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Macromolecular crowding in biological media is an essential factor
for cellular function. The interplay of intermolecular interactions at
multiple time and length scales governs a fine-tuned system of
reaction and transport processes, including particularly protein dif-
fusion as a limiting or driving factor. Using quasielastic neutron
backscattering, we probe the protein self-diffusion in crowded
aqueous solutions of bovine serum albumin on nanosecond time
and nanometer length scales employing the same protein as
crowding agent. The measured diffusion coefficient DðφÞ strongly
decreases with increasing protein volume fraction φ explored
within 7% ≤ φ ≤ 30%. With an ellipsoidal protein model and an
analytical framework involving colloid diffusion theory, we sepa-
rate the rotational DrðφÞ and translational DtðφÞ contributions to
DðφÞ. The resulting DtðφÞ is described by short-time self-diffusion
of effective spheres. Protein self-diffusion at biological volume
fractions is found to be slowed down to 20% of the dilute limit
solely due to hydrodynamic interactions.

macromolecular crowding ∣ quasi-elastic neutron scattering ∣
globular proteins

The interior of biological cells is a medium with a macromole-
cular volume fraction of up to 40%. This crowding crucially

affects reaction kinetics and equilibria in the cell (1, 2). Cellular
function and structure thus cannot be understood without a sys-
tematic understanding of both phase behavior and transport pro-
cesses in crowded media. Diffusion is the main transport process
for systems at low Reynolds numbers, governing many dynamic
processes in nature (3). From the perspective of a single tracer
molecule, all other molecules act as obstacles. In vivo diffusion
coefficients for globular proteins in living cells (4–7) are strongly
decreased compared to the in vitro diffusion coefficient in dilute
buffer solutions. Systematic measurements of the tracer diffusion
of proteins dissolved in concentrated suspensions of crowding
agents, i.e., other proteins or polymers, reveal a complex depen-
dence of the slowing down on the combination of tracer molecule
and crowding agent (8–10). Furthermore, macromolecular
crowding is found to induce subdiffusive behavior in several cases
(11, 12), being suggested as a slower but more reliable diffusive
search process inside the cell (13). This anomalous diffusion
process has been found also in theory and simulations (12–15)
suggesting a crossover from subdiffusive behavior at small times
to diffusive behavior at larger times.

Proteins are macromolecules generally with a nonspherical
shape and a nonhomogeneous surface charge, showing specific
interactions with ligands. Furthermore, proteins not only show
global motions like translational and rotational diffusion but also
internal and interdomain motions. Therefore, proteins pose a
challenge to colloid theory (16, 17). In a recent simulation study
Ando and Skolnick (4) revealed that using an equivalent-sphere
model for macromolecules is a reasonable approximation to
describe diffusion. Moreover, the authors demonstrated that
interactions between the molecules, including both hydrodynamic
interactions mediated by the solvent and direct interactions due
to hard-sphere and Coulomb potentials crucially affect diffusion
in a crowded environment. Consequently, it is of fundamental

interest to test the applicability of colloid models to protein dif-
fusion in crowded solutions.

The dynamics of a colloidal suspension is characterized by dif-
ferent time scales, corresponding to different regimes of motion
(18). The solvent time scale τs is in general much shorter than the
diffusive time scale of the dissolved particles τB ≈m∕ð6πηRÞ on
which the motion changes from ballistic to diffusive motion. In
this diffusive regime and for noninteracting particles with radius
R and mass m in a solvent with viscosity η the well known Stokes-
Einstein diffusion constant Dtð0Þ ¼ kBT∕ð6πηRÞ is recovered. In
real systems and at finite concentrations, interparticle interac-
tions give rise to additional relevant time scales. Hydrodynamic
interactions arise on the time scale τH ≈ R2ρ∕ðηφÞ ≫ τB with the
solvent density ρ, and the colloidal volume fraction φ, affecting
the so-called short-time diffusive regime τH ≪ t ≪ τI . The struc-
tural relaxation time τI ≈ R2∕Dtð0Þ defines the onset of caging
effects on the particle center-of-mass diffusion due to direct in-
terparticle interactions. For t ≫ τI long-time self-diffusion is ob-
served, affected by both hydrodynamic and direct interactions.
For the short-time and long-time regimes, series expansions have
been derived for the self-diffusion of spherical colloids with and
without charge (18–22).

In this study we report on extensive experimental data on pro-
tein self-diffusion in crowded aqueous solutions of bovine serum
albumin (BSA) as determined from quasielastic neutron back-
scattering on nanosecond time and nanometer length scales.
Thereby, we investigate the fundamental case where tracer
particle and crowding agent are identical proteins. Quasielastic
neutron scattering accesses both microscopic spatial and time
correlations by measuring the van Hove scattering function
SðQ;ωÞ (23).

Due to the large incoherent scattering length of hydrogen,
neutron backscattering of biological samples directly probes self-
correlations of the hydrogen atoms. Moreover, neutron scattering
is the only noninvasive and nondestructive technique to access
protein solution samples at high protein concentrations. In an
incoherent measurement of a highly concentrated solution, all
molecules can be conceived as unlabeled and simultaneously play
the role of both tracer molecule and crowding agent.

Recent neutron scattering work studied protein dynamics in
solutions, thereby mainly addressing the hydration and tempera-
ture dependence of internal motions (24–29). Few studies, how-
ever, investigated protein short-time diffusion (30–33) or long-
time diffusion (34–36).

Here, we present detailed results on the dependence of protein
short-time self-diffusion on protein concentration. We obtain
the translational diffusion coefficient DtðφÞ at different protein
volume fractions φ and discuss the results in comparison with
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colloidal suspension models, thereby testing the applicability of
colloid approximations.

Results
Effective Hard-Sphere Model. Proteins differ considerably from
hard spheres for which theoretical predictions for colloidal diffu-
sion are available. A sensible comparison of experiment and
theoretical predictions requires a mapping of the protein on an
effective sphere (37). Simulations of proteins in a crowded envir-
onment showed that effects of the shape on the diffusion can be
accounted for using effective spheres (4).

The simplest choice for an effective radius would be the radius
of a sphere with the same volume as the bare protein volume
calculated from the specific volume (see Materials and Methods),
in our case R ≈ 2.68 nm.

In the case of diffusion, however, the resulting effective radius
has to be larger than R for the following reasons: First, the
hydration shell surrounding the protein increases the size of the
proteins. Second, the anisotropic shape of the protein described
by the Perrin factors (37, 38) additionally increases the effective
radius.

In order to determine the effect of the anisotropy and the hy-
dration shell on the effective radius, we performed small-angle X-
ray scattering (SAXS) on dilute aqueous BSA solutions, compris-
ing the following samples: 0.15 M NaCl (1, 2, 5, 10 mg∕mL BSA),
0.01 M Hepes buffer with 0.4 M NaCl (1, 2, 10 mg∕mL BSA) and
0.15 M Hepes buffer (5, 10 mg∕mL BSA). Fig. 1 shows an exam-
ple dataset of 5 mg∕mL BSA in 0.15 M Hepes buffer. Using an
oblate ellipsoid the form factor of all SAXS data was modeled
(see Materials and Methods and ref. 39). Averaging the results,
we finally obtain an oblate ellipsoid with polar semiaxis a ≈ 1.8�
0.05 nm and equatorial semiaxis b ≈ 4.6� 0.15 nm. Note that the
fit result includes the hydration shell because the higher mass
density of hydration shell water causes a scattering contrast (40).

Based on this ellipsoidal protein model, we calculate the effec-
tive hydrodynamic radii for translational diffusion, Rh ¼ 3.62 nm
which defines the translational diffusion coefficient in the dilute
limit (see Materials and Methods). Note the good consistency of
the effective radius Rh with the hydrodynamic radius RDLS

h ¼

ð3.66� 0.03Þ nm calculated from results from dynamic light
scattering (41).

For theoretical predictions, the volume fraction of the effective
spheres is of central importance. This effective volume fraction is
connected to the physical protein volume fraction φ by

φt ¼ φ

�
Rh

R

�
3

: [1]

To compare the measured translational diffusion coefficient
with the theoretical prediction of a colloidal model we use the
effective volume fraction

Dtheory
t ðφÞ ¼ Dtð0Þ f ðφtÞ; [2]

in which f is the theoretical reduced translational diffusion
coefficient and Dtð0Þ the dilute limit translational diffusion coef-
ficient.

Quasielastic Spectra and Simple Diffusion Coefficient.We performed
a series of quasielastic neutron backscattering measurements cov-
ering the full range of protein volume fraction φ from 5 to 30%
using the instruments IN10 and IN16 at the Institut Laue-Lange-
vin (ILL). The inset of Fig. 2 depicts a typical spectrum SðQ;ωÞ
recorded on IN16. All spectra can be fitted according to the mod-
el (24, 25, 30, 32)

SðQ;ωÞ ¼ RðωÞ ⊗ LγðωÞ ⊗ ½β1δðωÞ þ β2LΓðωÞ� þ B: [3]

Therein,R denotes the instrumental resolution function, β1;2 are
scalars, B is a flat background accounting for the water diffusion
which is beyond the accessible dynamic range of both instru-
ments, and δðωÞ designates the Dirac function of the elastic scat-
tering. The width of the two Lorentzians Lγ and LΓ represent
the time scales of two separated spectral components: while the
broader width Γ accounts for fast internal and interdomain mo-
tions within the protein, γ is attributed to the convolution of the
translational and rotational diffusion of the entire protein (24, 25,
30, 32). The widths γ as obtained from the fits Eq. 3 are plotted in

Fig. 1. SAXS intensity for a dilute solution of BSA (5 mg∕mL, room tempera-
ture) in 150 mM Hepes buffer after subtraction of background contributions.
The data (circle) can be fitted with the form factor of an oblate ellipsoid (solid
line). The deviation at higher Q is caused from the deviation of the protein
shape from an ellipsoid at smaller length scales. The fitting of scattering data
from several solutions with protein concentration below 10 mg∕mL and vary-
ing concentration of Hepes buffer and NaCl is consistent with an oblate
ellipsoid with polar semiaxis a ≈ 1.8� 0.05 nm and equatorial semiaxes
b ≈ 4.6� 0.15 nm. This protein model of an oblate ellipsoid (inset lower left
corner) is used as input for the further data analysis based on colloid theory.

Fig. 2. Inset: Example backscattering spectrum SðQ;ωÞ (symbols) recorded
at IN16 for BSA in D2O (c ¼ 500 mg∕mL, φ ¼ 28.5%, T ¼ 300 K, individual
detector at Q ¼ 0.81 Å−1). The magenta solid line is the fit of the model
from Eq. 3. The two Lorentzians in Eq. 3 are indicated by the dashed and
dash-dotted lines. The orange solid line denotes the resolution function.
Main figure: Fitted γ (symbols) vs. Q2 for the full Q-range of the example
data. The fit of γ ¼ DQ2 (blue line) is consistent with simple diffusive beha-
vior. For statistical reasons the fit range is restricted to Q2 < 1.5 Å−2.
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Fig. 2. For Q2 < 1.5 Å−2, a clear relationship γ ¼ DQ2 is ob-
served, defining the diffusion coefficient D. This clear relation-
ship is observed for all samples in the full volume fraction
range and is consistent with simple diffusion on the accessible
time and length scales. Superdiffusive jump-diffusion or subdif-
fusion due to crowding would cause a varying local slope corre-
sponding to the changing diffusion coefficient for different time
and length scales, i.e., with scattering vector Q. For Q2 > 1.5 Å−2

the scattering signal from the proteins becomes weaker and con-
siderably broadened with respect to the accessible energy range.
These two factors can cause fitting artifacts, we neglected these
data points for the fitting of the diffusion coefficient, although the
Q2 relationship seems conserved.

Separation of Translational and Rotational Diffusion.Fig. 3 shows the
resulting diffusion coefficients DðφÞ (upper points). The extrapo-
lation Dðφ → 0Þ using a polynomial fit (upper blue line) reveals a
higher dilute limit compared to the value in D2O at T ¼ 280 K,
Dtð0Þ ¼ ð3.01� 0.04Þ A2∕ns, calculated from dynamic light scat-
tering results (41, 42). This deviation indicates a nonnegligible
contribution of the rotational diffusion to D. We thus have to
separate the measured D into the translational and rotational
contributions. Perez et al. showed numerically that the rotational
contribution causes an additional line broadening (24), assuming
spherical particles in the dilute limit. Inspired by this analysis,
we develop an analytical method to extract Dt from D also for
high concentrations (see Appendix for a detailed derivation). The
calculated scattering function StþrðQ;ωÞ for rotational and trans-
lational diffusion can be approximated by a single Lorentzian line
shape with half width at half-maximum (HWHM) γ and ampli-
tude α in the Q-range relevant for our experiment.

We recover γ ¼ DQ2 for this approximation in the measured
Q-range, defining the diffusion coefficient D (24). By minimizing
the L2-norm ‖StþrðQ; ·Þ − αLγð·Þ‖2 we obtain

∑
∞

l¼0

BlðQÞ Drlðlþ 1Þ þ ðDt −DÞQ2

½Drlðlþ 1Þ þ ðDt þDÞQ2�2 ¼ 0. [4]

We assume that Dr can be approximated by the short-time rota-
tional diffusion for charged spheres DrðφÞ ¼ Drð0Þð1 − 1.3φ2Þ
(19) with the dilute limit Drð0Þ from Eq. 9. Using Eq. 4, we eval-
uate DtðφÞ. Importantly, this extraction is robust, because other
models for short-time rotational diffusion do not change DtðφÞ
significantly.

Protein Self-Diffusion in Crowded Media. The resulting reduced dif-
fusion DtðφÞ∕Dtð0Þ is displayed for different temperatures in
Fig. 4, showing a strong decrease of the translational diffusion
coefficient due to macromolecular crowding on nanosecond time
scales. At volume fractions φ ≈ 25% as present in living cells,
the translational diffusion is decreased to 20% of the dilute-limit
value, implying a slowing down of diffusion-driven transport and
diffusion-limited reactions. Interestingly, the reduced diffusion
seems to obey a temperature-independent master-curve.

The experimental DtðφÞ∕Dtð0Þ agree almost perfectly with
the normalized short-time self-diffusion coefficient predicted by
colloid theory for charged (19) and noncharged hard spheres (22)
(Fig. 4). Both predictions take into account only hydrodynamic
interactions, which depend on the equilibrium structure of the
solution and thus differ between charge-stabilized and hard-
sphere suspensions (19). Reconsidering the simplistic nature of
the model system of effective hard spheres for the complex soft
protein, this excellent agreement is not expected.

Discussion
Colloid Picture of Protein Self-Diffusion in Crowded Media. We iden-
tify the measured self-diffusion coefficient with short-time self-
diffusion. This interpretation is consistent with theoretical expec-
tations: the accessible time scales of the neutron spectrometer,

0.3 ns ≤ τ ≤ 5 ns; [5]

are in the short-time regime for self-diffusion of BSA in D2O,
because

Fig. 3. Measured diffusion coefficients D for BSA solutions in D2O at
T ¼ 280 K (blue circles on upper curve) and translational diffusion coeffi-
cients Dt (purple circles on lower curve) computed from D using Eq. 4 and
the theoretical rotational diffusion coefficient from ref. 19. The lines are
polynomial fits. The dilute limit Dtð0Þ (diamond symbol) is calculated from
results of dynamic light scattering (41). The noncoincidence of Dtð0Þ and
the fit to D indicates a significant rotational contribution. After separation
of the rotational contribution, the translational diffusion coefficient Dt is in
accordance with the dilute limit, supporting the validity of our approach.

Fig. 4. Normalized translational self-diffusion coefficients (Fig. 3) Dt∕Dtð0Þ
(circles) for two different temperatures (red and purple circles denote 280
and 300 K, respectively) after separation of the rotational contributions.
The purple line superimposed on the data is a guide to the eye obtained from
a polynomial fit indicating the temperature-independent master-curve. The
upper and lower dashed purple lines indicate the upper and lower 96% pre-
diction bounds, respectively. The blue lines denotes the colloidal short-time
self-diffusion for hard spheres (light blue, solid) and charged spheres (dark
blue, dashed). The inset in the upper right corner illustrates the flow field
(light blue stream line plot) generated by the movement of three spheres
(velocities are denoted by blue arrows) and therefore experiencing a hydro-
dynamic forces (pink arrows).
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100 ps ≈ tH ≪ τ ≪ tI ¼
R2

Dtð0Þ
≈ 425 ns: [6]

Short-time self-diffusion implies that the observed slow-down of
the protein diffusion is mainly caused by hydrodynamic inter-
actions.

Reduction Factor and Influence of Hydrodynamic Interactions.Experi-
mental results on the in vivo reduction factor of protein diffusion
in a cellular medium compared to buffer solutions show a depen-
dence on the protein size. The reported values corresponding to
BSA-sized molecules range from 1∕70 (5) to approximately 0.2
(6, 7). Measurement in crowded in vitro solutions of proteins
obtained a reduction factor of approximately 0.08 for albumin
tracers at 25% volume fraction of the crowding agent (10) and a
factor of 0.35 for BSA tracers at 13% volume fraction of BSA (9).
All these results have been obtained using fluorescence-labeling
techniques at the μs time scale and are generally rationalized by
an effectively increased viscosity, hindrance due to obstacles, and
transient adsorption at larger obstacles (8). The reduction factors
found in the present study of 0.2 at 25% and 0.4 at 13% occur
already at nanoseconds and are attributed solely to hydrodynamic
interactions, i.e., an increased effective viscosity of the cellular
medium, but not to hindrance due to obstacles. The obtained
short-time self-diffusion values are of similar order of magnitude
as the long-time values obtained from fluorescence-labeling tech-
niques, implying an important and nonnegligible role of hydro-
dynamics to the observed crowding effect. Protein dynamics and,
in particular, protein diffusion in a crowded environment thus
cannot be understood simply by excluded volume and confined
motions, but has to include hydrodynamic interactions.

These experimental findings are in perfect accordance with
recent results from simulations (4). Ando and Skolnick found that
the effect of macromolecular crowding on protein diffusion can
be explained solely with hydrodynamic interactions and excluded
volume, supporting the mentioned colloid picture of macromo-
lecular crowding. The authors’ findings for the reduced short-
time self-diffusion coefficient fit to our data quantitatively.

For concentrated solutions of hemoglobin, the crowding effect
on the diffusion has been also investigated with quasi elastic
neutron scattering using neutron spin-echo spectroscopy, obtain-
ing a reduction factor around 0.2 at 22% volume fraction (35).
Although the behavior seems qualitatively and quantitatively si-
milar, the comparison to our data, however, fails for two reasons.
First, the accessed time scales are around 50 ns and comparable
to the colloidal interaction time scale, implying significant long-
time effects of direct interactions on the diffusive motion. Sec-
ond, neutron spin-echo is a coherent scattering technique, thus
probing collective diffusion. In the short-time limit and at large
Q, collective diffusion equals self-diffusion. This equality does
not strictly hold for the case of long-time diffusion, disallowing
a consideration of the measured diffusion as self-diffusion. Thus,
while their data probe collective diffusion with long-time effects,
our data corresponds undoubtedly to short-time self-diffusion.

Essential Role of Anisotropy in the Protein Modeling. Proteins are
nonspherical molecules. In order to account for this anisotropy,
colloid models have to be refined. In our modeling approach,
the protein is mapped on an oblate ellipsoid that incorporates the
full anisotropy and governs the dilute limit rotational and trans-
lational diffusion coefficients of the protein through the Perrin
factors. It is important to notice that rotational and translational
diffusion are affected differently by anisotropy and that this dif-
ference in the effective radii matters.

It should be noted that other macromolecular properties
and processes could modify the diffusion but seem to be less
important or cancel out in our system. Water-permeability of the
protein core results in a larger DtðφÞ∕Dtð0Þ (43). The effect of a

gradually changing hydration shell, the flexibility of the protein,
the hydrophobicity, and nonhomogeneous charge distribution
have not been systematically studied to our knowledge. Further-
more, in attractive systems below the solubility limit, oligomeri-
zation and transient clustering could decrease the diffusion
coefficient. Crowding is known to induce compaction of protein
structures (1, 44). A decrease in the radius of gyration of smaller
than 0.4% has been found when comparing a globular protein
structure in dilute and crowded (φ ¼ 0.25) protein solutions
(44). The related change of Rh under crowding conditions is not
discernible with our method within the experimental errors and
thus does not affect our conclusions.

Conclusions
We studied the effect of crowding on the self-diffusion of BSA by
means of quasielastic neutron backscattering. Our analysis con-
firms that crowding has a very substantial effect on the protein
self-diffusion already at the nanoseconds time scale. Moreover,
we reveal that the diffusion coefficient at biological volume frac-
tions is strongly decreased compared to the dilute limit. This find-
ing is described with very good accuracy in terms of colloidal
short-time self-diffusion, outlining the important role of hydrody-
namic interactions on crowding behavior. We conclude that gen-
eral features of protein diffusion can be understood in terms of
existing colloidal hard-sphere models if anisotropy is considered
using reasonable protein modeling. The modeling approach used
in this study is based on an experimentally established protein
shape model without adjustable parameters, i.e., an oblate ellip-
soid from the fitting of SAXS data. The analysis of the protein
diffusion including the separation of rotational and translational
contributions is performed for effective spheres with existing pre-
dictions from colloid theory. The success of this simple mapping
of the complex protein on an effective sphere is promising for
further investigations.

Materials and Methods
Sample Preparation. BSAwas purchased from Sigma-Aldrich with an indicated
purity of 99% and used without further purification. The samples were pre-
pared by dissolving BSA powder with mass mBSA in the solvent with volume
V solv. For neutron scattering we used pure D2O as solvent; for SAXS we used a
H2O-based solution with 150 mM Hepes buffer as solvent. Correcting for the
protein volume, we obtain the volume fraction occupied by the bare proteins

φ ¼ ϑ mBSA

V solv þmBSAϑ
; [7]

where ϑ ¼ 0.735 mL∕g is the specific volume of BSA (45). The prepared φ
cover a range of 7–30%. After complete dissolution and equilibration the
solutions were filled in double-walled aluminum cylinders (23 mm outer dia-
meter, 0.3 mm gap), which were sealed against vacuum and kept at T ¼ 280

and 300 K, respectively, for the measurements. The pH values of the samples
were checked to be neutral over the full concentration range. No precise data
on oligomerization are available for high volume fractions. However, the
samples show no visible aggregation or precipitation on time scales of
months; monomeric aqueous BSA solutions are charge-stabilized and have
been shown to be thermodynamically stable (39, 46).

Quasielastic Neutron Backscattering. We used the backscattering spectro-
meters IN10 and IN16 at the Institut Laue-Langevin in Grenoble, France, in
the standard configuration with unpolished Si(111)-monochromator and
analyzer crystals, which set the selected neutron wavelength to 6.27 Å
and achieve an energy resolution of approximately 0.9 μeV (gaussian FWHM).
The energy range accessible by Doppler-shifting the incident wavelength on
both instruments defines the accessible time scales τ ¼ 2πℏ∕E, the Q-ranges
set the probed length scales l ¼ 2π∕Q:

0.3 ns ≤ τ ≤ 5 ns 0.32 nm ≤ l ≤ 1.2 nm ðIN10Þ and

0.33 nm ≤ l ≤ 3.3 nm ðIN16Þ:
The raw data were normalized to the incident neutron flux and relative de-
tector efficiency. The scattering signal of an empty cylinder was subtracted to
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correct for background contributions. Water background was not removed
but included in the data fitting as flat background.

SAXS. The SAXS data were measured at ID02 at the European Synchrotron
Radiation Facility (ESRF), Grenoble, France. For a detailed description of the
data treatment we refer to refs. 17, 39. In general, SAXS measures the pro-
duct of structure factor SðQÞ and form factor PðQÞ, IðQÞ ∝ PðQÞSðQÞ. Due to
the low protein concentration of 5 mg∕mL and strong charge-screening of
the added buffer, protein–protein interactions can be neglected, i.e.,
SðQÞ≡ 1. The data can be simply fitted by the formula IðQÞ ¼ nΔρ2PðQÞ with
the number density n, the scattering contrast Δρ2, and the form factor PðQÞ
on an oblate ellipsoid.

Perrin Factors for Ellipsoids of Revolution and Effective Hydrodynamic Radii. For
an ellipsoid of revolution with polar semiaxis a and equatorial semiaxes b, the
Perrin factors specify the translational and rotational diffusion coefficient in
the dilute limit:

Dtð0Þ ¼
kBT
6πηa

AðpÞ [8]

Drð0Þ ¼
kBT
8πηa3

BðpÞ; [9]

where p ¼ b∕a is the ellipsoid aspect ratio. Moreover, we can extract the
effective hydrodynamic radius Rh ¼ aAðpÞ−1. AðpÞ and BðpÞ result from the
angular average of translational and rotational friction factors (38):

AðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − p2j

p
8><
>:

arctan
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 − 1
p �

ðoblate: p > 1Þ

ln
�

1þ
ffiffiffiffiffiffiffiffi
1−p2

p
p

�
ðprolate: p < 1Þ

BðpÞ ¼ 1þ 3p2AðpÞ
2p2ð1þ p2Þ :

For the present case of an oblate ellipsoid with a ¼ 1.8 nm and b ¼ 4.6 nm,
we obtain p ¼ 2.56 and thus AðpÞ−1 ¼ 2.01 and BðpÞ−1∕3 ¼ 2.09.

Appendix
Implicit Relation Between Rotational, Translational, and Fitted Diffu-
sion Coefficient (Eq. 4). The scattering function of a particle per-
forming rotational and translational diffusion reads (24)

StþrðQ;ωÞ ¼ 1

π∑
∞

l¼0

BlðQÞ ΓlðQÞ
ω2 þ ΓlðQÞ [10]

with

BlðQÞ ¼
Z

∞

0

drρðrÞð2lþ 1Þj2l ðQrÞ [11]

and

ΓlðQÞ ¼ Drlðlþ 1Þ þDtQ2; [12]

where Dr and Dt denote the rotational and translational diffusion
coefficients, respectively. The rotational dynamic structure fac-
tors are entirely determined by the radial density distribution

of the hydrogen atoms in the molecule, ρðrÞ. jlðxÞ is the lth-order
spherical Bessel function of first kind.

It was found (24, 25) and reproduced in our study that a single
Lorentzian line shape with HWHM γ and amplitude α approxi-
mates the calculated scattering function StþrðQ;ωÞ for rotational
and translational diffusion inside error bars in the Q-range rele-
vant for our experiment. The minimization of the L2-norm

‖StþrðQ; ·Þ − αLγð·Þ‖2 ¼
Z

½SðQ;ωÞ − αLγðωÞ�2dω [13]

reduces to two nonlinear equations:

α ¼ 2γðQÞ∑
∞

l¼0

BlðQÞ
ΓlðQÞ þ γðQÞ [14]

0 ¼ ∑
∞

l¼0

BlðQÞ γðQÞ − ΓlðQÞ
2γðQÞðΓlðQÞ þ γðQÞÞ2 : [15]

Inserting Eq. 12 and the Q-dependent diffusion coefficient
dðQÞ ¼ γðQÞ∕Q2 into Eq. 15, an implicit relation of the three in-
volved diffusion coefficients dðQÞ, Dr , and Dt is derived:

0 ¼ ∑
∞

l¼0

BlðQÞ Drlðlþ 1Þ þ ðDt − dðQÞÞQ2

½Drlðlþ 1Þ þ ðDt þ dðQÞÞQ2�2 : [16]

For given Dt and Dr , which are Q-independent, the Q-depen-
dence of dðQÞ can be discussed. For Q ¼ 0, we obtain Bl ¼ δl;0
which renders the implicit Eqs. 14, 15 explicitly solvable yielding
Γ ¼ DtQ2 and α ¼ 1, i.e., dð0Þ ¼ Dt. For finite Q, dðQÞ monoto-
nously increases withQ and converges rapidly to a constant value.
By the limit

D ¼ lim
Q→∞

dðQÞ; [17]

we define the observable diffusion coefficient D. The rapid con-
vergence of dðQÞ restates the simple diffusive relation
γðQÞ ¼ DQ2 as observed in the accessible Q-range, as found al-
ready numerically (24, 25). Rotational diffusion thus acts as an
additional contribution not distinguishable from translational
diffusion without careful modeling and approximations.

Inserting dðQÞ ¼ D into Eq. 16 finally returns the implicit
relation Eq. 4 connecting the three diffusion coefficients D, Dr ,
andDt. For a given pair of two diffusion coefficients, the third can
thus be calculated by solving Eq. 4. This calculation is performed
numerically for a truncated sum. The truncation is dependent on
the Q range and generally valid because BlðQÞ rapidly decays to
zero at finite Q for increasing l (24). For our Q range, we
use nmax ¼ 250.
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