements were performed on a GE XRD 3003TT diffractometer using Cu Kr radiation and a double-bounce (compressor) monochromator combined with multilayer optics. An integration time of 30 s per 0.02° was used for scanning \(\theta/2 \theta \).

2.4. Solar Cell Characterization. Current density–voltage characteristics of photovoltaic cells were measured in dark and under simulated solar light, using a Keithley 2602 in combination with an Abet solar simulator, calibrated to produce 100 mW/cm\(^2\) AM1.5G illumination. In the EQE setup, light from Xe and quartz halogen lamps were coupled into a monochromator and their intensities calibrated with a Si photodiode. The light incident on the device was chopped and the modulated current signal detected with current–voltage and lock-in amplifiers.

3. RESULTS

3.1. Thin Film Absorption. Optical absorption measurements were performed to study the evolution in the structure of the PbPc layer as a function of layer thickness, deposition rate and templating layer. These data are relevant for determining the PbPc structure, as the triclinic phase is reported to have an absorption spectrum that strongly differs from the monoclinic absorption spectrum.\(^{15}\) The latter is characterized by a doublet in the Q-band at \(\lambda = 670 \) nm and \(\lambda = 740 \) nm. The molecular packing in the triclinic unit cell leads to the appearance of additional oscillator strength on the red side of the absorption spectrum, at \(\lambda = 900 \) nm. This feature is likely due to enhanced intermolecular interaction associated with this solid state packing arrangement.\(^{10}\) The absorption spectrum of an amorphous film was reported to be identical to that of the monoclinic phase,\(^{28}\) which can be explained by the weaker intermolecular interaction in the monoclinic packing structure.

Figure 1 depicts absorption spectra of PbPc films with thicknesses of 20, 40, and 60 nm deposited at \(\text{rate} = 0.05 \) and 1 Å/s onto glass substrates coated with MoO\(_3\), FDTS, or CuI. For the PbPc films deposited at \(\text{rate} = 1 \) Å/s onto MoO\(_3\) (Figure 1a), the dominant absorption peak is situated at \(\lambda = 740 \) nm for all films. With increasing thickness, the peak corresponding to the absorption of the triclinic phase emerges around \(\lambda = 900 \) nm and increases faster than the peak at \(\lambda = 740 \) nm. For films grown at \(\text{rate} = 0.05 \) Å/s, the NIR peak is already distinguishable for the thinnest layer and its intensity increase with thickness is more pronounced than for \(\text{rate} = 1 \) Å/s. These observations suggest a structural evolution with thickness that is influenced by the deposition conditions. A similar trend with film thickness can be observed in PbPc films deposited on FDTS treated substrates (Figure 1b), although the 20 nm thick film deposited at low \(\text{rate} \) exhibits a significantly decreased absorption peak at \(\lambda = 740 \) nm. On CuI (Figure 1c), only a small dependence on \(\text{rate} \) is apparent, although films deposited at 1 Å/s exhibit a slightly higher absorption intensity at \(\lambda = 740 \) nm compared to films deposited at 0.05 Å/s. The latter films display an absorption spectrum that is commensurate with that of the triclinic polymorph, namely the peak at \(\lambda = 900 \) nm is significantly more intense than the doublet, the dominant peak of which has shifted from \(\lambda = 740 \) nm to \(\lambda = 728 \) nm. In contrast to PbPc films grown on MoO\(_3\) and FDTS, the relative peak intensities in the absorption spectrum of PbPc on CuI are almost independent of thickness, and this indicates little to no structural evolution in these films.

3.2. X-ray Diffraction Measurements. To further investigate the structural evolution of PbPc thin films and its dependence on the substrate as observed in optical absorption measurements, we performed XRD measurements on the various PbPc layers. First, the out-of-plane ordering is probed with specular scans shown in Figure 2. These measurements were performed in situ for PbPc films deposited at \(\text{rate} = 0.05 \) Å/s.
Å/s onto SiO₂ substrates coated with different templating layers. Using FDTS, the PbPc layers exhibit Bragg peaks at \(q_z = 0.49 \) Å⁻¹ and \(q_z = 0.53 \) Å⁻¹, the relative intensities of which change with thickness. The broad Bragg peak at \(q_z = 0.49 \) Å⁻¹ changes very little, but with increasing film thickness a second and narrower Bragg peak emerges at \(q_z = 0.53 \) Å⁻¹, pointing to the nucleation of larger crystallites in the out-of-plane direction, that have a different crystal structure or another orientation with respect to the substrate surface. Because of close, or sometimes even overlapping, peak positions of the monoclinic (M) and triclinic (T) structure, peak indexing is nontrivial and remains rather speculative. On the basis of the peak positions, the Bragg peak at \(q_z = 0.49 \) Å⁻¹ corresponds to an interplanar distance \(d = 12.8 \) Å and can be assigned to T (0 0 1) or M (2 0 0), whereas the peak at \(q_z = 0.53 \) Å⁻¹ (\(d = 11.9 \) Å) originates from the triclinic phase but from the (1 0 0) or (1 −1 0) diffracting plane. The out-of-plane structure of PbPc films grown on a MoO₃ buffer layer is similar to that on FDTS, namely two diffraction peaks can be discerned from which the peak at \(q_z = 0.53 \) Å⁻¹ increases with PbPc thickness. It should be noted that the determination of accurate peak positions and intensities is complicated by the apparent peak shift with thickness. This could be caused by the changing interference between the smooth MoO₃ layer and the overlying PbPc film (i.e., a different relative amplitude of the individual scattering contributions) or the finite-size induced strain in the PbPc film. On CuI, PbPc layers display a dramatically different vertical ordering, evidenced by the presence of a different, sharp Bragg peak at \(q_z = 0.90 \) Å⁻¹. This peak shows little evolution with thickness (consistent with the absorption data), and indicates a periodic structure normal to the substrate with an interplanar distance of \(d = 7 \) Å. A close value, \(d = 7.07 \) Å corresponds to the M (3 2 0) diffraction. For the 60 nm thick films, rocking curves have been measured on the Bragg peaks in Figure 2 and are plotted in Figure S4, available in the Supporting Information. Both on FDTS and MoO₃, the full width half-maximum (fwhm) of the rocking curve around \(q_z = 0.49 \) Å⁻¹ is 0.04° (with a low baseline intensity), meaning that these crystallites exhibit a very low mosaicity on both substrates. The rocking curve around \(q_z = 0.53 \) Å⁻¹ on FDTS on the one hand, consists of a peak with a fwhm of 0.04° superimposed on a nonzero baseline indicating the coexistence of well-oriented and disordered misoriented crystallites. On MoO₃ on the other hand, only a large baseline is present which indicates a population of crystallites with a large mosaicity diffracting at \(q_z = 0.53 \) Å⁻¹.

To complement the information regarding vertical ordering of PbPc thin films, we have used 2D GIXD to sample a large fraction of the reciprocal space in a rapid fashion. In Figure 3, 2D GIXD patterns acquired on 20 and 60 nm thick PbPc films deposited onto the three different templating layers are shown. When comparing the structure of PbPc films with the same thickness on different substrates (Figure 3, top and bottom rows), important structural differences can be observed. On
MoO₃ and FDTS, similar (arched) diffraction peaks occur, albeit with different preferential orientations and relative intensities. On the CuI substrate, the presence of multiple diffraction spots points to highly crystalline and strongly textured PbPc films where only the intensities increase as the film thickens (no change in texture with thickness). When considering the 2D GIXD patterns of the PbPc films on the MoO₃ and FDTS substrates, the previously observed diffraction peaks at \(q_x \approx 0.49 \ \text{Å}^{-1} \) and \(q_y \approx 0.53 \ \text{Å}^{-1} \) are indiscernible due to the limited resolution of the GIXD setup. When studying the convoluted peak around \(q_y \approx 0.53 \ \text{Å}^{-1} \) (cfr. eq 1) in more detail, a markedly different preferential orientation of PbPc crystallites on the FDTS-modified substrate compared to that on MoO₃ is apparent, which is quantified with pole figures.

In Figure 4, we show the (thickness normalized) pole figures \(I_\phi(\chi) \) of the diffraction peaks at \(q_y = 0.53 \ \text{Å}^{-1} \) (cfr. eqs 1 and 2) for PbPc films on MoO₃ and FDTS. At \(\phi = 0.12^\circ \) (Figure 4 a), in essence the bulk structure of the PbPc films on FDTS is probed, and the maximal intensity of the diffraction peak occurs near \(\chi \approx 0^\circ \) (recall that the GIXD geometry prevents data for \(\chi \leq 2-3^\circ \)). This maximum intensity (\(\chi \approx 0^\circ \)) decreases with thickness, whereas the intensity at \(\chi \approx 58^\circ \) increases, thereby showing a change in the preferred orientation of the PbPc crystals. At a small incident angle of \(\phi = 0.08^\circ \), the X-rays preferentially probe the near-surface structure of the PbPc films. As can been seen in Figure 4 b, there is no change in texture with thickness beyond \(t > 30 \) nm; the top structure of 30 nm thick PbPc films exhibits its only intensity maximum at \(\chi \approx 58^\circ \). This demonstrates that the plane diffracting at \(q_y = 0.53 \ \text{Å}^{-1} \) reorients (the crystallites change preferred orientation) from being parallel (at \(t \leq 20 \) nm) to being tilted at \(\sim 58^\circ \). On the MoO₃ substrate, this change in preferred orientation with thickness is much less pronounced; the maximum peak intensity along the diffraction arc at \(q_y = 0.53 \ \text{Å}^{-1} \) is near \(\chi \approx 58^\circ \) for the thinnest PbPc film (Figure 4 c), and strikingly there is no peak near \(\chi \approx 0^\circ \). On the CuI substrate, the diffraction peak at \(q_y = 0.53 \ \text{Å}^{-1} \) is very intense and has a limited angular distribution around \(\chi \approx 70^\circ \) demonstrating that PbPc molecules do not change their orientation with thickness. The corresponding (thickness normalized) pole figure \(I_\phi(\chi) \) is shown in Figure S5, available in the Supporting Information. In contrast to the PbPc films deposited on MoO₃ and FDTS, the diffraction peak at \(q_y = 0.90 \ \text{Å}^{-1} \) is quite intense, even for the 20 nm thick PbPc layer on CuI. However, the intensity at \(q_y \approx 0^\circ \) will not be further interpreted, as the CuI substrate exhibits a diffraction peak at \(q_y = 0.86 \ \text{Å}^{-1} \) which overlaps with the diffraction from the PbPc film, hindering the analysis.

Comparison of the 2D GIXD patterns for different PbPc film thicknesses reveals an intensity increase for the different diffraction peaks. To quantify this observation, the doc was calculated according to eq 4 and the results are plotted in Figure 5 for diffraction peaks at \(q_y = 0.53 \ \text{Å}^{-1} \) and \(q_y = 0.90 \ \text{Å}^{-1} \).
Peaks at higher q are not considered in this analysis, as the amount of missing data from polar angles close to $\chi = 0^\circ$ becomes too large. On MoO$_3$ and FDTS, the doc of both diffraction peaks increases with thickness, and this trend is more pronounced at lower r_{dep}. On the CuI substrate, the doc is independent of r_{dep} and of PbPc film thickness. These observations are consistent with the formation of a crystalline PbPc layer that exhibits little structural evolution as a function of film thickness. In Figure 5, the doc for the diffraction peak at $q = 0.53 \, \text{Å}^{-1}$ is plotted for χ ranging from ~ 0 to 30°, to isolate the crystallities with this out-of-plane orientation. On FDTS substrates, an important crystalline fraction close to the substrate adopts an out-of-plane orientation when the film is deposited at low r_{dep}. However, at $r_{dep} = 1 \, \text{Å/s}$, this preferential vertical ordering is less prominent and is comparable to that in films grown on a MoO$_3$ buffer layer.

3.3. Solar Cell Characterization.

To correlate the thin film structure with its photoelectrical properties, we used PbPc films in planar heterojunction solar cells with the following structure: ITO/(FDTS or CuI (1 nm))/PbPc (x nm)/C$_{60}$ (50 nm)/BCP (10 nm)/Ag, where the PbPc layer thickness is varied from 10 to 60 nm in steps of 10 nm. Figure 6 displays the EQE measurements for the solar cells based on a PbPc donor layer deposited at $r_{dep} = 0.05 \, \text{Å/s}$ and $r_{dep} = 1 \, \text{Å/s}$. In these spectra, the photocurrent contribution from C$_{60}$ occurs at $\lambda = 400–550$ nm and from PbPc mainly at $\lambda = 600–1100$ nm.

When comparing the solar cells with the PbPc donor layer deposited at low rate (Figure 6a–c), the EQE spectra exhibit the same trend with increasing PbPc layer thickness. The highest photocurrent is measured for the solar cells with 20 nm thick PbPc films. For a 40 nm thick donor layer deposited directly on ITO (Figure 6a), the peak at $\lambda = 740$ nm becomes a dip in the EQE spectrum. When the donor layer thickness is further increased, the EQE decreases over the entire wavelength range. For PbPc grown on FDTS, a similar drop in EQE across all probed excitation wavelengths already occurs from a donor layer thickness of 40 nm onward. On CuI, the evolution of the spectral responsivity as a function of PbPc layer thickness differs in that the peak at $\lambda = 900$ nm is reduced first. Solar cells with the thickest donor layers display an overall drop of the EQE signal.

At increased r_{dep} (Figure 6d–f), the evolution of EQE with donor layer thickness is different for solar cells with untreated and FDTS-modified ITO anodes, but not significantly different for solar cells with a CuI layer inserted between ITO and PbPc. In the latter case, the EQE measurements are almost identical for both r_{dep} hinting toward a similar donor layer structure at both deposition conditions. On ITO substrates with and without FDTS, PbPc layers of 20 nm thickness exhibit a dominant peak in the EQE spectrum at $\lambda = 740$ nm. Upon PbPc thickness increase, the dominant peak in the EQE spectrum becomes a dip, whereas the peak at $\lambda = 900$ nm undergoes a relatively large increase. For the 60 nm thick donor layers, the EQE signal decreases over the complete wavelength range. When the donor layer is deposited at higher r_{dep} on top of ITO and FDTS, the optimum in the photocurrent is reached for thicker donor layers.

Table 1 summarizes the important device parameters measured under 1 sun AM1.5G illumination on the best performing solar cell for each anode modification. Performance parameters for all fabricated solar cells are assembled in Figure S7 available in the Supporting Information. For solar cells with ITO and FDTS-treated ITO anodes, the evolution of J_{SC} and fill factor (FF) with donor layer thickness is very similar. When the donor layer is deposited at low r_{dep}, J_{SC} peaks at lower PbPc film thickness as was already apparent from EQE measurements. The FF drops with increasing thickness, and this decrease is larger at higher r_{dep}. However, when a CuI
tempering layer is used on top of ITO, the growth rate of the donor layer does not affect solar cell performance. Without adapting deposition conditions, \(J_{SC} \) could be maximized to 10 mA/cm\(^2\). Compared to a solar cell based on a 30 nm PbPc layer deposited at \(r_{dep} = 1 \) Å/s directly onto ITO, this is an increase in photocurrent of more than 50%. In combination with a FF that varies around 60% for all donor layer thicknesses, the insertion of the CuI templating layer resulted in planar PbPc/C\(_{60}\) solar cells with a PCE of 2.9%.

4. DISCUSSION

Absorption measurements can be linked to PbPc thin film structure, as the triclinic phase is reported to have an absorption peak at \(\lambda = 900 \) nm, which is significantly red-shifted compared to the main absorption peak in the monocrinic or amorphous spectrum. However, for asymmetrical molecules such as Pcs, molecular orientation can have a significant impact on the absorption strength, which is larger when the transition dipole moment of the molecule (typically in the macrocycle) is aligned with the electric field of the incident light.\(^{28,70}\) For nonplanar Pcs, the situation is even more complex, as within one unit cell different molecular orientations are present, leading to anisotropic optical properties.\(^{71,72}\) By modifying the substrate surface, both crystal structure and molecular orientation are changed and significantly affect the optical properties of the thin film.\(^{73,74}\) Highly interacting surfaces, such as metals or ionic substrates, might induce epitaxial growth of the organic thin film\(^{75}\) and can even influence the structure of the adsorbed molecules.\(^{76,77}\)

Increasing the film thickness can result in mitigation of such interfacial effects and induce an evolution of structural and optical properties throughout the film.\(^{78}\)

In our study, in situ XRR and 2D GIXD measurements (cf. Figures 2 and 3) revealed important changes in the orientation of PbPc crystallites (and molecules) as a function of layer thickness, the templating layer and deposition rate. Furthermore, the 2D GIXD measurements (cf. Figure 3) and quantitative analysis thereof (cf. Figure S5) indicate a different volume fraction of crystalline material in the various PbPc films. Although amorphous domains cannot contribute to diffraction peaks, they influence the absorption spectrum at \(\lambda = 740 \) nm. Consequently, the different texture as well as the changing crystallinity of the various PbPc films hinders a quantitative analysis of the absorption measurements, prohibiting an accurate determination of the ratio of the different polymorphs in the films.

Phase identification by means of diffraction measurements is complicated for PbPc films by the similarity of the monoclinic and triclinic unit cell (see Table S2 in the Supporting Information). Moreover, it is very plausible that PbPc can arrange in other crystal structures besides the two polymorphs that are currently described in the literature. For example, Hoshi et al. suggested the growth of another NIR-active PbPc polymorph with an orthorhombic structure on top of KI.\(^{31,79}\)

Although the measurements performed in this study do not enable an unambiguous identification of the various diffraction peaks and therefore prohibit the quantification of the M/T ratio, the unique combination of spectroscopic and diffraction data on our PbPc films allows us to correlate the texture and crystallinity of the films to their optical and photoelectrical properties. In the following paragraphs, results from spectroscopic and diffraction measurements are discussed side by side in order to determine the structural evolution in PbPc films as a function of the templating layer. Finally, the correlation between the spectral response of planar HJ solar cells and the derived structure of the PbPc donor layers involved is elucidated.

4.1. FDTS.
In situ XRR measurements (cf. Figure 2b) indicate a structural evolution in the PbPc films, as the relative intensities of the diffraction peaks at \(q_T = 0.49 \) Å\(^{-1}\) and \(q_L = 0.53 \) Å\(^{-1}\) change with thickness. However, this observation does not prove a phase transition from M to T, as it could also correspond to a change in preferential orientation of the triclinic polymorph. In the 2D GIXD pattern of the PbPc films grown at \(r_{dep} = 0.05 \) Å/s (cf. Figure 3b,e), the convoluted peak at \(q = 0.53 \) Å\(^{-1}\) displays important changes in the molecular orientation with increasing layer thickness. From the GIXD data analysis (cf. Figure 4 a and b), it can be seen that this change in preferred orientation occurs when the film thickness is larger than 20 nm. It is plausible that from this thickness onward molecule-molecule interactions dominate the nucleation process instead of molecule-substrate interactions.

Referring back to XRR measurements, the intensity of the peak at \(q_T = 0.49 \) Å\(^{-1}\) does not change with thickness and the corresponding rocking curve (cf. Figure S4a in the Supporting Information) indicates that a part of these crystallites have a low mosaicity. The rocking curve around the Bragg peak at \(q_T = 0.53 \) Å\(^{-1}\) however shows the coexistence of an ordered and disordered fraction of the crystallites. In agreement with the GIXD measurements and a study from Kline et al., we explain this observation by the nucleation of crystallites with a large mosaicity on top of a highly oriented crystallite fraction close to the substrate interface.\(^{30}\) Taking this into account, it seems a reasonable assumption that the change in texture concerns the diffraction peak at \(q_T = 0.53 \) Å\(^{-1}\), which can be assigned to T (1 0 0) or T (1 −1 0). When changing the orientation of the T (1 0 0) or T (1 −1 0) plane with respect to the substrate by rotating the PbPc unit cell clockwise 58° about the c*-axis, the molecular orientation changes on average from significant edge-on (Pc plane perpendicular to the substrate surface) to almost face-on (Pc plane parallel to the surface). This is schematically illustrated for the T (1 −1 0) plane in Figure S6, available in the Supporting Information.

The structural evolution of the films as a function of thickness illustrates that the nucleation and growth stage is not only governed by thermodynamic processes but also by kinetic considerations. This is further evidenced by the structure of films grown at higher \(r_{dep} = 21.8 \) Å/s. Here, the hypothesized edge-on orientation induced by the substrate is quickly lost. Because of the increased deposition rate, admolecules have less time to arrange in a well-ordered structure. This is not only illustrated.
On the one hand, the difference in texture but also by the limited increase in doc at higher \(r_{\text{dep}} \) (compared to low \(r_{\text{dep}} \)).

When we correlate these findings with the optical absorption data while keeping in mind that molecular orientation plays an important role, the absorption spectrum of the 20 nm thick film deposited at \(r_{\text{dep}} = 0.05 \) Å/s should be quite different from that at \(r_{\text{dep}} = 1 \) Å/s. Indeed, for the latter film the absorption peak at \(\lambda = 740 \) nm is significantly higher, whereas the NIR absorption peak is lower. The calculated doc of the diffraction peaks at \(q = 0.53 \) Å\(^{-1}\) and \(q = 0.90 \) Å\(^{-1}\) is similar and relatively low for both films (cfr. Figure 5a), suggesting that the difference in absorption is mainly induced by the different texture. The low surface energy of FDTs is known to induce an edge-on arrangement of the molecules in order to minimize the substrate-molecule interaction, and this effect is independent of crystallinity or crystal phase.\(^{30}\) The film close to the substrate has a predominantly amorphous character, as the peak at \(\lambda = 740 \) nm is dominating the absorption spectrum. With increasing thickness, both absorption peaks increase due to a change in the number of molecules adopting a face-on orientation. However, the NIR peak increases much faster, thereby pointing to the enhanced triclinic character of thicker films. As this trend is combined with an increase in doc\(,\) the analyzed diffraction peaks at \(q = 0.53 \) Å\(^{-1}\) and \(q = 0.90 \) Å\(^{-1}\) must involve the triclinic phase. However, coexistence of monoclinic and triclinic crystallites in the films cannot be excluded. In the films deposited at 1 Å/s, the doc increases at a slower pace. This trend is correlated with a lower absorption peak at \(\lambda = 900 \) nm, again indicating that both diffraction peaks have important triclinic contributions.

By combining all obtained structural data, a schematic of the PbPc film structure as a function of thickness can be drafted and is depicted in Figure 7a. In the first 20 nm close to the substrate, mainly amorphous domains and well-oriented small T and perhaps M crystallites nucleate in which molecules exhibit an edge-on orientation. A larger crystallite density with a larger mean crystalline coherence length nucleates on top of this 20 nm thick well-ordered layer. This results in a less textured layer with on average more molecules adopting a face-on orientation.

4.2. MoO\(_3\)

The absorption spectra of PbPc films on MoO\(_3\) (cfr. Figure 1a) indicate a structural evolution with increasing layer thickness resembling the evolution in PbPc films deposited on FDTs-modified substrates. For films grown at \(r_{\text{dep}} = 0.05 \) Å/s, in situ XRR measurements (cfr. Figure 2) and rocking curves of PbPc films are similar for both substrate surfaces. Upon considering in-plane orientations however (cfr. Figure 3 and 4), there is an important difference: on MoO\(_3\) only the first few monolayers of PbPc molecules adopt an edge-on orientation. Beyond a layer thickness of 5–10 nm, the face-on orientation of the molecule is promoted. This translates into higher absorption maxima of PbPc films on MoO\(_3\) compared to on FDTs modified substrates. The higher NIR absorption peak can be attributed to (i) the enhanced face-on orientation of the molecules resulting in an increased absorption strength and (ii) the larger doc for both diffraction peaks at \(q = 0.53 \) Å\(^{-1}\) and \(q = 0.90 \) Å\(^{-1}\) compared to the FDTs case.

A schematic of the PbPc film structure is depicted in Figure 7b. Close to the substrate, mainly amorphous domains and some well-oriented small T and perhaps M crystallites nucleate in which molecules exhibit a predominant edge-on orientation. Beyond a film thickness of 5 to 10 nm, more and larger T crystallites nucleate in which molecules predominantly exhibit a face-on orientation.

For layers deposited at \(r_{\text{dep}} = 0.05 \) Å/s, the evolution of the absorption spectrum with PbPc layer thickness is almost identical on FDTs and MoO\(_3\) (cfr. Figure 1) The absolute peak heights are slightly higher on MoO\(_3\), which can be explained by the larger amount of face-on-oriented PbPc molecules in these films compared to PbPc layers grown on FDTs. Since the molecular orientation almost does not change throughout the film, the increasing NIR absorption peak can directly be correlated to the fraction of triclinic polymorph present. At \(r_{\text{dep}} = 1 \) Å/s, the NIR-peak as well as the calculated doc is lower than for films deposited at \(r_{\text{dep}} = 0.05 \) Å/s. Similar to PbPc films grown on FDTs surfaces, the crystallinity and triclinic character of the films decreases upon increasing deposition rate.

4.3. CuI

When studying optical absorption (cfr. Figure 1c), in situ XRR (cfr. Figure 2c) and GIXD measurements (cfr. Figure 3c, f) of PbPc layers deposited on CuI, a limited structural evolution with PbPc thickness is discernible in contrast to the PbPc layers deposited on MoO\(_3\) and FDTs. The PbPc films on CuI display a strong texture and high crystallinity even for the thinnest layers, thereby proving the templating effect of CuI on PbPc.\(^{24}\) The absorption spectra of the films grown at \(r_{\text{dep}} = 0.05 \) Å/s are consistent with the absorption of the triclinic polymorph. In situ XRR measurements show only one diffraction peak at \(q_z = 0.90 \) Å\(^{-1}\), thereby strongly hinting that this peak originates from a NIR-active phase, in agreement with a publication from Hoshi et al.\(^{41}\)

In 2D GIXD patterns another diffraction peak, namely at \(q = 0.53 \) Å\(^{-1}\), can be observed. It exhibits an exclusively in-plane orientation, thus explaining the absence of this diffraction peak in the XRR measurements. As previously argued for PbPc films grown on FDTs, the in-plane orientation of the diffraction peak at \(q = 0.53 \) Å\(^{-1}\) corresponds to an increased face-on orientation of PbPc molecules. This implies that for PbPc films grown on CuI, the preferred face-on orientation is preserved throughout the entire film. This observation is in agreement with the distinct face-on orientation of CuPc,\(^{25}\) ZnPc,\(^{6}\) and TiOPc\(^{26}\) when grown on top of CuI.

As a predominantly flat-lying orientation of Pc molecules is beneficial for the absorbance, the highest absorption strengths are obtained for PbPc films on CuI. At \(r_{\text{dep}} = 1 \) Å/s, the absorption peak at \(\lambda = 740 \) nm is slightly higher compared to the spectra at low \(r_{\text{dep}}\). This can either correspond to the promotion of the M phase at increased \(r_{\text{dep}}\) or to the decreased overall crystallinity in the film. The doc of the diffraction peaks at \(q = 0.53 \) Å\(^{-1}\) and \(q = 0.90 \) Å\(^{-1}\) are similar for both deposition conditions, although it should be noted that for the peak at \(q = 0.90 \) Å\(^{-1}\) the intensity evolution of the diffraction spot at \(q_{\text{to}} \approx 0 \) is not considered, which could result in information loss.
Figure 7c, a schematic illustrates the PbPc thin film structure on a CuI templating layer.

4.4. Solar Cell Performance. Finally, we correlate the structural evolution of the PbPc layers as derived from optical absorption and XRD data to the performance of heterojunction solar cells with the studied PbPc films as donors layers. The spectral response in the solar cells gives information about the exciton harvesting region, which concerns only that part of the PbPc film that extends approximately one exciton diffusion length (L_D) from the donor–acceptor (D–A) interface, whereas with absorption spectroscopy and GIXD the bulk of the PbPc layers is probed. The evolution of the EQE spectra is quite similar for solar cells with FDTS-treated and unmodified ITO anodes. For PbPc donor layers deposited on FDTS and ITO at $r_{dep} = 1 \text{ Å/s}$, the EQE spectra reflect the asymmetric layer structure that was already apparent from absorption and XRD data, indicating that the upper part of the layer comprises an increased amount of NIR-active polymorph whereas the film close to the substrate is a mixture of amorphous and small T and perhaps also M domains. This confirms our previous observations on the effect of deposition rate and substrate temperature on the structural evolution of PbPc layers on ITO.\(^{20}\) In all cases, the contribution of photocurrent by temperature on the structural evolution of PbPc layers on ITO and FDTS. This could point to an increased (rms) roughness of PbPc around 33% at $\lambda = 900$ nm with peak values of over 35% at $\lambda = 640$ to 950 nm with a maximized photocurrent of 10 mA/cm\(^2\) and high FF can be related to the structural inhomogeneity in thicker layers and perhaps also M domains. This connotes the asymmetric layer structure that was already apparent from absorption and XRD data, indicating that the upper part of the layer comprises an increased amount of NIR-active polymorph whereas the film close to the substrate is a mixture of amorphous and small T and perhaps also M domains. This confirms our previous observations on the effect of deposition rate and substrate temperature on the structural evolution of PbPc layers on ITO and FDTS.

Solar cells with an untreated or FDTS-modified ITO anode have a maximized performance when the donor layer is deposited at low r_{dep} which is a condition that promotes the growth of the triclinic polymorph even in the region close to the substrate. The concomitant broadening of the absorption spectrum results in higher photocurrents obtained for thinner films, compared to donor layers deposited at $r_{dep} = 1 \text{ Å/s}$. The FF is higher for solar cells with thin PbPc layers, which might be related to the structural inhomogeneity in thicker layers complicating charge transport, and therefore leads to solar cells with a higher PCE. On ITO, the maximum PCE is 2.2%, whereas on FDTS, 2.4% was obtained for donor layers of 30 nm thickness. The corresponding EQE values of these solar cells are over 25% from $\lambda = 610$–940 nm, with peak values around 33% at $\lambda = 900$ nm.

The spectral response for solar cells based on a donor layer grown on CuI is independent of its deposition rate. The CuI interlayer templates the overlaying PbPc layer by inducing a strong texture and high crystallinity. The absorption spectra are indicative of the absence of structural evolution, irrespective of r_{dep}. Notably, a low r_{dep} promotes the transition from a partially crystalline layer close to the substrate to a more crystalline film with a higher proportion of NIR-active phase. Inserting a CuI templating layer between the anode and the PbPc donor layer induced the growth of the NIR-phase from the early stages of film growth and this for both r_{dep}. Despite the increased r_{dep} a J_{SC} of 10 mA/cm\(^2\) was reached without compromising FF and V_{OC} and resulted in an optimized solar cell with a PCE of 2.9%.

5. CONCLUSION

By studying the texture and crystallinity of PbPc layers grown onto a reference oxide layer and two different templating layers, FDTS and CuI, we aimed to gain insight into the structure–property relationship of nonplanar Pcs in order to achieve well-performing NIR-sensitive solar cells. Despite the inability to differentiate between the possible polymorphs present in the films with XRD measurements, the latter allowed us to correlate the texture and crystallinity of the various PbPc layers with their optical properties, as determined by optical absorption measurements and spectral response in bilayer PbPc/C\(_60\) heterojunction solar cells.

When deposited at low r_{dep} onto FDTS, PbPc molecules arrange in an edge-on configuration up to a film thickness of ~20 nm. From this point onward, the face-on orientation of PbPc molecules is promoted. At higher r_{dep} this texturing induced by the low surface energy of FDTS is suppressed. On the MoO\(_3\) substrate, molecules adopt a predominantly face-on orientation from the start. The evolution of the NIR absorption peak at $\lambda = 900$ nm is very similar on both substrates, and seems to be correlated to an increase in the depth of the absorption peak at $q = 0.53$ Å\(^{-1}\) and $q = 0.90$ Å\(^{-1}\). The occurrence of a phase transition with increasing film thickness could not be proven by our measurements. The PbPc films deposited onto a CuI templating layer exhibit a strong texture and high crystallinity. The absorption spectra are indicative of an almost exclusively triclinic character of the PbPc films and the absence of structural evolution, irrespective of r_{dep}. Therefore, we can deduce that the absorption peak at $q = 0.90$ Å\(^{-1}\) must correspond to a NIR-active polymorph, which might have another crystal structure than the triclinic.

In solar cells based on a PbPc donor layer deposited directly on ITO or on ITO modified with FDTS, the maximum in J_{SC} is higher and shifted to thinner donor layers when deposited at low r_{dep}. Notably, a low r_{dep} promotes the transition from a partially crystalline layer close to the substrate to a more crystalline film with a higher proportion of NIR-active phase. Inserting a CuI templating layer between the anode and the PbPc donor layer induced the growth of the NIR-phase from the early stages of film growth and this for both r_{dep}. Despite the increased r_{dep} a J_{SC} of 10 mA/cm\(^2\) was reached without compromising FF and V_{OC} and resulted in an optimized solar cell with a PCE of 2.9%.

ASSOCIATED CONTENT

Supporting Information

The EQE spectra of solar cells with an untreated ITO anode and an anode with MoO\(_3\) buffer layer are compared in Figure S1. Figure S2 provides a schematic on the GIXD data treatment explained in the Experimental Section 2.2. Figure S3 plots in situ XRR data of 60 nm thick PbPc films measured after a
Studies conducted at the Stanford Synchrotron Radiation Lightsource (SSRL) were supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC03-76SF00515. The authors thank Mr. Stefan Mannsfeld for providing the WxDiff (FWO) software package for GIXD data analysis.

AUTHOR INFORMATION

Corresponding Author

E-mail: david.cheyns@imec.be. Phone: +32 16 281097.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

K.V. acknowledges the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) for financial support. F.S. acknowledges financial support from the DFG. A portion of this research was performed at the Stanford Synchrotron Radiation Lightsource, on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. K.V. acknowledges the Research Foundation Flanders (FWO) for a grant for a short stay abroad. The authors thank Stefan Mannsfeld for providing the WxDiff software package for GIXD data analysis.

REFERENCES

(3) Service, R. F. Science 2011, 332, 293.