
Synchrotron radiation newS, Vol. 35, No. 4, 2022 21

Feature article

End-to-End Deep Learning Pipeline for Real-Time
Processing of Surface Scattering Data at Synchrotron
Facilities

Vladimir StaroStin, linuS Pithan, aleSSandro Greco, Valentin munteanu, alexander
Gerlach, alexander hinderhofer, and frank Schreiber
Institute of Applied Physics, University of Tübingen, Tübingen, Germany

Introduction
Data analysis is undoubtedly becoming a major bottleneck in ex-

perimental science [1, 2]. Therefore, large-scale research facilities such

as synchrotrons provide powerful computing infrastructure along with

their experimental instruments [3]. Due to the ever-increasing size and

acquisition rates of modern area detectors, for many synchrotron users,

transferring terabytes of scattering data to the home institutes has be-

come a challenge in itself, not to mention analyzing those data. Due to

these enormous data volumes and the desire to make data-driven deci-

sions during the experiment, online data processing and analysis have

become key ingredients for many experiments. While computer clus-

ters at synchrotrons advance rapidly and provide users with access to

a wide range of computing resources [4], real-time data analysis based

on user-developed software usable at different beamlines and facilities

remains a challenge.

Surface scattering measurements are no exception to this trend.

The high demand for studying thin films for various applications

leads to huge amounts of measured data that require smart solutions

for automated analysis. Recently, several deep learning approaches

have been presented for accelerating the analysis of surface scatter-

ing data in specular [5, 6] and off-specular [7] geometries. In this

way, the specular reflectometry data can be processed via an open-

source machine learning-based software [8]. Here, we focus on two-

dimensional off-specular data obtained by grazing-incidence X-ray

diffraction (GIXD) measurements; however, the concept of a user-

driven and facility-independent end-to-end pipeline is not limited to

this geometry.

GIXD is an indispensable technique for studying crystalline struc-

tures on surfaces [9] and it allows, inter alia, real-time tracking of

crystallization processes, which is crucial for a wide array of applica-

tions. There is a high demand for automated solutions for fast GIXD

data processing due to large acquisition rates and time-consuming data

analysis. For instance, one typically obtains around 100,000 diffrac-

tion images (≈ 2 terabytes) per beam day of real-time measurements,

and these numbers are expected to increase further due to continuously

improving experimental techniques and scientific demands. The fast

analysis of GIXD data requires computationally expensive preprocess-

ing of images as well as GPU-accelerated deep learning algorithms for

peak identification, as described in Ref. [7]. To enable the real-time use

of this pipeline across different synchrotron facilities, the correspond-

ing software should be easy to integrate into the IT infrastructure of

different facilities [10, 11]. Usually, such an integration requires the

involvement of computing staff at the facility with deep background

knowledge of the respective IT infrastructure. In turn, this may lead

to highly optimized software solutions for one specific instrument or

facility where the portability of the entire data handling pipeline is not

of key interest. For certain non-routine experiments or experiments of

IT-affiliate user groups, there is the evident need for data handling pipe-

lines that are not bound to individual facilities or instruments and offer

a high degree of flexibility to be deployed easily elsewhere. In this con-

text, the best approach seems to be a facility-independent software that

allows optional, facility-specific integration for further optimization.

Such an approach additionally promotes and highlights the importance

of the standardization of data handling, processing, and storage among

the different facilities, user groups, and scientific communities.

In this work, we discuss challenges and possible approaches for

building a GIXD data processing pipeline. We demonstrate the imple-

mentation of such a software framework using gixi (Grazing Incidence

X-ray diffraction Intelligent pipeline), an open-source package based

on the deep learning approach introduced in Ref. [7] that provides an

end-to-end solution for automated GIXD analysis, including image

processing, detection of the diffraction peaks, peak intensity extrac-

tion, and crystal structure identification with the focus on powder dif-

fraction. Our user-designed implementation allows a straightforward

integration into any cluster infrastructure based on the commonly used

Slurm Workload Manager.

So far, the package has been successfully employed for process-

ing large amounts of GIXD data at two different synchrotron facilities:

(1) the PETRA III X-ray radiation source of the Deutsches Elektronen-

Synchrotron (DESY); and (2) the European Synchrotron Radiation Fa-

cility (ESRF). We emphasize, however, that the package can be effort-

lessly adapted for use at other facilities. The modular structure of the

software allows further facility-specific integration, especially direct

connections to detector data streams that do not involve disk storage.

Furthermore, we discuss the main concepts of the standardized reports

on data analysis according to the guidelines of the DAPHNE4NFDI

projects and illustrate them by publishing an exemplary dataset with

gixi-analyzed in situ GIXD measurements of perovskite crystallization.

22 Vol. 35, No. 4, 2022, Synchrotron radiation newS

Feature article

The pipeline for GIXD data analysis
Deep learning is a promising choice for analyzing complex 2D

scattering data with various experimental artifacts and diffraction fea-

tures. In general, GIXD images contain rich and diverse information

about the studied sample. Based on the concrete scientific problem,

different types of analysis are required to extract the relevant proper-

ties of the studied system. These may include the lattice parameters,

the texture, and fractions of co-existing mixtures in case of powder

diffraction, time-dependent properties of the studied process in case

of in situ measurements. Due to the large number of related quanti-

ties, it can be inefficient to develop separate software solutions for

each type of analysis. Since the diffraction peaks contain the most

relevant information about the sample in wide-angle geometry,

the natural approach is to separate the analysis into an application-

agnostic detection of diffraction peaks that determines their posi-

tions, sizes, intensities, and other relevant characteristics followed

by an application-specific analysis step that relies on the detection

results.

We illustrate this approach with the gixi package, which is written

in Python and comprises a server-side and a client-side application that

can be used separately. The server provides all the image processing

and data analysis operations from preprocessing the raw data to peak

detection and saving the results. The client is a lightweight PyQt5-

based graphical user interface (GUI) designed for visualizing both the

raw images and the processed results, as well as for starting the server

jobs on a cluster for real-time image processing. The server operations

require a fast implementation with multiprocessing and CUDA support

to enable real-time analysis.

In the following, we discuss the image processing steps required

for GIXD data analysis and how they are implemented in our package.

Fast image preprocessing
The raw diffraction images obtained from the detector require cer-

tain preprocessing steps before they can be analyzed by the peak detec-

tion algorithm. The first step involves an image conversion to reciprocal

space. The shape of the processed diffraction peaks is critical for deep

learning detection algorithms and the underlying architecture to func-

tion properly. To be able to use well-established detection algorithms for

our task, a diffraction peak in the processed image must have shape and

position that can be characterized by a rectangular bounding box. For

single-crystal diffraction, this condition is usually already satisfied in

reciprocal space {qxy, qz}. In contrast, for powder diffraction, the radial

symmetry usually requires a conversion to polar reciprocal coordinates

{ǁqǁ ≡ qxy
2
 + qz

2
; ϕ ≡ arctan (qz/qxy)} to obtain rectangular features (see

Figure 1c). Therefore, an analysis pipeline should provide adequate im-

age conversions that depend on the scattering geometry used.

Figure 1: Results of the automated analysis of the published dataset. (a,b) Illustrate time dependencies for proles of integrated intensities and peak
positions ǁqǁ correspondingly. The detected peaks are matched against the simulated diffraction prole of MAPbBr3 shown on the right-hand side of (b).
(c) The processed image in polar reciprocal coordinates with enhanced contrast. (d) The processed image in reciprocal coordinates with detected peaks.

Synchrotron radiation newS, Vol. 35, No. 4, 2022 23

Feature article

In general, the conversion operation is computationally expensive.

For instance, the histogram-based Cython implementation in the py-

FAI package [12] reaches 30 Mpix/s, which corresponds to roughly ≈ 7

images/s for a detector with 4 Mpix resolution. To reach real-time data

processing capabilities for higher acquisition rates, we overcome this

bottleneck in the gixi implementation with a tenfold acceleration on a

single processor by using the interpolation algorithm from the OpenCV

library. To achieve this, the analytical dependencies y(ǁqǁ, ϕ), z(ǁqǁ, ϕ),

y(qxy, qz), and z(qxy, qz) required for the interpolations are derived,

where {y, z} are the detector coordinates.

As the second preprocessing step, the contrast of a diffraction im-

age is corrected to reduce its dynamic range and optimize for further

analysis with the neural network. For contrast correction, we use a fast

OpenCV implementation of contrast-limited adaptive histogram equal-

ization (CLAHE). We note that the intensity correction is only required

for the detection step and the original intensity levels should be used for

any further analysis.

For both interpolation and contrast enhancement, we find CPU im-

plementations by OpenCV sufficient for our tests, but one can further

accelerate them via PyTorch-based CUDA implementation of the inter-

polation algorithm if required by the experimental setup. Furthermore,

the package provides optional multiprocessing acceleration for the im-

age preprocessing step (see Figure 2).

Deep learning-based peak detection
Presently, there are multiple competing deep learning object detec-

tion techniques that could be employed for the peak detection task. In

gixi, the detection model is based on the Faster R-CNN architecture

[13] with several modifications that make it lightweight and more

accurate compared to the standard Faster R-CNN as well as to some

other popular architectures [7].

We use a convolutional neural network based on ResNet-18 archi-

tecture as a feature extractor to convert a preprocessed image in po-

lar reciprocal coordinates to three sets of asymmetric feature maps at

three different scales. The asymmetric strides of the used convolutional

layers ensure minimal compression of a diffraction image along the

horizontal axis to preserve the high ǁqǁ resolution required for the accu-

rate determination of ǁq
peak
ǁ positions. At the same time, the images are

compressed in angular dimension (×8, ×16, and ×32 compression for

each feature map, respectively). Larger feature maps are suited for the

detection of small diffraction spots and the most compressed maps are

aimed at extracting prolonged features such as Debye–Scherrer rings in

powder diffraction images. The corresponding convolution-based com-

pression operation amplifies weak peaks and filters out experimental

artifacts, as opposed to standard radial profile integration.

The obtained feature maps are then used by the Region Proposal

Network (RPN) to provide regions of interests (ROI) that are then re-

fined by the second detection stage, which outputs the positions of the

detected diffraction peaks along with the confidence scores. All of the

corresponding networks are optimized and reduced in size to enable

fast inference and low memory consumption. For a more detailed de-

scription of the model architecture, the simulation of the training data,

and the training process, we refer to Ref. [7]. The model is implemented

in the PyTorch framework [14]. We note that PyTorch allows Just-

In-Time (JIT) compilation of a neural network into a C++ compatible

TorchScript program for reducing inference time. At the moment, JIT

is not used in our pipeline since the inference time is sufficiently small

and suited for the used acquisition rates (≈ 120 images/s for 4 Mpix res-

Figure 2: A schematic illustration of (a) the single-process and (b) the multi-process pipeline modes of the server-side application.

24 Vol. 35, No. 4, 2022, Synchrotron radiation newS

Feature article

olution on NVIDIA GeForce RTX 2080 Ti [7]), but it can be included

without much effort for more demanding conditions.

Crystal structure identifcation
As discussed earlier, an analysis pipeline should be designed in a

way that allows application-specific extensions for certain types of

analysis. Here, we focus on powder diffraction and provide a corre-

sponding solution for crystal structure identification based on the ob-

tained peak positions. However, we note that the pipeline is in principle

extendable to analysis settings and scattering geometries.

GIXD powder diffraction patterns are in general ambiguous and re-

quire some degree of additional information about the expected crystal

structures to perform a complete structure identification. Apart from

the phase problem, possible sources of ambiguity could be, among oth-

ers, an insufficiently large q range, co-existing powder mixtures, a low

signal-to-noise ratio, and a strong scattering background. In our pipe-

line, structure identification is implemented via a matching algorithm

[7] that compares the obtained diffraction peak positions against those

from a set of crystal structures provided by the user in the form of Crys-

tallographic Information Files (CIF). The algorithm calculates the prob-

ability that a given crystal structure is identified and assigns each peak

with the closest Miller index. Figure 1b illustrates the results of the

matching algorithm. The current CPU-implementation of the matching

operation takes less than 1 ms.

Saving the results
The processed data is stored as hdf5 file that can be accessed by the

client program to visualize the results. Typically, this operation takes

less than 1 ms. Each file includes the configuration parameters includ-

ing the experimental geometry, the processed image in polar q coordi-

nates (and optionally in standard reciprocal coordinates {qxy, qz}), the

obtained positions, confidence scores and intensities of the detected

peaks, and the matching results. Following the suggested practices of

processing and storing the scattering data by DAPHNE4NFDI [15, 16],

we intend to provide a standardized NeXus format for processed and

analyzed GIXD data in the future.

Multiprocessing implementation
Most synchrotron facilities provide users with powerful computer

clusters and the corresponding IT infrastructure to accelerate data

processing and simplify data storage. Clusters allow massive parallel-

ization of demanding processing procedures via multiple CPU cores,

GPUs, and multiple cluster nodes. gixi supports CUDA through Py-

Torch and optional multiprocessing to accelerate the data pipeline. Fig-

ure 2 illustrates both the simple single-process scheme suited for usage

on a local computer and the multiprocessing schemes for a cluster node

implemented on the server side. The job is submitted via the Slurm

Workload Manager, which is currently a common choice for computer

clusters.

Client side
The GUI client provides the functionality to access and visualize

the data, set the configuration parameters, and submit jobs to the clus-

ter. Figure 3 illustrates the main window of the current version of the

GUI application that includes interactive file viewer, image viewer,

and logs from the server. It also supports automated periodic fetching

of the incoming data for real-time visualization of the data analysis

from the cluster along with the cluster logs. To submit a job, the user

has to fill in the configuration settings that include data sources, clus-

ter options, and parameters of the experimental geometry. Optionally,

some additional settings can be provided, such as postprocessing pa-

rameters, the choice of pre-trained detection model, logging options,

etc. Our intention is to maintain and extend the client functionality

in the future to enable such features as the visualization of the inten-

sity profile and the peak position changes in time, visualization of the

matching results, etc.

Multi-facility tests
Our solution requires only a Slurm-based cluster environment and it

has been designed having inter-facility portability in mind, since it has

been developed by users without a certain facility affiliation. The mod-

ular structure of the implementation enables some facility-specific ad-

Figure 3: A screenshot of the main window of the client-side application that includes the le viewer, the image viewer, and the cluster logs.

Synchrotron radiation newS, Vol. 35, No. 4, 2022 25

Feature article

justments if such are required for further optimization. Thus, the most

important optimization, which is practically unfeasible to implement

in general fashion, is fast data stream handling. By default, our imple-

mentation relies on fetching incoming data from a disk storage. How-

ever, other schemes that bypass the disk storage should be preferred for

higher acquisition rates. These direct data stream connections can be

implemented for specific detectors, beamlines, and IT infrastructures

without any other modifications to the pipeline. In this way, we hope

that our approach will serve as an example of user-designed software

for fast data analysis and inspire other research groups to contribute

to the standardization of processing and storing of different types of

scattering data.

So far, the gixi package has been employed for GIXD data analy-

sis for multiple in situ experiments at PETRA III with real-time data

processing on the Maxwell HPC cluster at DESY [17]. Furthermore,

the package has been successfully tested on the Networked Interactive

Computing Environment (NICE) provided by the ESRF. In total, more

than 1M diffraction images have been processed during the tests per-

formed so far.

As an illustration of the workflow of the pipeline, we publish an

exemplary analyzed dataset measured at PETRA III and processed

automatically by gixi on the Maxwell cluster. The measured diffrac-

tion images reveal crystallization of methylammonium lead bromide

perovskite (MAPbBr
3
) by applying an isopropanol antisolvent during

spin-coating of the precursor solution. The full description of the ex-

perimental setup is provided with the raw data in Zenodo repository

[18], and Figure 1 illustrates the results obtained by gixi. The detected

peaks from each diffraction image are matched against the expected

MAPbBr
3
 crystal structure. The time-resolved peak positions from

MAPbBr
3
 and the corresponding integrated intensity profile appear

at t≈ 32 s and remain stable afterward. Given that it takes ∼2 s with

the used setup for antisolvent to be fully dispensed after the command

is sent at t = 30 s, it is evident that the crystallization process of 3D

MAPbBr
3
 perovskite is almost instantaneous after isopropanol antisol-

vent is dispensed in the considered time scale.

Raw, processed, and analyzed data are published in separate reposi-

tories. Table 1 summarizes the information about published reposito-

ries, and the related details are discussed in the next section.

Open science and research data management
Following the broad consensus in the scientific community to estab-

lish FAIR research data management, this publication is meant to pro-

vide a first blueprint that adopts the DAPHNE4NFDI vision in terms

of data accessibility. DAta from PHoton and Neutron Experiments for

NFDI (DAPHNE4NFDI) [15, 16] is an NFDI [26] consortium funded

by the German Research Foundation (DFG) that tightly connects to the

European projects PaNOSC and ExPaNDS. DAPHNE4NFDI engages

directly with the user community to develop user-driven data solutions

to advance scientific experiments.

With respect to open data, DAPHNE4NFDI—similar to other open

data initiatives—proposes to establish a transparent and traceable chain

of all steps from the raw data to the final peer-reviewed scientific pub-

lication [27]. This is implemented here while fully relying on already

existing infrastructure, as summarized in Figure 4. For all data and

software entries in the chain, individual DOIs are minted that connect

related items. The current implementation relies fully on the Zenodo

service [28]. However, in the future, the raw data will most likely be

provided through the data catalogue of the facility where the data has

been acquired. Furthermore, also for the following steps in the chain,

there may be dedicated services arising in the future. Through the bi-

directional links (blue arrows in Figure 4), all data and its usage can

be traced from the raw data to the final publication and vice versa. In

addition, the whole chain is referenced in the final publication (orange

arrows). It is an important aspect of DAPHNE4NFDI to ensure the re-

Table 1: The references to the repositories with the published data and the used software for data processing and analysis.

Published data Repositories Description

Raw data Zenodo [18] Te original detector images of the GIXD measurement to-
gether with the corresponding metadata

Processing soware Zenodo [19], GitHub [20] Conversion of the detector images to polar reciprocal space
(a part of gixi)

Processed data Zenodo [21] Diraction images converted to reciprocal and polar recipro-
cal space

Analysis soware Zenodo [22], GitHub [23], PyPi [24] Te gixi package

Analyzed data Zenodo [25] Dataset containing detected diraction features and matched
peak indices for provided time-resolved data

Due to the current lack of standardized publishing workflows, we manually prepared and inter-linked the following data and software
resources via widely used repositories such as Zenodo, GitHub, and PyPi.

26 Vol. 35, No. 4, 2022, Synchrotron radiation newS

Feature article

usability of the provided software and intermediate datasets via stan-

dardization of the corresponding data and metadata formats as well as

of the software environments. This is achieved, e.g., through the con-

tribution of suitable NeXus definition [29] and run-time environments

with readily deployed power user software.

Conclusion and outlook
In this work, we discussed the benefits and challenges of creating

user-developed end-to-end pipelines for fast and automized data analy-

sis at synchrotron facilities. This was demonstrated with the implemen-

tation of gixi, an open-source package for GIXD data processing and

analysis including deep learning-based detection of diffraction peaks

and crystal structure identification for powder diffraction. We consid-

ered the possible extension of the presented approach on different ge-

ometries and types of analysis.

We also discussed aspects of open data, such as the need for a fur-

ther standardization of data publishing workflows and data formats

related to the publishing chain. Especially in the light of machine learn-

ing, which relies on the availability of high-quality reference data for

training and testing, the importance of accessible, curated datasets is

increasing. Hence, we published [18, 21, 25] the data processed and an-

alyzed with gixi following the DAPHNE4NFDI guidelines for a trans-

parent publication chain. We have shown that these requirements can

already be met with standard solutions and we encourage other research

groups to follow these guidelines and provide more data to the public

domain to improve machine learning algorithms for more accurate au-

tomatic data analysis.

Acknowledgments
We acknowledge DESY (Hamburg, Germany), a member of the

Helmholtz Association HGF, for the provision of experimental facili-

ties. Parts of this research were carried out at PETRA III and we would

like to thank Chen Shen, Florian Bertram and Rene Kirchhof for as-

sistance in using the beamline P08. The beamtime was allocated for

proposal II-20190761. This research was also supported in part through

the Maxwell computational resources operated at DESY with the as-

sistance of Andre Rothkirch and Frank Schlünzen. We also thank the

European Synchrotron Radiation Facility (ESRF) for providing access

to the Networked Interactive Computing Environment (NICE) cluster.

Funding
This research is part of a project (number: 05K19VTC) funded by

the German Federal Ministry for Science and Education (BMBF). n

References
 1. A. Heiss, Comput. Softw. Big Sci. 3 (1) (2019). doi:10.1007/s41781-019-0030-7

 2. H. Dong et al., NPJ Comput. Mater. 7 (1), 1 (2021). doi:10.1038/s41524-

021-00542-4

 3. C. Wang et al., Small 14 (46), 1802291 (2018). doi:10.1002/smll.201802291

 4. J. Reppin et al., Comput. Softw. Big Sci. 5 (1) (2021). doi:10.1007/s41781-

021-00058-y

 5. A. Greco et al., J. Appl. Crystallogr. 52 (6), 1342 (2019). doi:10.1107/

S1600576719013311

 6. A. Greco et al., Mach. Learn: Sci. Technol. 2 (4), 045003 (2021).

doi:10.1088/2632-2153/abf9b1

 7. V. Starostin et al., NPJ Comput. Mater. 8 (1) (2022). doi:10.1038/s41524-

022-00778-8

Figure 4: Scheme of the bidirectionally linked open-data publication chain. (a) Raw data collected at facility, including necessary meta-data (e.g., calibra-
tion data). (b) Transformation to reciprocal space (a part of the gixi package that is also published separately in line with the guidelines of the DAPH-
NE4NDFI project). (c) Images converted to q-space are stored to h5 les. (d) gixi software package (feature detection, intensities extraction, crystal
structure identication, etc.). (e) Analyzed data stored to h5 les. (f) Final publication. For all the entries in the chain, corresponding DOIs are minted.
Blue arrows correspond to bidirectional links and orange arrows represent unidirectional links.

Synchrotron radiation newS, Vol. 35, No. 4, 2022 27

Feature article

8. A. Greco et al., J. Appl. Crystallogr. 55 (2), 362 (2022). doi:10.1107/

S1600576722002230

9. S. K. Sinha et al., Phys. Rev. B. 38 (4), 2297 (1988). doi:10.1103/Phys-

RevB.38.2297

10. S. Roobol et al., J. Appl. Crystallogr. 48 (4), 1324 (2015). doi:10.1107/

S1600576715009607

11. M. Langer et al., J. Synchrotron Radiat. 28 (4), 1261 (2021). doi:10.1107/

S1600577521004951

12. G. Ashiotis et al., J. Appl. Crystallogr. 48 (2), 510 (2015). doi:10.1107/

S1600576715004306

 13. S. Ren,C. Cortes, N. Lawrence, D. Lee, M. Sugiyama and R. Garnett, editors.

Faster R-CNN: Towards real-time object detection with region proposal

networks in Advances in Neural Information Processing Systems (Curran

Associates, Red Hook, NY, 2015), Vol. 28, p. 91–99.

 14. A. Paszke et al., Pytorch: An imperative style, high-performance deep learn-

ing library, in Advances in Neural Information Processing Systems, edited

by H. Wallach et al. (Curran Associates, Inc., Red Hook, NY, 2019), Vol. 32,

p. 8024–8035.

 15. DAPHNE website: https://www.daphne4nfdi.de/.

 16. DAPHNE proposal: https://www.daphne4nfdi.de/downloads/Daphne_pro-

posal.pdf.

 17. C. Beyer et al., EPJ Web Conf. 245, 07036 (2020). doi:10.1051/epj-

conf/202024507036

 18. Dataset (raw data). https://doi.org/10.5281/zenodo.6683617

 19. Software (processing script): https://doi.org/10.5281/zenodo.7015700

 20. Software (processing script): https://github.com/schreiber-lab/fastxq

 21. Dataset (processed data): https://doi.org/10.5281/zenodo.6683626

 22. Software (analysis): https://doi.org/10.5281/zenodo.7015698

 23. Software (analysis): https://github.com/schreiber-lab/gixi

 24. Software (analysis): https://pypi.org/project/gixi/0.0.1/

 25. Dataset (analysed data): https://doi.org/10.5281/zenodo.6683659

 26. NFDI website: https://www.nfdi.de.

 27. L. Beddrich et al., arXiv Preprint (2020). arXiv:2010.12086 doi:10.48550/

arXiv.2010.12086

 28. Zenodo open repository 2015 https://www.zenodo.org.

 29. M. Könnecke et al., J. Appl. Crystallogr. 48, 301 (2015).

