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Machine learning methods are used for an automated classification of

experimental two-time X-ray photon correlation maps from an arrested

liquid–liquid phase separation of a protein solution. The correlation maps are

matched with correlation maps generated with Cahn–Hilliard-type simulations

of liquid–liquid phase separations according to two simulation parameters and

in the last step interpreted in the framework of the simulation. The matching

routine employs an auto-encoder network and a differential evolution based

algorithm. The method presented here is a first step towards handling large

amounts of dynamic data measured at high-brilliance synchrotron and X-ray

free-electron laser sources, facilitating fast comparison with phase field models

of phase separation.

1. Introduction

X-ray photon correlation spectroscopy (XPCS) is an experi-

mental method capable of accessing the dynamics of protein

systems over length scales that range from the atomic to

micrometre scale, and timescales from microseconds to hours

(X. Lu et al., 2008; Zhang et al., 2011, 2017; Madsen et al., 2016;

Möller et al., 2016; Zinn et al., 2018; Perakis & Gutt, 2020; Ruta

et al., 2012; Begam et al., 2021). In XPCS, time series of

coherent X-ray speckle patterns are measured, giving access to

dynamical properties via time-resolved correlation maps – the

two-time correlation function (TTC) (Brown et al., 1997;

Bikondoa, 2017). With fast megapixel 2D X-ray detectors,

XPCS experiments can produce large quantities of data in a

short time interval with up to thousands of TTCs per hour of

beamtime. Given the typical duration of a synchrotron

experiment of a few days, the resulting quantities of TTCs are

difficult to handle. Therefore, there is a generic need for

methods facilitating fast and reliable analysis including clas-

sification of the data. This is especially important with regards

to steering, selecting and controlling the experimental para-

meters during the beamtime. However, in the aftermath of the

experiment, quick classification methods are important for

benchmarking models which, for example, simulate a gel

transition or the solidification process of a protein solution

upon liquid–liquid phase separation (LLPS).

Phase separation is a ubiquitous process in nature, with

applications and consequences for a wide range of scientific
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disciplines such as solid-state physics, material sciences and

biology. Phase separation in biological systems attracted

considerable attention with the discovery that LLPS in protein

solutions (Ishimoto & Tanaka, 1977; Schurtenberger et al.,

1989; Broide et al., 1991; Berland et al., 1992; Muschol &

Rosenberger, 1997) constitutes a possible pathway for orga-

nizing membraneless structures in living cells (Brangwynne et

al., 2009; Shin & Brangwynne, 2017; Berry et al., 2018).

Detailed investigations were carried out with respect to the

biological functions of these protein condensates, encom-

passing biochemical reaction rates, buffering protein concen-

trations, and sensing or signaling (Shin & Brangwynne, 2017).

A variety of diseases which result from a loss or change of

function of these condensates are accompanied by phase

transitions (Malinovska et al., 2013; Weber & Brangwynne,

2012).

Phase separation is initiated by quenching a system into the

metastable region of the phase diagram, launching a process of

out-of-equilibrium self-organization (Dong & Granick, 2021).

The state of the condensates depends on the dynamic and

kinetic processes during their formation, with dynamical

asymmetries between the two phases on a hierarchy of length

and timescales and invoking viscoelastic properties of the

resulting network structures (Berry et al., 2018; Zaccarelli,

2007; Tanaka, 2000). In the biological context, an under-

standing of the component timescales is important as they are

expected to meet the intrinsic timescales of biochemical

processes in the condensates.

Upon phase separation, the dynamics slow down on mol-

ecular length scales due to local concentration changes. This

microscopic deacceleration can eventually lead to the arrest of

phase separation on larger length scales complemented by the

formation of bicontinuous gel network structures – as

observed in colloidal and protein systems (Manley et al., 2005;

Conrad et al., 2010; P. J. Lu et al., 2008). Employing time-

resolved scattering experiments, the kinetics during arrested

phase separations have been observed frequently as a slow-

down of the growth of the static structure factor S(Q) in both

Q position and peak height for low-temperature quenches

(Gibaud & Schurtenberger, 2009; Gibaud et al., 2011; Cardi-

naux et al., 2007; Da Vela et al., 2016, 2017, 2020; Bucciarelli et

al., 2015). In contrast, the dynamics of protein solutions

evolving into an arrested phase transition are still poorly

understood as studies require the concurrent monitoring of an

extraordinarily broad range of length and timescales. Like-

wise, experimental validation of models of the dynamics of

critical phenomena during LLPS like the Cahn–Hilliard

equation (CHE) (Cahn, 1965) and other correlated models is

still needed, particularly with respect to glass–gel transitions

displaying considerable dynamical asymmetries between the

dilute and concentrated phase (Berry et al., 2018; Girelli et al.,

2021; Ragulskaya et al., 2021).

Machine learning (ML) has already proven to be useful in

the analysis of various structural X-ray data from small-angle

X-ray scattering (Archibald et al., 2020; Chen & Pollack, 2020;

Franke et al., 2018; Wang et al., 2017) and wide-angle X-ray

scattering (Chen & Pollack, 2020; Wang et al., 2017), diffrac-

tion (Berntson et al., 2003; Oviedo et al., 2019; Vecsei et al.,

2019), and reflectometry (Greco et al., 2019) experiments. The

algorithms provide real-time feedback (Wang et al., 2017; Ke et

al., 2018; Greco et al., 2019) during the experiment or identify

and remove bad images to reduce the stored data volume

(Wang et al., 2017; Ke et al., 2018). In many cases the ML

algorithms have been trained with synthetic structural data

generated from existing databases on proteins (Franke et al.,

2018; Archibald et al., 2020), RNA (Chen & Pollack, 2020) or

crystal structures (Oviedo et al., 2019; Vecsei et al., 2019),

which enables them to classify the results obtained in

experiments without an expert spending time on labeling large

quantities of data for training (Berntson et al., 2003). Recently,

ML algorithms have also been trained to reduce the noise of

experimental TTCs (Konstantinova et al., 2021). The CHE has

also been used in different ML tasks (Wight & Zhao, 2021;

Pokuri et al., 2019; Zhang & Garikipati, 2020; Farimani et al.,

2018).

The focus of X-ray scattering applications of ML has been

mainly on static properties up to now. We note, however, that

many processes in nature, such as the LLPS of protein solu-

tions, display dynamic phenomena which require the devel-

opment of schemes and methods capable of classifying the

corresponding dynamic X-ray signatures of the processes. ML-

based classification of process data evolving in time is

computationally very expensive due to the large quantity of

training data required. Employing a minimum 2D model

which allows a network with finite computer resources to be

trained, we report on a first step towards this goal and present

a neural network method for analysis and classification of

dynamical X-ray information during LLPS.

The CHE in a simplified 2D version still captures the

essence of the physics involved (Sciortino et al., 1993; Sappelt

& Jäckle, 1997; Lamorgese & Mauri, 2009), while allowing us

to generate a large number of simulations on the timescale of

hours, and couple it with a concentration-induced gelation as

proposed by Sciortino et al. (1993) and Sappelt & Jäckle

(1997). We aim for an automated assignment of the measured

TTCs in the work of Girelli et al. (2021) with TTCs from

simulations that differ in the parameters �, i.e. proportional to

reduced quench depth, and �gel, i.e. the order parameter at

which the mobility drops by a factor of 1/2. We train an auto-

encoder neural network with TTC simulation data and employ

a differential evolution based algorithm for matching encoded

experimental TTCs with simulations. Our work constitutes a

first step to making use of the static, kinetic and dynamical

information contained in XPCS data for ML-based analysis of

processes in phase separation.

2. Analysis and results

2.1. Simulation of the Cahn–Hilliard equation

We model the dynamic processes during the spinodal

decomposition with the help of the CHE (Sciortino et al., 1993;

Gunton et al., 1983),
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@�ðr; tÞ

@t
¼ r �Mr �3ðr; tÞ � ��ðr; tÞ � r2�ðr; tÞ

� �
: ð1Þ

Here �ðr; tÞ is the order parameter at a given time t and

position r which is related to the local protein concentration �
by � ¼ ð�þ 1Þ=2 (Sciortino et al., 1993). The symmetry

breaking is introduced by the parameter � which can be

identified as being proportional to the reduced quench depth

� / ðTc � TÞ=Tc, where Tc is the upper critical temperature of

the system. If � fulfills the condition �> 3�2 (e.g. Gunton et al.,

1983), the system is in an unstable state below the spinodal

curve and separates into regions with higher and lower local

protein concentrations [Figs. 1(a) and 1(b)].

The phase separation by spinodal decomposition is coupled

to a gelation process by introducing a concentration-

dependent mobility parameter M in equation (1) (Sappelt &

Jäckle, 1997) which reduces the mobility of the highly

concentrated phase via

Mð�Þ ¼
1

1þ exp½� ð���gelÞ�
: ð2Þ

In this model the mobility decreases from values M ¼ 1 to

M ¼ 1
2 when the order parameter � exceeds the value of �gel

[Fig. 1(c)]. The parameter � is fixed to � ¼ 10; providing a

steep decrease of the mobility as required for an arrested

phase separation (Sappelt & Jäckle, 1997).

We perform the simulation on a 2D grid of size 256� 256.

The grid uses periodic boundary conditions and is initialized

with a mean order parameter of �0 ¼ 0:4 such that we observe

droplets with a low concentration instead of an interconnected

network, which would be the case for �0 ¼ 0. The fluctuations

necessary for LLPS are added as random noise with a

maximum amplitude of 0:5 ð1� �Þ. Ten thousand time steps

are calculated for each simulation with a fixed time step of

�t ¼ 0:03. The temporal evolution of the order parameter for

different parameter configurations is depicted in Figs. 1(a) and

1(b). Apart from the initial noise configuration, the simula-

tions differ only in the values of the parameters � and �gel.

Both were systematically varied within the intervals

� 2 ½0:88; 0:99� and �gel 2 ½0:55; 1�: ð3Þ

These intervals were chosen with �gel >�0, thus avoiding an

arrest of the phase separation before the formation of

droplets. We restrict our analysis to large values of � as for

small values of � the concentration of the dense phase is too

low [gray line in Fig 1(a)] to introduce visible changes in the

simulations for different values of �gel.

A single simulation run yields a time series of the protein

density’s real-space configuration �ðr; tÞ [Fig. 2(a)] which is

converted to an X-ray speckle pattern by means of Fourier

transform, yielding a 256� 256 image. The temporal evolution

of the square of the azimuthal integration of these Fourier

images j�ðRQ; tÞj2 is shown in Fig. 2(b) and is equivalent to the

X-ray intensity. We introduce RQ as the distance from the

center of the Fourier image in units of pixels. In Fig. 2(b) the

occurrence of a peak indicates the phase separation.

The dynamics on a certain length scale in Fourier space can

be traced by correlating pixelwise the corresponding inten-

sities with a TTC,
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Figure 1
(a), (b) Order parameter averaged over all lattice sites having an order parameter higher/lower than the initial order parameter (� ¼ 0:4) as a function
of time. In (a), �gel was fixed to �gel ¼ 1 and � was varied. For � ¼ 0:7, the phase separation is much slower and the concentration of the dense phase is
lower at the end of the chosen time window. This makes it hard to see the effects of high �gel, which is why � is restricted to ½0:88; 0:99� for the generation
of the simulated training data. In (b), � was fixed to � ¼ 0:9 and �gel was varied. The phase separation starts later for larger values of � due to the smaller
initial fluctuations. For constant �, the phase separations show similar behavior at early times but the droplet formation is faster for larger values of �gel.
(c) Mobility as a function of the order parameter and the gelation point �gel marking the order parameter at which the mobility drops to 0.5.

Figure 2
(a) Evolution of the real-space configuration of the sample on the
256� 256 grid with simulation parameters �gel ¼ 0:6 and � ¼ 0:955,
showing the creation and coarsening of droplets with a low concentration.
(b) Corresponding temporal evolution of the azimuthally integrated
scattering intensity as a function of the absolute value of the distance RQ

to the origin of the Fourier map. The peak in the intensity profile is
shifting towards smaller RQ with time, indicating the coarsening of the
droplets.



cð2Þðt1; t2Þ ¼
½Iðt1Þ � hIðt1Þi�½Iðt2Þ � hIðt2Þi�
� �

½hI2ðt1Þi � hIðt1Þi
2
�½hI2ðt2Þi � hIðt2Þi

2
�

� �1=2
; ð4Þ

with h�i being the average over pixels within a distance

½RQ � dRQ;RQ þ dRQ� to the center.

The azimuthally integrated intensity profile [Fig. 2(b)]

shows the growth dynamics of the droplets by a shift of the

peak position towards smaller values of RQ. These dynamics

can be observed in the TTC by choosing a value of RQ such

that it is located at the falling slopes of the peaks in Fig. 2(b),

which is RQ 2 ½26; 45�. For our training data, we chose RQ to

be an integer in this range, while dRQ increases linearly from

0.7 at RQ ¼ 26 to 3 at RQ ¼ 45; as done in experimental

analyses as well to compensate for lower photon counts at

higher Q values.

2.2. Experimental data

The XPCS experiments (Fig. 3) were conducted at

the Coherence Applications beamline P10 at PETRA

III, DESY, employing an X-ray beam of photon energy

8.54 keV, size 100 � 100 mm and maximum photon density

107 photons s�1 mm�2 [for further experimental details, see

Girelli et al. (2021)]. We measured time series of coherent

diffraction patterns that were collected with an EIGER

4 Mpixel detector covering a Q range from 3 to 50 mm�1. The

samples consisted of immunoglobulin G (IgG) with poly-

ethylene glycol (PEG) and NaCl, and were quenched from

37�C to six different quench temperatures below the binodal

line. Further details about the sample preparation can be

found in the work of Da Vela et al. (2017).

In the experiment, 4000 frames were recorded for every

quench temperature. The sample was illuminated for 0.02 s

followed by 0.1 s where the shutter was closed such that the

measurement covers a time range of 4000 � 0.12 s = 480 s. The

experimental TTCs were calculated similarly to the TTCs

from the simulation using equation (4). Regarding the

temporal shift of the integrated intensity profiles as a function

of Q, the falling edge can be restricted to Q 2 [7.5, 10] mm�1.

The contrast of the experimental TTCs is lower than that of

the simulated ones where we assume completely coherent

scattering and detection. This issue is addressed by normal-

izing the experimental TTCs to the speckle visibility which is

determined by the values of the pixels adjacent to the diagonal

of the experimental TTC, as the values directly on the diag-

onal are distorted by shot noise (Inoue et al., 2012).

2.3. Data preparation and auto-encoding

For the training data, 12 000 pairs of the parameters � and

�gel were sampled from a uniform distribution within the

intervals. To increase the simulation robustness against the

random initial conditions, TTCs from five simulations with

different initial noise were averaged. Thus, 5 � 12 000 =

60 000 simulations were performed in total, which took 7 h on

two NVIDIA 2080 Ti graphic cards. TTCs were calculated

for 20 RQ ranges, so that the training data consisted of

20 � 12 000 = 240 000 TTCs.

All simulated TTCs display a broad, slow part in the

beginning (Fig. 4) which is absent in the experimental data.

This part is associated with the still homogeneous phase at

early times before the onset of density differences [Fig. 2(a),

t = 2000]. Approaching smaller values of RQ this slow part

becomes even more pronounced.

These broad parts are eliminated by cropping the TTCs.

The maximum of the intensity in the associated Q rings is well

defined for both simulated and experimental TTCs and is

chosen to be the time where the TTCs are cropped. By doing

this, the early part of the phase separation is removed from the

TTC, such that only the coarsening stages of simulated and

experimental TTCs are compared. The cutting procedure is

illustrated in Fig. 4 for three simulated TTCs. For different

models, this preprocessing via cropping needs to be adapted to

remove, for example, well known deficiencies from simulated

TTCs or make sure that the timescales of simulation and

experiment are comparable. We derive the latter from the

facts that the intensity curves show similar behavior within the

coarsening stage for both experimental and simulated data

and the TTCs show the same overall features in the whole
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Figure 3
Schematic of the experimental setup. The coherent X-ray beam is
scattered from the protein solution during the LLPS yielding a time series
of X-ray speckle patterns. A constant Q ring is selected in the speckle
patterns and the intensities are correlated pixel by pixel for different
times.

Figure 4
The simulated TTCs show a broad feature at early times (lower-left
corner of the TTCs). In the second row, the mean intensity of the
respective Q range is shown as a function of time. The maximum of this
intensity curve defines the point where the TTCs are cropped.



measurement time (Girelli et al., 2021). The cropped TTCs are

finally scaled down to a 64� 64 resolution.

Instead of matching raw TTCs between the experiment and

the simulations, we compare their encoded representations via

an auto-encoder (Rumelhart et al., 1986). The auto-encoder

network (Starostin, 2022) was trained with the simulated

TTCs, encoding them in 32-dimensional vectors Z. For the

encoder, the first three layers of the pretrained ResNet-18

model (He et al., 2016) were used as a feature extractor,

followed by adaptive average pooling with an output size of

3� 3 and a fully connected network. The decoder architecture

follows the work of Hou et al. (2017).

The performance of the auto-encoder network on simulated

and experimental data is shown in Fig. 5, from which one can

see that the network is capable of reducing the experimental

TTCs to the main dynamic components. Thus, the encoded

representations allow comparison of TTCs in a more reliable

and faster way. If a series of TTCs from the same simulation

but at different values of RQ is created, the entries of the Z

vector change continuously (Fig. 6) which enabled us to

interpolate TTCs for arbitrary values of RQ in between the

selected values.

2.4. Results

Our goal is to develop tools for a fast classification of

experimental TTCs in the context of different models. We

approach this task via matching encoded TTCs from

measurements at different quench temperatures with encoded

TTCs from simulations of our simplified model. During this

matching process, we find the quench temperature depen-

dence of the two simulation parameters and the values of the

three additional calibration parameters tlow; tup; kr, where tlow

and tup are the times at which the experimental TTCs are

cropped such that they match the timescale of the simulation.

kr denotes the factor for converting the Q range in units of

pixels, which were used in the simulation, to units of inverse

micrometre as they were used in the experiment via

RQðpixelsÞ � kr ¼ Q ðmm�1Þ: ð5Þ

A differential evolution (Price, 1996) based algorithm was

employed for this matching process. For each of the six

experimental measurements, TTCs were calculated at five

different Q values,

Q ¼ 7:02; 7:35; 7:66; 7:96; 8:2 mm�1; ð6Þ

such that we obtain a set of 30 experimental TTCs. The

differential evolution algorithm optimizes the mean dot

product D between the normalized encoded representations

of 30 experimental TTCs and 30 simulated TTCs from the

training data set with respect to �, �gel, kr, tup and tlow:

D ¼
1

30

X5

q¼1

X6

T¼1

Zq
sim½�ðTÞ;�gelðTÞ; kr� � Z

T;q
exp ðtup; tlowÞ: ð7Þ

The choice of boundaries for the calibration parameters was

based on the assumption that the duration of the experiment is

longer than that of the simulation, and that the chosen Q

range [7.02; 8.2] mm�1 lies within the used RQ range for the

simulations. Knowing that � is proportional to ðTc � TÞ=Tc, we

apply additional boundaries to consider only those solutions

where the average value of � is decreasing as a function of

experimental quench temperature.

During the fitting procedure, the experimental TTCs were

cropped and encoded for each generated combination of the

parameters. A caching technique was used to accelerate these

calculations. The encoded vectors of the simulated TTCs were

taken from the training data and interpolated on the basis of

the generated calibration coefficient kr. After 1500 iterations

the result of the fit converged to D ’ 0:72.

Fig. 7(a) shows the averaged outcomes for the simulation

parameters �gel and �. The rise in �gel for shallower quenches

indicates that the gelation is occurring at higher concentra-

tions at these temperatures. The (�gel; �) pairs were integrated

into a phase diagram [Fig. 7(b)] which displays the spinodal

and binodal lines as determined from the Landau free energy

[equation (1)]. The predictions of the neural network enable

us to estimate the corresponding gel line [line in the lower-
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Figure 5
Performance of the auto-encoder on simulated and experimental TTCs.
The encoder network encodes the TTCs into a 32-dimensional vector
from which the decoder network restores the TTC. On the experimental
data, this procedure reduces the experimental TTC to the main dynamic
components, enabling a comparison with simulated TTCs.

Figure 6
Example of encoded vector components’ Zi dependence on RQ for a
simulation with � ¼ 0:88 and �gel ¼ 0:7. The error bars result from
averaging over ten simulations with different initial noise.



right part of Fig. 7(b) as a guide to the eye]. This line bends

towards the spinodal line, resulting in lower concentrations of

the dense phase for deeper quenches. Such a behavior of the

gel line in the coexistence region has also been observed for

the LLPS of BSA-YCl3 (Da Vela et al., 2020), lysozyme

(Cardinaux et al., 2007) and �-globulin (Da Vela et al., 2017).

Averaging over the 30 outcomes for the calibration para-

meters yields

kr ¼ ð0:185� 0:002Þ mm�1 pixel�1; ð8Þ

tlow ¼ ð5:02� 1:72Þ s; ð9Þ

tup ¼ ð353:3� 5:7Þ s: ð10Þ

A further validation of these results with respect to � and �gel

for the experimental TTCs is difficult as neither parameter is

directly accessible in the experiment.

3. Discussion and conclusion

In conclusion, we successfully trained an auto-encoder neural

network with TTC data originating from Cahn–Hilliard

simulations. This auto-encoder was used to extract the main

dynamic components out of TTCs originating from XPCS

experiments of LLPS in a model protein solution of IgG. We

used a differential evolution based algorithm for matching

encoded TTCs from the experiment and the simulation and

determine thereby the parameters necessary for connecting

length and timescales of simulation to experiment. The

simulation parameters of the classified experimental TTCs

were used to construct a phase diagram with the experimental

data indicating the position of a gel line.

The training of neural networks based on dynamical simu-

lation data is challenging. The Cahn–Hilliard model employed

here, including the gelation, is rather simplistic and uses two

labeling parameters only. However, we emphasize the possi-

bility of extending this methodology to more complicated

models capable of making strong predictions and eventually

also benchmarking of theoretical models based on very large

XPCS data sets, possibly by including the kinetic information

in the model as well. This is a first step

towards handling large amounts of

XPCS data on short timescales and will

be of general interest not only for

protein dynamics but for material

science aspects of spinodal decomposi-

tion.
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Zhang, F. & Schreiber, F. (2016). Soft Matter, 12, 9334–9341.
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Figure 7
(a) Fitted parameters � and �gel as a function of quench temperature. (b) Phase diagram derived
from the free energy density used in the simulation displaying the spinodal and binodal line. The
points represent the predictions of the neural networks for the experimental TTCs and mark the
region of the gelation (guide to the eye) in the framework of the simulation.
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