Dye-Sensitized Ternary Copper Chalcogenide Nanocrystals: Optoelectronic Properties, Air Stability, and Photosensitivity

Sonam Maiti,\dagger,\ddagger Santanu Maiti,\dagger Ali Hossain Khan,§ Andreas Wolf,⊥ Dirk Dorfs,⊥ Iwan Moreels,§ Iwan Moreels,§ Frank Schreiber,\dagger,$\#$$\dagger$ Marcus Scheele,§\dagger,$\#$$\dagger$

\daggerInstitute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
\ddaggerInstitute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
§Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
⊥Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
$\#$Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany
$\#$$\dagger$Center for Light-Matter Interaction, Sensors & Analytics LISA\dagger, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany

Supporting Information

ABSTRACT: We report on the effect of ligand exchange of Cu$_2$Se$_{S_{1−y}}$ and Cu$_2$Se nanocrystals (NCs) with the organic π-system cobalt β-tetraminophthalocyanine (CoTAPc) and analyze the changes in the structural, optical, and electric properties of these hybrid materials. A strong ligand interaction with the surface of the NCs is revealed by UV/vis absorption and Raman spectroscopy. Grazing-incidence small-angle X-ray scattering studies show a significant contraction in the interparticle distance upon ligand exchange. For copper-deficient Cu$_2$−Se$_{S_{1−y}}$ this contraction has a negligible effect on electric transport, whereas for copper-deficient Cu$_2$−Se$_{Se_{1−y}}$ the conductivity increases by 8 orders of magnitude and results in metal-like temperature-dependent transport. We discuss these differences in the light of varying contributions of electronic vs ionic transport in the two materials and highlight their effect on the stability of the transport properties under ambient conditions. With photocurrent measurements, we demonstrate high optical responsivities of 200–400 A W$^{-1}$ for CoTAPc-capped Cu$_2$Se$_{S_{1−y}}$ and emphasize the beneficial role of the organic π-system in this respect, which acts as an electronic linker and an optical sensitizer at the same time.

1. INTRODUCTION

Copper chalcogenide nanocrystals (NCs) have become a subject of intense research as possible alternatives to the more toxic Cd or Pb-based counterparts for optoelectronic applications such as solar cells or photocatalysts but also as thermoelectric converters, gas sensors, optical filters, superionic conductors, and electro-optical devices.$^{1−13}$ A majority of these investigations focused on the binary compounds copper selenide (Cu$_2$Se) and copper sulphide (Cu$_2$S) with variable Cu(I) deficiency (e.g., Cu$_2$$_{0.00}$$-$$Se_x$$_0.00$$ ≤ x ≤ 0.6) and tailored charge carrier concentration as well as charge carrier concentration-dependent localized plasmon resonance frequency (LSPR).$^{14−25}$ Introducing Cu(I) vacancies is readily afforded by oxidizing parts of the chalcogenide sublattice into the (−1)-state, which leads to loss of Cu(I)-ions and release of free holes in the NC core.22,24 More recently, the ternary alloy, Cu$_2$Se$_{S_{1−y}}$, has been studied to some extent, for instance as a precursor in the synthesis of Cu$_2$ZnSn(Se$_{S_{1−y}}$)$_4$ NCs with relevance for photovoltaic applications.$^{25−30}$ In particular, with respect to the oxidation-sensitive Cu$_2$Se system, it has been argued that Cu$_2$Se$_{S_{1−y}}$ may have similar optoelectronic properties, however, with improved stability in air.31,32 For binary, copper-deficient copper chalcogenide NCs, Cu$_2$−Se and Cu$_2$−S, several studies have been conducted to increase the electronic coupling in thin films of these materials, for instance by removing the native ligand with smaller molecules or anions, by thermal decomposition of the insulating ligand sphere, or by thermal doping.$^{33−40}$ Specifically for Cu$_2$−Se NCs, several groups have reported that high electric conductivities (up to 25 S cm$^{-1}$) may also be obtained without such postsynthetic ligand exchange, indicating that charge carrier transport in these NCs potentially follows a different mechanism than that in copper sulphide, where ligand exchange is usually necessary.$^{31−44}$ From the perspective of tailoring the optoelectronic properties of copper chalcogenide NCs by their surface chemistry, such ligand-independent transport characteristics are undesirable. However, the electric conductivities in
The injection. At 150 °C within approximately 2 temperature of the reaction mixture is allowed to recover to 290 solution is rapidly injected into the copper precursor solution. The solution with a glass syringe, the solution is cooled to 150 highly increasing resistivity with increasing temperature indicate degassed OLm (9 mL) and re precursor solution is prepared by dissolving Se (117 mg, 1.5 mmol) in of the presented material, in which the organic material. We argue that this is enabled by the hybrid nature of the ternary alloy exhibits stable electric transport properties in air. Electrical conductivities >1 S cm⁻¹ and an increasing resistivity with increasing temperature indicate highly efficient charge carrier transport in CoTAPc-functionalized Cu₂−xSe₁−y NC thin films. We demonstrate an optical responsivity of 400 A W⁻¹ under 637 nm photoexcitation, which is an exceptionally large photosensitivity for this material. We argue that this is enabled by the hybrid nature of the presented material, in which the organic π-system acts as the photosensitizer and the network of NCs provides the channel for fast transport of the photoexcited charges.

2. METHODS

2.1. Synthesis of Cu₂Se Nanocrystals. A synthesis method adapted from Deko et al. has been used to produce quasispherical Cu₂Se NCs. Standard Schlenk line techniques were applied for synthesis and purification. A mixture of 15 mL of 1-octadecene (ODE) and 15 mL of oleylamine (OLm) is degassed under vacuum at 115 °C for 3 h. The mixture is cooled to room temperature, and under argon flow, 297 mg of copper(I) chloride (CuCl, 3 mmol) is added. For an additional 15 min, the mixture is heated to reflux under vacuum. Subsequently, the flask is filled with argon and the temperature is raised to 300 °C in 5-6 min. The selenium (Se) precursor solution is prepared by dissolving Se (117 mg, 1.5 mmol) in degassed OLm (9 mL) and refluxing under vacuum for 30 min (115 °C). The flask is again filled with argon and the mixture is left stirring at 190-200 °C until all Se is dissolved. Upon dissolution, the temperature is raised to 230 °C for 20 min. To transfer the precursor solution with a glass syringe, the solution is cooled to 150 °C. The Se solution is rapidly injected into the copper precursor solution. The temperature of the reaction mixture is allowed to recover to 290 °C within approximately 2-3 min. The reaction is quenched 15 min after the injection. At 150 °C, toluene (20 mL) is injected to prevent agglomeration. The particles are precipitated from the growth solution with ethanol (20 mL) and methanol (10 mL) and centrifuged (3700g, 20 min). The precipitate is resuspended in toluene (20 mL) by ultrasonication (5 min). After 12 h, the solution is centrifuged again (3700g, 20 min) to remove aggregates. The supernatant is collected and used for all further experiments.

2.2. Synthesis of Cu₂Se₃₋ₓ NC Nanocrystals. The Se-precursor solution is prepared according to the method reported by Lesnyak et al. 158 mg of Se powder (2 mmol) is mixed with 1 mL of 1-dodecanethiol (DDT) and 1 mL of OLm and is heated for 1 h at 100 °C under a nitrogen atmosphere. The resultant, brown alkyl ammonium selenide solution is cooled to room temperature and stored in a nitrogen-filled glass vial.

In a three-necked round-bottom flask, 262 mg of copper(II) acetylacetonate [Cu(acac)]₂ (1 mmol) is mixed with 3.5 mL of DDT and 10 mL of OLm, and the mixture is degassed under vacuum with vigorous stirring at 70 °C for 1 h. Then, the flask is filled with nitrogen and quickly heated to 220 °C. After complete dissolution, Cu(acac)₂ forms a clear yellow solution. At this temperature, a mixture of 0.5 mL of the Se-precursor with 1.5 mL of DDT is swiftly injected into the flask leading to immediate color change from yellow to brown. The reaction mixture is kept at 220 °C for 30 min. The nanocrystals are precipitated under an inert gas atmosphere by centrifugation of the crude reaction mixture with subsequent dissolution of the precipitate in chloroform.

2.3. Thin-Film Preparation and Ligand Exchange. NC thin films were prepared by assembly at the dimethylsulfoxide/N₂ interface under inert conditions in a glovebox. The fabrication process and ligand exchange were carried out in a home-built Teflon chamber according to our previously reported method.

2.4. Instrumentation. Scanning transmission electron microscopy (STEM, Hitachi SU 8030 microscope operating at 30 kV) is employed to determine the particle size and shape. Optical measurements are performed on solid-state films on glass substrates using a UV−vis−NIR spectrometer (Agilent Technologies, Cary 5000). Grazing-incidence small-angle X-ray scattering (GIXSAXS) is carried out with a laboratory instrument (Xeuss 2.0, Xenocs, France) using Cu Kα radiation (λ = 1.5418 Å). The samples are probed with a focused X-ray beam of size 0.5 × 0.5 mm² at an incidence angle of 0.22°. The GIXSAXS images are collected with a 2D Pilatus 300 K, having 487 × 619 pixels. The detector is placed at a distance of 2496 mm, determined using Ag-behenate as the reference sample. X-ray diffraction (XRD) data from the sample is collected in a laboratory source (Cu Kα; GE Inspection Technologies, Germany). Raman spectra are acquired using a Horiba Jobin Yvon Labram HR
to the S–Se stretching mode. Consistent with the EDX data, the intensity of the Se–Se band is much stronger than that of the S–S and S–Se stretching vibrations, suggesting that the alloy is rich in selenium.

To enhance the chemical and electronic coupling in solid-state films of both NC materials, we exchange the native OLm ligand with the multideterminate cross-linker CoTAPc. We choose this linker because earlier reports have shown that tetraaminophthalocyanines are suitable for replacing oleylamine from the surface of Cu1.1S NCs and drastically improve the charge carrier transport. The ligand-exchanged NC films exhibit a smooth surface with an average height difference of 3–4 nm and a 1 NC monolayer for Cu2Se and Cu2Se, respectively (Figure S2). We monitor the effect of this ligand exchange by Raman spectroscopy in Figure 1e. (This figure exemplifies the exchange for Cu2Se NCs, but the same spectral features between 700 and 1700 cm \(^{-1}\) are also obtained with Cu2Se after ligand exchange.) In accordance with previous studies, we interpret the strong bands appearing at 747, 1124, 1202, 1337, 1447, 1530, and 1605 cm \(^{-1}\) with vibrational modes of CoTAPc, which is a supporting piece of evidence for the presence of a new linker in the NC films. The peaks at 300 and 513 cm \(^{-1}\) belong to the Si substrate. Fourier-transform infrared spectroscopy furthermore reveals significant changes after exposure to CoTAPc, most notably the disappearance of characteristic OLm vibrations at 1660 and 3350 cm \(^{-1}\). (For details, see Figure S3 in the Supporting Information.)

We determine the structural details of the ensemble of the two NC samples as well as the effect of ligand exchange with CoTAPc by GISAXS in Figure 2. The intense in-plane scattering truncation rods extended along the q{}_{∥} direction indicate the formation of superlattices with long-range in-plane order. For OLm-capped Cu2Se NCs (Figure 2a+c), we find the first-order in-plane correlation peak at q{}_{∥} = 0.043 Å \(^{-1}\), a second order peak at q{}_{∥} = 0.078 Å \(^{-1}\), and a barely visible third signal at q{}_{∥} ≈ 0.9 Å \(^{-1}\). These relative positions in q{}_{∥} can be interpreted as the formation of a hexagonal lattice (e.g., q{}_{∥}/q{}_{∥} = 1:√3:2) with in-plane lattice constant a = 16.8 ± 0.1 nm. After ligand exchange with CoTAPc (Figure 2b+c), the in-plane correlation peaks shift to higher values, that is, smaller lattice constants, and we find q{}_{∥} = 0.048, 0.084 Å \(^{-1}\), and a shoulder at 0.096 Å \(^{-1}\). These values are again in agreement.
with a hexagonal lattice, but with a contracted in-plane lattice constant $a = 15.1 \pm 0.1$ nm. We attribute the contraction of 1.7 nm to the replacement of OLm by the smaller CoTAPc ligand. The improved signal-to-background ratio after ligand exchange indicates a higher degree of long-range order as a result of cross-linking with the rigid organic π-system. With respect to the average particle diameter of 12.2 \pm 1.9 nm (Figure 1b), the interparticle spacing before ligand exchange is 4.6 \pm 1.9 nm, which can be interpreted with two adjacent, nonintercalated ligand spheres of OLm. After cross-linking with CoTAPc, the interparticle spacing is reduced to 2.9 \pm 1.9 nm, which is equivalent to 1–2 times the molecular length of CoTAPc. Since the exact binding mode of CoTAPc to the surface of the NCs is not known, the latter finding could either be explained with a side-on binding of stacks of CoTAPc or with head-to-tail cross-linking of a CoTAPc monolayer.

Similar GISAXS patterns are also obtained for Cu$_{2-x}$Se$_x$S$_{1-y}$ before and after ligand exchange with CoTAPc (Figure 2d+e). The first-order correlation peak shifts from 0.074 Å$^{-1}$ with OLm functionalization to 0.082 Å$^{-1}$ after ligand exchange (Figure 2f). Under the assumption of a hexagonal lattice, this corresponds to a center-to-center distance between the NCs of 9.8 \pm 0.1 nm for OLm functionalization and 8.8 \pm 0.1 nm for CoTAPc as the ligand. With a particle diameter of 7.0 \pm 0.8 nm, the interparticle distances are 2.8 \pm 0.8 nm for OLm and 1.8 \pm 0.8 nm for CoTAPc. The latter result may be viewed as indirect supporting evidence that CoTAPc binds preferentially in a head-to-tail cross-linking manner between the surfaces of two adjacent NCs as the width of the ligand sphere is precisely 1 molecular length of CoTAPc.

For charge transport studies, we deposit both copper chalcogenide NC films on silicon oxide substrates with prepatterned Au contacts and record the two-point probe current–voltage (I–V) characteristics at room temperature. In Figure 3a+b, we focus on a comparison of the I/V characteristics of both materials before and after ligand exchange with CoTAPc and before/after oxidation by exposure to air. The left panels in Figure 3 represent the characteristics of the ternary copper chalcogenide NCs, whereas the right panel characterizes the binary NCs. The color code is the same for both materials: green = OLm capping, reduced; yellow = OLm capping, oxidized; blue = CoTAPc capping, reduced; and red = CoTAPc capping, oxidized. Oxidation leads to copper vacancies and a nonstoichiometric composition in copper selenide NCs and drastically increases the density of free holes, which manifests in degenerate p-type doping as well as the occurrence of an LSPR in the near-infrared (NIR). Therefore, we monitor the degree of vacancy doping for both samples with vis/NIR absorption spectroscopy in Figure 3c+d. We note a broad band centered at 1250 nm for oxidized Cu$_{2-x}$Se$_{1-y}$ (for both OLm and CoTAPc ligands), 1300 nm for oxidized OLm-capped Cu$_{2-x}$Se and 1600 nm for oxidized Cu$_{2-x}$Se capped with CoTAPc, which we interpret as LSP resonances. In the reduced state, both materials show a negligible LSPR signal below 2000 nm, indicative of a low carrier density and a near stoichiometric copper content. In both ligand-exchanged samples, the singlet transition of CoTAPc involves a strong absorption band between 600 and 800 nm. (See Supporting Information for the absorption spectrum of pure CoTAPc, Figure S4.)

With respect to the conductivity, charge transport is poor in both materials (green curve) with conductivities on the order of 10$^{-5}$ S cm$^{-1}$ for Cu$_{2-x}$Se$_{1-y}$ and 10$^{-4}$ S cm$^{-1}$ for Cu$_{2-x}$Se. After surface-functionalization with CoTAPc, both materials behave similar and the conductivities increase dramatically to 1 and 5 S cm$^{-1}$, respectively (blue curve). In contrast, when studying the effect of oxidation in air for several hours (Cu$_{2-x}$Se) or days (Cu$_{2-x}$Se$_{1-y}$), we observe a different behavior for Cu$_{2-x}$Se$_{1-y}$ vs Cu$_{2-x}$Se. While the increase of copper vacancies has a negligible effect on the transport properties of OLm-capped Cu$_{2-x}$Se$_{1-y}$, it increases the conductivity of the OLm-capped Cu$_{2-x}$Se to 6 S cm$^{-1}$. Oxidizing the CoTAPc-capped NC films has a significant effect on the conductivity of either of the two samples (Figure 5S).

The structural characterization in Figure 2 demonstrates that the highly conductive OLm-capped Cu$_{2-x}$Se NCs are well-separated from each other (4.6 \pm 1.9 nm), such that necking and the formation of percolative pathways are an unlikely explanation for such efficient charge carrier transport. Similar widths of the OLm ligand sphere are also observed for Cu$_{2-x}$Se$_{1-y}$ (2.8 \pm 0.8 nm, this work) and Cu$_{1-x}$S NCs (4.1 \pm 1.7 nm), which exhibit negligible conductivities (10$^{-9}$ and 10$^{-9}$ S cm$^{-1}$, respectively). We note that previous reports on drop-cast, oxidized OLm-capped Cu$_{2-x}$Se NCs revealed similar or even larger conductivities, corroborating our finding here that Cu$_{2-x}$Se NCs show uniquely different transport properties compared to Cu$_{2-x}$Se$_{1-y}$ or Cu$_{1-x}$S NCs. It is furthermore surprising that the significant contraction of the Cu$_{2-x}$Se NC ensemble by 1.7 nm upon ligand exchange has no effect on the conductivity (Figure 3b yellow vs red curve). This speaks against electronic (hopping) conduction as the dominant transport mechanism in OLm-capped Cu$_{2-x}$Se NC thin films, which is strongly affected by a change of the hopping distance. We hypothesize that ionic conduction of mobile copper ions may play a key role here. Very large ionic mobilities with diffusion constants $>10^{-5}$ cm2 s$^{-1}$ and superionicity have been reported for Cu$_{2-x}$Se, which can result in electric conductivities >1 S cm$^{-1}$. Although this is not immediately obvious how such ionic conductivity would be affected by the OLm ligand sphere, superionicity is an important feature of Cu$_{2-x}$Se NCs and likely be responsible for the unusually large electric conductivities. This work...
explain why only a reduction in copper vacancies can significantly reduce the conductivity in OLm-capped Cu2Se NCs. After surface-functionalization with CoTAPc, electronic conduction appears greatly improved, such that the conductivity is now only weakly affected by the density of copper vacancies (Figure 3b blue vs red curve).

An alternative explanation which we briefly consider here involves the formation of conductive, percolative pathways consisting of copper oxide nanostructures. Oxidation in air of Cu2Se NCs results in the release of Cu(I) ions, which react with oxygen to form copper oxide NCs.16 The conductivity of some copper oxide phases (which are mostly semiconducting) is rather high, and it is possible that successive release of Cu(I) ions from the Cu2Se NCs leads to a continuous network of this conductor. Once formed, charge transport across this network is expected to be unaffected by the addition of [Cu-(CH3CN)4]PF6, which is a powerful reducing agent for Cu2−xSe NCs (via filling of Cu(I) vacancies), but not for copper oxide. However, we find that films of Cu2−xSe/OLm NCs show a drastically reduced electronic conductivity upon treatment with [Cu(CH3CN)4]PF6 which speaks against this alternative explanation (see Figure S6).

The transport characteristics of the ternary Cu2Se1−yS1−y NC ensemble appears to be dominated by electronic conduction with a strong dependence on the hopping distance (Figure 3a yellow vs red curve and green vs blue curve) and weak dependence on the density of copper vacancies (Figure 3a green vs yellow curve and blue vs red curve). In view of a recent report on electronic transport in similar Cu1−xS NC ensembles, the Cu2Se1−y NCs investigated here resemble much more of the binary sulfides than the selenides.5

To further understand the electronic properties of CoTAPc-capped Cu2Se1−y NCs, we perform temperature-dependent resistivity measurements under high vacuum (Figure 4a).

![Figure 4. (a) Temperature-dependent resistivity of Cu2Se1−y functionalized with CoTAPc. (b) Time-dependent current at 200 mW of a Cu2Se1−y/CoTAPc film during three excitation periods to 21 μW of 408 nm light (blue), 20 μW of 637 nm light (orange), and 21 μW of 848 nm (green).](image)

Throughout the entire temperature regime of 20–300 K, we observe monotonically increasing resistance with temperature, reminiscent of metallic behavior. Such a characteristic is rarely observed in copper chalcogenide NCs and only in cases where electronic coupling is large enough to overcome the temperature-activated hopping regime.34,35

In light of the tunable optical absorption properties, copper chalcogenide NCs are often considered for applications where light-to-electric current conversion is important, such as photovoltaics or photocatalysis. However, the photocurrent behavior of these materials showed only moderate photo-sensitivities so far.28–30 In Figure 4b, we display the ON/OFF photocurrent characteristics of Cu2Se1−y/CoTAPc NCs during three excitation periods with 408, 637, and 848 nm laser diodes at roughly the same direct optical power of ~20 μW. At a bias of 200 mV, we find a photocurrent of ~4, ~8, and 4 mA, respectively, corresponding to a responsivity of 200 A W−1 at 408 and 848 nm as well as 400 A W−1 at 637 nm. The reversibility of the transport characteristics after each excitation period indicates that the increased current is indeed a photocurrent and not, as recently observed for copper sulfide NCs, an irreversible photodoping effect.38 We explain such unprecedented optical responsivity with the presence of CoTAPc, which shows strong absorbance at all three excitation wavelengths (see Supporting Information). We suggest that CoTAPc sensitizes Cu2Se1−y NCs for the absorption of photons at these wavelengths to form singlet excitons in the organic π-system, which are split at the organic–inorganic interface and quickly swept to the source–drain electrodes under a small bias. For comparison, we have also measured the 408 nm photocurrent response for OLm-capped Cu2Se1−y NCs, which is quite low with no CoTAPc sensitzers (see Supporting Information Figure S7). Here, the responsivity is only on the order of 3 μA W−1. We conclude that the increase in responsivity by almost 8 orders of magnitude observed after functionalizing Cu2Se1−y NCs with CoTAPc is due to the combined effect of better electronic coupling and the additional absorption of the organic π-system. Thus, CoTAPc acts as an electronic cross-linker and optical sensitizer for the NCs.

4. CONCLUSIONS

We have measured the structural, optical, and electric properties of ternary Cu2Se1−y NCs capped with oleylamino and the organic π-system cobalt β-tetraaminophthalocyanine (CoTAPc), respectively, and compared it to the binary compound Cu2Se. While the structural and optical response to ligand exchange and oxidation in air is rather similar for both materials, we have observed substantial differences in the charge carrier transport properties. Charge transport in Cu2Se1−y NC solids is dominated by electronic conduction, very sensitive to structural changes and largely unaffected by oxidation in air. Exchanging the surface ligand oleylamino with the organic π-system not only drastically increases electronic coupling in the Cu2Se1−y NC ensembles but also invokes an increase in the optical responsivity by 8 orders of magnitude. Thus, ligand exchange with CoTAPc enables high conductivity and large responsivity in Cu2Se1−y NC films, which are much more robust against oxidation than their binary Cu2Se analogues.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b05108.

(S1) XRD pattern of as-synthesized Cu2Se1−y NCs, (S2) atomic force microscopy images and height profiles of NC films, (S3) Fourier-transform infrared spectra of Cu2Se and Cu2Se1−y NC films before and after ligand exchange with CoTAPc, (S4) UV/vis absorption spectrum of pure CoTAPc, (S5) I/V curves of CoTAPc-functionalized Cu2Se1−y NCs after varying exposure times to air, (S6) current–voltage characteristics of a Cu2Se/OLm film after different oxidation/
reduction treatments, and (S7) I/V curves of OLM-functionalized Cu$_2(S_ySe_{1−y})$ NCs under photoeexcitation by a 408 nm laser diode of varying optical power (PDF).

AUTHOR INFORMATION

Corresponding Author

E-mail: marcus.scheele@uni-tuebingen.de.

ORCID

Sanatan Maiti: 0000-0003-1491-6688

Ali Hossain Khan: 0000-0001-7155-0200

Dirk Dorfs: 0000-0001-6715-4891

Iwan Moreels: 0000-0003-3998-7618

Frank Schreiber: 0000-0003-3659-6718

Marcus Scheele: 0000-0002-2704-3591

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the DFG for support under Grants SCHE1905/3, D01850/S, and SCHR700/25. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 802822). We also thank Elke Nadler, Institute of Physical and Theoretical Chemistry, University of Tübingen, for performing SEM/STEM measurements using a Hitachi SU 8030 SEM which was funded by the DFG under contract INST 37/829-1 FUGG, partially.

REFERENCES

(29) Xu, J.; Yang, X.; Yang, Q.; Zhang, W.; Lee, C. S. Phase Conversion from Hexagonal Cu_{2}S_{1−x} to Cubic Cu_{2}S_{x}Se_{1−x}; Composition Variation, Morphology Evolution, Optical Tuning, and Solar Cell Applications. ACS Appl. Mater. Interfaces 2016, 8, 16352−16359.

(31) Li, W. L.; Zou, H. Y.; Lan, J.; Wang, Q.; Li, Y. F.; Huang, C. Z. H_{2}S Bubbles-Assisted Synthesis of Hollow Cu_{2}S_{1−x}Se_{x−y} Reduced Graphene Oxide Nanocomposites with Tunable Compositions and Localized Surface Plasmon Resonance. RSC Adv. 2015, 5, 91206−91212.

(51) Ishii, M.; Shibata, K.; Nozaki, H. Anion Distributions and Phase-Transitions in CuS_{x}Se_{(1−x)} (x = 0−1) Studied by Raman-Scattering. J. Solid State Chem. 1993, 105, 504−511.

(56) Liu, Y.; Dong, Q.; Wei, H.; Ning, Y.; Sun, H.; Tian, W.; Zhang, H. Y. B. Synthesis of Cu_{2}S_{x}Se_{(1−x)} Nanocrystals by Tuning the Reactivity of Se. J. Phys. Chem. C 2011, 115, 9909−9916.

